NORMAL FUNCTIONS AND NON-TANGENTIAL BOUNDARY ARGS

P. LAPPAN AND D. C. RUNG

1. Introduction. Let D and C denote respectively the open unit disk and the unit circle in the complex plane. Further, $\gamma=z(t), 0 \leqslant t \leqslant 1$, will denote a simple continuous arc lying in D except for $\tau=z(1) \in C$, and we shall say that γ is a boundary arc at τ.

We use extensively the notions of non-Euclidean hyperbolic geometry in D and employ the usual metric

$$
\rho(a, b)=\frac{1}{2} \log \frac{|1-a \bar{b}|+|a-b|}{|1-a \bar{b}|-|a-b|},
$$

where a and b are elements of D. For $a \in D$ and $r>0$ let

$$
B(a, r)=\{z \in D \mid \rho(a, z)<r\} .
$$

For details we refer the reader to (4).
If γ is any boundary arc of D and $0<r<\infty$

$$
H(\gamma, r)=[z \in D \mid \rho(z, \gamma)<r],
$$

where $\rho(\gamma, z)$ is the non-Euclidean distance of z to γ defined in the usual way. Consequently, $H(\gamma, r)$ is an open, connected (but not necessarily simply connected) subset of D. The boundary of $H(\gamma, r)$ is seen to contain two distinct boundary arcs at τ. Let $\rho_{\tau}, \tau \in C$, denote the diameter of C ending at τ. In this case, $H\left(\rho_{\tau}, r\right)$ is a connected domain bounded by two hypercycles from τ to $-\tau$ which form the angle $2 \operatorname{arctanh} r$ and $-2 \arctan r$, respectively, with ρ_{τ} at τ. If $\gamma=z(t)$ is a boundary arc at τ such that for some $0 \leqslant t_{0}<1$, and some $0<r<\infty, z(t) \in H\left(\rho_{\tau}, r\right), t \geqslant t_{0}$, we say γ approaches τ in a non-tangential manner, and the set of all such non-tangential boundary arcs at τ we denote by $\Lambda(\tau)$.

We consider functions $f(z)$ defined in D and taking values in the extended complex plane W. For a set $\Omega \subset D$, with the closure of Ω intersecting C at a single point $\tau, C_{\Omega}(f, \tau)$ indicates the set of all values $w \in W$ with the property that there is a sequence $\left\{z_{n}\right\}$ in Ω with $z_{n} \rightarrow \tau, n \rightarrow \infty$ and $f\left(z_{n}\right) \rightarrow w, n \rightarrow \infty$.

Finally

$$
\Pi_{H(\gamma, r)}(f, \tau)=\bigcap_{\gamma^{*}} C_{\gamma^{*}}(f, \tau),
$$

where γ^{*} ranges over all boundary arcs at τ that lie within $H(\gamma, r)$, and

$$
\Pi_{\mathscr{I}}(f, \tau)=\bigcap_{\gamma \in \Lambda(\tau)} C_{\gamma}(f, \tau) .
$$

Received October 22, 1964.

For an elaboration of the theory of cluster sets see, for example, (8).
2. Boundary behaviour of normal functions. Of course,

$$
\Pi_{\mathfrak{N}}(f, \tau) \subseteq \Pi_{H(\gamma, \tau)}(f, \tau),
$$

for any $\gamma \in \Lambda(\tau)$ and any $r>0$. Our main result is that

$$
\Pi_{\mathfrak{Y}}(f, \tau)=\Pi_{H(\gamma, \tau)}(f, \tau),
$$

where τ is any point in C, γ is any curve in $\Lambda(\tau)$, and r is any positive numberprovided that f is a normal function in D.

Definition. A function $f(z)$ meromorphic in D is said to be a normal function in D if the family $\{f(S(z))\}$ is normal in the sense of Montel, where $S(z)$ is an arbitrary one-to-one conformal map of D onto itself; see (6, p. 53).

