NORMAL FUNCTIONS AND NON-TANGENTIAL BOUNDARY ARCS

P. LAPPAN AND D. C. RUNG

1. Introduction. Let *D* and *C* denote respectively the open unit disk and the unit circle in the complex plane. Further, $\gamma = z(t)$, $0 \le t \le 1$, will denote a simple continuous arc lying in *D* except for $\tau = z(1) \in C$, and we shall say that γ is a *boundary arc* at τ .

We use extensively the notions of non-Euclidean hyperbolic geometry in D and employ the usual metric

$$\rho(a, b) = \frac{1}{2} \log \frac{|1 - a\overline{b}| + |a - b|}{|1 - a\overline{b}| - |a - b|},$$

where *a* and *b* are elements of *D*. For $a \in D$ and r > 0 let

 $B(a, r) = \{ z \in D | \rho(a, z) < r \}.$

For details we refer the reader to (4).

If γ is any boundary arc of D and $0 < r < \infty$

$$H(\gamma, r) = [z \in D | \rho(z, \gamma) < r],$$

where $\rho(\gamma, z)$ is the non-Euclidean distance of z to γ defined in the usual way. Consequently, $H(\gamma, r)$ is an open, connected (but not necessarily simply connected) subset of D. The boundary of $H(\gamma, r)$ is seen to contain two distinct boundary arcs at τ . Let $\rho_{\tau}, \tau \in C$, denote the diameter of C ending at τ . In this case, $H(\rho_{\tau}, r)$ is a connected domain bounded by two hypercycles from τ to $-\tau$ which form the angle 2 arctanh r and $-2 \arctan r$, respectively, with ρ_{τ} at τ . If $\gamma = z(t)$ is a boundary arc at τ such that for some $0 \leq t_0 < 1$, and some $0 < r < \infty$, $z(t) \in H(\rho_{\tau}, r)$, $t \geq t_0$, we say γ approaches τ in a non-tangential manner, and the set of all such non-tangential boundary arcs at τ we denote by $\Lambda(\tau)$.

We consider functions f(z) defined in D and taking values in the extended complex plane W. For a set $\Omega \subset D$, with the closure of Ω intersecting C at a single point τ , $C_{\Omega}(f, \tau)$ indicates the set of all values $w \in W$ with the property that there is a sequence $\{z_n\}$ in Ω with $z_n \to \tau$, $n \to \infty$ and $f(z_n) \to w$, $n \to \infty$.

Finally

$$\prod_{H(\gamma, r)} (f, \tau) = \bigcap_{\gamma^*} C_{\gamma^*}(f, \tau)$$

where γ^* ranges over all boundary arcs at τ that lie within $H(\gamma, r)$, and

$$\Pi_{\mathfrak{A}}(f, \tau) = \bigcap_{\gamma \in \Lambda(\tau)} C_{\gamma}(f, \tau).$$

Received October 22, 1964.

256

For an elaboration of the theory of cluster sets see, for example, (8).

2. Boundary behaviour of normal functions. Of course,

$$\Pi_{\mathfrak{A}}(f, \tau) \subseteq \Pi_{H(\gamma, \tau)}(f, \tau),$$

for any $\gamma \in \Lambda(\tau)$ and any r > 0. Our main result is that

$$\Pi_{\mathfrak{A}}(f, \tau) = \Pi_{H(\gamma, r)}(f, \tau),$$

where τ is any point in *C*, γ is any curve in $\Lambda(\tau)$, and *r* is any positive number provided that *f* is a normal function in *D*.

DEFINITION. A function f(z) meromorphic in D is said to be a normal function in D if the family $\{f(S(z))\}\$ is normal in the sense of Montel, where S(z) is an arbitrary one-to-one conformal map of D onto itself; see (6, p. 53).

Before proving this result we set forth two lemmas, which will expedite the proof. For any $w \in W$ and $d \ge 0$, let $Z_f(w, d) = \bigcup_z B(z, d)$, where the union is taken over all $z \in D$ such that f(z) = w.

LEMMA 1. Let f be a normal function in D and $\gamma \in \Lambda(t), \tau \in C$. If $w \in C_{\gamma}(f, \tau)$ and if there exists d > 0 such that $\gamma \cap Z_{f}(w, d) = \emptyset$, then

$$w \in C_{\gamma'}(f, \tau)$$
 for any $\gamma' \in \Lambda(\tau)$.

Proof. Since $w \in C_{\gamma}(f, \tau)$, let $\{z_n\}$ be a sequence on γ such that $z_n \to \tau$, $f(z_n) \to w$, as $n \to \infty$. Let

$$f(S_n(\zeta)) = g_n(\zeta)$$

with

$$S_n(\zeta) = \frac{\zeta + z_n}{1 + \zeta \, \bar{z}_n}, \quad |\zeta| < 1, n = 1, 2, \dots;$$

and let $\{g_{nk}(\zeta)\}$ be the convergent subsequence guaranteed by the normalcy of f. Let $g(\zeta)$ be the limit function. Now

$$g(0) = \lim_{k\to\infty} g_{nk}(0) = \lim_{k\to\infty} f(z_{nk}) = w;$$

but for $|\zeta| < \tanh d$ the equation

$$g_{nk}(\zeta) = w$$

is satisfied for no value of k. By Hurwitz's theorem we conclude that $g(\zeta) \equiv w$. Hence for any fixed $0 < d' < \infty$, f tends to the value w as z tends to τ on the set

$$\bigcup_{k=1}^{\infty} B(z_{nk}, d').$$

If $\gamma' \in \Lambda(\tau)$, then

$$\gamma' \cap B(\mathbf{z}_{n_k}, d') \neq \emptyset$$

for suitable d' > 0 and all k = 1, 2, ...; and we conclude that $w \in C_{\gamma'}(f, \tau)$, which proves the lemma.

LEMMA 2. Let f be a normal function in D. Suppose for some $\tau \in C$ and for each $n = 1, 2, \ldots$, that there is a set of distinct points

$$\{\xi_i^{(n)}\}, \quad i = 1, 2, \ldots, m_n,$$

with the following properties:

(i) for some r > 0 and all $n = 1, 2, ..., \xi_1^{(n)} \in H(\rho_\tau, r)$;

(ii) also $\xi_1^{(n)} \to \tau$, $n \to \infty$;

(iii) further $\rho(\xi_i^{(n)}, \xi_{i+1}^{(n)}) < k_n, \quad i = 1, 2, \dots, m_n - 1,$ with $k_n \to 0, n \to \infty$;

(iv) there exists a positive number A independent of n such that

$$\rho(\xi_1^{(n)}, \xi_{m_n}^{(n)}) \ge A > 0$$

(v) lastly

$$f(\xi_i^{(n)}) = w, \quad i = 1, 2, \dots, m_n; n = 1, 2, \dots$$

In this case $w \in C_{\gamma}(f, \tau)$ for all $\gamma \in \Lambda(\tau)$.

Proof. Again we let

$$f(S_n(\zeta)) = g_n(\zeta), \qquad n = 1, 2, \ldots,$$

where

$$z = S_n(\zeta) = \frac{\zeta + \xi_1^{(n)}}{1 + \overline{\xi}_1^{(n)} \zeta}.$$

Let $\{g_{n_k}(\zeta)\}$ be that convergent subsequence with

$$g_{nk}(\zeta) \to g(\zeta), \qquad k \to \infty.$$

Without loss of generality and for ease of notation we assume that $g_n(\zeta)$ is the desired subsequence.

Since

$$g_n(0) = f(\xi_1^{(n)}) \to w$$

as $n \to \infty$, we have g(0) = w. We now show that the set of points $Z_g(w, 0)$ which also lie in $|\zeta| < \tanh A \equiv B$ is infinite. Consequently $g(\zeta) \equiv w$ in D, and we can argue as in the last paragraph of the proof of Lemma 1 to obtain this lemma.

Suppose there is a ring $R, 0 < r' \leq |\zeta| \leq r'' < B, r'' > r'$, which contains no points of $Z_q(w, 0)$. Since g(0) = 0, we take r' > 0. For any fixed *n* the set

$$\{\xi_i^{(n)}: i = 1, \ldots, m_n\}$$

is transformed by

 $S_n^{-1}(z)$

onto a set of points we label

$$\{\zeta_i^{(n)}: i = 1, \ldots, m_n\}$$

with

(1)

(i)
$$\zeta_1^{(n)} = 0$$
, $|\zeta_{m_n}^{(n)}| \ge B$;
(ii) $\rho(\zeta_i^{(n)}, \zeta_{i+1}^{(n)}) < k_n$, $i = 1, 2, ..., m_n - 1$;

(iii)
$$g_n(\zeta_i^{(n)}) = w, \quad i = 1, 2, \dots, m_n.$$

$$(m) g_n(y_1) = w, \quad v = 1, 2, \ldots, m$$

There must be at most a finite number of such

 $\zeta_{i}^{(n)}, \quad i = 1, 2, \ldots, m_n, n = 1, 2, \ldots,$

within R; otherwise this set would have a limit point, say ζ_0 , and by the continuous convergence of $g_n(\zeta)$ to $g(\zeta)$ we would have $g(\zeta_0) = w$, contrary to assumption.

Thus there is an index N_0 such that for $n > N_0$ no point of the form

 $\zeta_i^{(n)}, \quad i = 1, 2, \ldots, m_n,$

lies in R. If $n_1 > N_0$ is chosen so that

$$k_{n_1} < \rho(0, r'') - \rho(0, r'),$$

this is incompatible with (1) and the definition of R, whence $g(\zeta) \equiv w$.

We proceed to the main theorem. We demonstrate that if $w \in \Pi_{H(\gamma,\tau)}(f,\tau)$, $\gamma \in \Lambda(\tau)$, either Lemma 1 or Lemma 2 applies and conclude that

 $w \in \Pi_{H(\gamma',\tau')}(f,\tau)$ for all $\gamma' \in \Lambda(\tau)$ and any r' > 0.

Consequently, $\Pi_{\mathfrak{A}}(f, \tau) = \Pi_{H(\gamma, \tau)}(f, \tau).$

THEOREM 1. Assume that f(z) is normal in D. Then for any $\gamma, \gamma' \in \Lambda(\tau)$ and r, r' > 0,

$$\Pi_{H(\gamma,\tau)}(f,\tau) = \Pi_{H(\gamma',\tau')}(f,\tau) = \Pi_{\mathfrak{A}}(f,\tau).$$

Proof. For any given fixed curve $\gamma \in \Lambda(\tau)$ and a fixed r > 0 let

$$Z'_{f}(w, 1/n) = Z_{f}(w, 1/n) \cap H(\gamma, r), \qquad n = 1, 2, \ldots$$

There are two cases according as $\gamma \cap Z'_f(w, 1/n) = \emptyset$ for some *n* or

$$\gamma \cap Z'_f(w, 1/n) \neq \emptyset$$

for all *n*. In the first case we refer to Lemma 1 and the theorem is immediate.

We now consider the second case. For each value of *n* decompose $Z'_f(w, 1/n)$ into its components

$$\{Y_i^{(n)}: i = 1, \ldots, j_n; 1 \leq j_n \leq \infty\}.$$

We classify a component $Y_i^{(n)}$ as a crosscut if the boundary of this component meets both γ and the boundary of $H(\gamma, r)$. If for each value of *n* there is at least one component, say $Y_{i_n}^{(n)}$, which is a crosscut, we apply Lemma 2 in the following manner.

Since the boundary of $Y_{i_n}^{(n)}$ meets both γ and the boundary of $H(\gamma, r)$ for each value *n*, there is a finite set of points

$$\{\xi_j^{(n)}: j = 1, \ldots, h_n\}$$

with

(i) $\xi_{1}^{(n)} \in H(\rho_{\tau}, r);$ (ii) $\xi_{1}^{(n)} \to \tau, \quad n \to \infty;$ (iii) $\rho(\xi_{j}^{(n)}, \xi_{j+1}^{(n)}) < 2/n, \quad j = 1, 2, ..., h_{n} - 1;$ (iv) $\rho(\xi_{1}^{(n)}, \gamma) < 1/n, \quad \rho(\xi_{h_{n}}^{(n)}, \operatorname{Bd} H(\gamma, r)) < 1/n$

and so

$$\rho(\xi_1^{(n)}, \xi_{h_n}^{(n)}) \ge r - 2/n;$$
(v) $f(\xi_j^{(n)}) = w, \qquad j = 1, 2, \dots, h_n, n = 1, 2, \dots$

These five properties follow easily from the construction of $Y_{i_n}^{(n)}$.

If we choose n_0 so that $2/n_0 < r/2$, then for $n \ge n_0$ the requirements of Lemma 2 are satisfied with A = r/2 and $k_n = 2/n$ and the theorem is proved.

To conclude the proof, suppose there is an n_0 such that no $Y_i^{(n_0)}$, $i = 1, \ldots, j_{n_0}$, is a crosscut. Let V denote the union of all those components of $Z'_f(w, 1/n_0)$ that meet γ together with the set γ itself. This is a connected set lying entirely within $H(\gamma, r)$ and such that the closure of V meets C only at τ . There is a subset β of the boundary of V which is a boundary arc approaching τ within $H(\gamma, r)$ and, of course, with $\beta \cap Z'_f(w, 1/n_0) = \emptyset$. Since $w \in C_{\beta}(f, \tau)$, an application of Lemma 1 completes the proof of the theorem.

THEOREM 2. Let f(z) be a function from D into W. Let $\gamma \in \Lambda(\tau)$, $\tau \in C$, and let r > 0 be given. Then there is a countable collection of boundary arcs at τ , $\{\gamma_n\}, \gamma_n \subset H(\gamma, r), n = 1, 2, ..., and$

$$\Pi_{H(\gamma,\tau)}(f,\tau) = \bigcap_{i=1}^{\infty} C_{\gamma_n}(f,\tau).$$

Proof. Let F be the family of all boundary arcs at τ contained in $H(\gamma, r)$. For $\gamma \in F$ let $B_{\gamma} = W - C_{\gamma}(f, \tau)$, which is an open set in W. Now

$$\bigcup_{\boldsymbol{\gamma} \in F} B_{\boldsymbol{\gamma}} = W - \prod_{H(\boldsymbol{\gamma}, r)} (f, \tau),$$

and by the Lindelöf covering property there is a countable subcovering $\{B_{\eta_n}\}$ of $W - \prod_{H(\eta,\tau)} (f, \tau)$. Consequently

$$\bigcup_{n=1}^{\infty} B_{\gamma_n} = W - \prod_{H(\gamma,\tau)} (f,\tau),$$

whence

$$\bigcap_{n=1}^{\infty} C_{\gamma_n}(f,\tau) = \prod_{H(\gamma,\tau)} (f,\tau).$$

If γ is a boundary arc at τ and f is defined in D taking values in W, define

 $R_{H(\gamma,\tau)}(f, \tau), r > 0$, as the set of all $w \in W$ such that there is a sequence $\{z_n\}$ in $H(\gamma, r), z_n \to \tau$ as $n \to \infty$, and $f(z_n) = w, n = 1, 2, \ldots$. Let int $R_{H(\gamma,\tau)}(f, \tau)$ denote the interior of $R_{H(\gamma,\tau)}(f, \tau)$ relative to W.

Finally set

$$\widetilde{R}_{H(\gamma,\tau)}(f,\tau) = \bigcap_{\tau' > \tau} \operatorname{int} R_{H(\gamma,\tau')}(f,\tau).$$

A theorem of Rung (8, p. 44) can be formulated as follows:

THEOREM A. If f(z) is a normal function in D then for any $\tau \in C$, any boundary arc γ at τ , and r > 0 we have

$$C_{H(\gamma,\tau)}(f,\tau) - \widetilde{R}_{H(\gamma,\tau)}(f,\tau) \subseteq \prod_{H(\gamma,\tau)}(f,\tau).$$

(This theorem was originally proved in the case where γ was a rectilinear segment at τ : but it is easily seen that the method of proof yields the more general Theorem A.) In conjunction with Theorem 1, Theorem A yields the following theorem.

THEOREM 3. If f(z) is normal in D, then, for any $\tau \in C$, any $\gamma \in \Lambda(\tau)$, and any r > 0,

$$C_{H(\boldsymbol{\gamma},\tau)}(f,\tau) - \tilde{R}_{H(\boldsymbol{\gamma},\tau)}(f,\tau) \subseteq \Pi_{\mathfrak{A}}(f,\tau).$$

3. Examples. If f(z) is merely required to be meromorphic and not normal, Theorem 1 fails. This can be seen by the following example. Let $\{\gamma_n\}, \gamma_n \in \Lambda(\tau)$, $n = 1, 2, \ldots$, be a sequence of mutually exclusive boundary arcs at $\tau = 1$, such that for some $r_0 > 0$ each boundary arc $\gamma \subseteq H(\rho_1, r_0)$ intersects each γ_n infinitely often. Such a construction is obviously possible. Let $\{w_n\}$ be a sequence of distinct points that are dense in W. According to Bagemihl and Seidel (2, p. 1251), there exists a function holomorphic in D such that

$$C_{\gamma_n}(f, 1) = w_n, \qquad n = 1, 2, \ldots,$$

thus

$$\Pi_{H(\rho_1, \tau_0)}(f, 1) = W,$$

but

(1)

$$\Pi_{H(\gamma_1, r)}(f, 1) \subseteq \{w_1\},\$$

for any r > 0.

In Theorem 3 (and also in Theorem A), the set $\tilde{R}_{H(\gamma,\tau)}(f,\tau)$ cannot be replaced by $R_{H(\gamma,\tau)}(f,\tau)$. To verify this, let $\{z_n\}$ be any sequence of points in D tending to $\tau = 1$ such that, for some r > 0, no z_n lies in $H(\rho_1, r)$, but there exists a sequence $\{\zeta_n\}$, contained in $H(\rho_1, r)$, for which $\rho(z_n, \zeta_n) \to 0$ as $n \to \infty$. Cargo has shown (5, p. 142) that from the sequence $\{z_n\}$ we can extract a subsequence $\{z_{nk}\}$ such that the corresponding Blaschke product

$$B(z) = \prod_{k=1}^{\infty} \frac{z_{nk}}{|z_{nk}|} \left(\frac{z - z_{nk}}{1 - z\overline{z}_{nk}} \right)$$

converges in D and

$$|B(z)| \ge A > 0, \qquad z \in \rho_1.$$

Since $\rho(z_n, \zeta_n) \to 0, n \to \infty$, then

$$|B(\mathbf{z}_{nk}) - B(\zeta_{nk})| \to 0, \qquad k \to \infty.$$

and hence

 $0 \in C_{H(\rho_1, r)}(f, 1) - R_{H(\rho_1, r)}(f, 1),$

while

 $0 \notin \Pi_{H(\rho_1,\tau)}(f,1)$

on account of (1).

We conclude with a few remarks about the set $\operatorname{II}_{\mathfrak{A}}(f, \tau)$, where we assume that f is a normal meromorphic function in D. This set may be empty for all $\tau \in C$. Consider a Schwarzian triangle function U(z) in D whose fundamental triangle has angles of, say, $\pi/2$, $\pi/7$, $\pi/3$. Let its system of triangles be that displayed in (4, p. 444, Fig. 122) where we assume $U(0) = \infty$ and that at each vertex of the system, U(z) assumes one of the values 0, 1, ∞ . Now U(z) is known to be a meromorphic normal function in D. For any value $w \in W$ the set $Z_U(w, r)$ consists of a countable number of disjoint disks in D for suitably small r > 0. Since U(z) assumes the same values in each disk of $Z_U(w, r)$, $U(Z_U(w, r))$ is a neighbourhood N of w in W. Further no point of N is assumed by U in $D - Z_U(w, r)$. Thus if τ is any point of C, then $\operatorname{II}_{\mathfrak{A}}(f, \tau) = \emptyset$. Let us now consider the elliptic modular function $\mu(z)$. The above argument shows that $\operatorname{II}_{\mathfrak{A}}(\mu, \tau) \subseteq \{0, 1, \infty\}$. However, if τ is a Plessner point of $\mu(z)$ (i.e. the equation

$$C_{H(\gamma,\tau)}(\mu,\tau) = W$$

is satisfied for any rectilinear segment γ at τ and any r > 0), then Theorem 3 shows that $\prod_{\mathfrak{A}}(\mu, \tau) = \{0, 1, \infty\}.$

If we define

$$\Pi_{\mathbf{T}}(f,\tau) = \bigcap_{\gamma} C_{\gamma}(f,\tau),$$

where γ is any rectilinear segment at τ , Bagemihl (1, p. 4) and Rung (9, p. 48) showed independently that at a Plessner point τ of a normal function, $\Pi_{\mathbf{T}}(f, \tau) = W$. Thus the set $\Pi_{\mathfrak{A}}(f, \tau)$ may be considerably smaller than $\Pi_{\mathbf{T}}(f, \tau)$.

Finally we construct a normal function f for which $\Pi_{\mathfrak{A}}(f, \tau) = W$ for $\tau = 1$. We begin by defining a simply connected domain H in Im (z) > 0. First we construct a sequence of disjoint rectangles in the z = x + iy plane symmetric about the imaginary axis with sides parallel to the real and imaginary axis. In

$$S_1 = \{ z | 0 \leq \text{Im} (z) < 2\pi \},\$$

set $R_{1,1}$ equal to the open rectangle symmetric about the line Im $(z) = 2\pi/2$ with the sides parallel to the real axis of length 1 and with the width of $R_{1,1}$ equal to 1/4. In

$$S_2 = \{2\pi \leq \text{Im} (z) < 2(2\pi)\},\$$

262

let $R_{i,2}$, i = 1, 2, 3, denote the open rectangle symmetric about the line $I(z) = 2\pi + 2\pi i/2^2$ of length 2 and width $1/2^3$. For arbitrary $n = 1, 2, \ldots$, let $R_{i,n}$, $i = 1, 2, \ldots, 2^n - 1$, be the open rectangle in

$$S_n = (n-1)2\pi \leq \text{Im}(z) < n(2\pi)$$

symmetric about the line Im $(z) = (n-1)2\pi + 2\pi i/2^n$ of length n and width $1/2^{n+1}$. Now connect each rectangle to the one above as follows. Let $R_{1,1}$ be joined to $R_{1,2}$ by an open set bounded by two parallel straight-line segments of distance 1/4 apart starting from the upper right corner of $R_{1,1}$ to the lower right corner of $R_{1,2}$ and including appropriate boundary segments of the rectangles so that the union of $R_{1,1}$, $R_{1,2}$, and the connecting strip is a simply connected domain. We now join $R_{1,2}$ to $R_{2,2}$ by an open strip with sides parallel to the imaginary axis beginning at the upper left corner of $R_{1,2}$ and terminating at the lower left corner of $R_{2,2}$. Join $R_{2,2}$ to $R_{3,2}$ by a similar strip on the right corners and connect $R_{3,2}$ to $R_{1,3}$ by a rectilinear strip from the left upper corner of $R_{3,2}$ to the left lower corner of $R_{1,3}$. Having joined the adjacent rectangles together by connecting strips in such a manner that the union of all the rectangles $R_{i,n}$ and the connecting strips is a simply connected domain H, we map the unit circle $|\zeta| < 1$ onto H by $z = f(\zeta)$ so that $\zeta = 1$ corresponds to the prime end at ∞ of H. Then $g(\zeta) = \exp f(\zeta)$ clearly omits three values (for example the values $e^{i\pi}$, $e^{i\pi/2}$, $e^{i\pi/4}$) and therefore is normal. If A is any set of points in the z = x + iy plane, let $S_1(A)$ denote the set of those $z \in S_1$ for which $z + 2\pi i n \in A$ for some integer n. Any curve γ^* in H that tends to $z = \infty$ has the property that $S_1(\gamma^*)$ is a dense subset of S. Consequently for any curve γ that approaches $\zeta = 1$ from within $|\zeta| < 1$, we have $C_{\gamma}(g, 1) = W$.

There exists a function f(z) holomorphic in D (2, p. 1251) such that for every $\tau \in C$, any $\gamma_1, \gamma_2 \in \Lambda(\tau)$, and any $r_1, r_2 > 0$,

$$\Pi_{H(\gamma_1,\tau_1)}(f,\tau) = \Pi_{H(\gamma_2,\tau_2)}(f,\tau) = W.$$

Thus the conclusion of Theorem 1 may hold without f(z) necessarily being normal, since the above function, having no Fatou points, cannot be normal (3, p. 16).

References

- 1. F. Bagemihl, Some approximation theorems for normal functions, Ann. Acad. Sci. Fenn. Ser. A, I (1963), 335.
- F. Bagemihl and W. Seidel, Spiral and other asymptotic paths, and paths of complete indetermination, of analytic and meromorphic functions, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 1251-1258.
- 3. ——— Köebe arcs and Fatou points of normal functions, Comment. Math. Helvt., 36 (1961), 9–18.
- 4. H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen (Berlin, 1955).
- G. T. Cargo, Normal functions, the Montel property, and interpolation in H[∞], Michigan Math. J., 10 (1963), 141-146.

263

- 6. O. Lehto and K. I. Virtanen, Boundary behavior and normal meromorphic functions, Acta Math., 97 (1957), 47-64.
- 7. K. Noshiro, Cluster sets (Berlin, 1960).
- D. C. Rung, Boundary behavior of normal functions defined in the unit disk, Michigan Math. J., 10 (1963), 43-51.
- 9. A. Hurwitz and R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen (Berlin-Göttingen-Heidelberg-New York: vierte Auflage, 1964).

Lehigh University and Pennsylvania State University