Before proving this result we set forth two lemmas, which will expedite the proof. For any $w \in W$ and $d \geqslant 0$, let $Z_{f}(w, d)=\cup_{z} B(z, d)$, where the union is taken over all $z \in D$ such that $f(z)=w$.

Lemma 1. Let f be a normal function in D and $\gamma \in \Lambda(t), \tau \in C$. If $w \in C_{\gamma}(f, \tau)$ and if there exists $d>0$ such that $\gamma \cap Z_{f}(w, d)=\emptyset$, then

$$
w \in C_{\gamma^{\prime}}(f, \tau) \text { for any } \gamma^{\prime} \in \Lambda(\tau) .
$$

Proof. Since $w \in C_{\gamma}(f, \tau)$, let $\left\{z_{n}\right\}$ be a sequence on γ such that $z_{n} \rightarrow \tau$, $f\left(z_{n}\right) \rightarrow w$, as $n \rightarrow \infty$. Let

$$
f\left(S_{n}(\zeta)\right)=g_{n}(\zeta)
$$

with

$$
S_{n}(\zeta)=\frac{\zeta+z_{n}}{1+\zeta \bar{z}_{n}}, \quad|\zeta|<1, n=1,2, \ldots ;
$$

and let $\left\{g_{n_{k}}(\zeta)\right\}$ be the convergent subsequence guaranteed by the normalcy of f. Let $g(\zeta)$ be the limit function. Now

$$
g(0)=\lim _{k \rightarrow \infty} g_{n k}(0)=\lim _{k \rightarrow \infty} f\left(z_{n k}\right)=w ;
$$

but for $|\xi|<\tanh d$ the equation

$$
g_{n_{k}}(\zeta)=w
$$

is satisfied for no value of k. By Hurwitz's theorem we conclude that $g(\zeta) \equiv w$. Hence for any fixed $0<d^{\prime}<\infty, f$ tends to the value w as z tends to τ on the set

$$
\bigcup_{k=1}^{\infty} B\left(z_{n_{k}}, d^{\prime}\right) .
$$

If $\gamma^{\prime} \in \Lambda(\tau)$, then

$$
\gamma^{\prime} \cap B\left(z_{n k}, d^{\prime}\right) \neq \emptyset
$$

for suitable $d^{\prime}>0$ and all $k=1,2, \ldots$; and we conclude that $w \in C_{\gamma^{\prime}}(f, \tau)$, which proves the lemma.

Lemma 2. Let f be a normal function in D. Suppose for some $\tau \in C$ and for each $n=1,2, \ldots$, that there is a set of distinct points

$$
\left\{\xi_{i}{ }^{(n)}\right\}, \quad i=1,2, \ldots, m_{n}
$$

with the following properties:
(i) for some $r>0$ and all $n=1,2, \ldots, \xi_{1}{ }^{(n)} \in H\left(\rho_{\tau}, r\right)$;
(ii) also $\xi_{1}{ }^{(n)} \rightarrow \tau, \quad n \rightarrow \infty$;
(iii) further $\rho\left(\xi_{i}{ }^{(n)}, \xi_{i+1}{ }^{(n)}\right)<k_{n}, \quad i=1,2, \ldots, m_{n}-1$, with $k_{n} \rightarrow 0, n \rightarrow \infty$;
(iv) there exists a positive number A independent of n such that

$$
\rho\left(\xi_{1}^{(n)}, \xi_{m_{n}}^{(n)}\right) \geqslant A>0
$$

(v) lastly

$$
f\left(\xi_{i}{ }^{(n)}\right)=w, \quad i=1,2, \ldots, m_{n} ; n=1,2, \ldots
$$

In this case $w \in C_{\gamma}(f, \tau)$ for all $\gamma \in \Lambda(\tau)$.
Proof. Again we let

$$
f\left(S_{n}(\zeta)\right)=g_{n}(\zeta), \quad n=1,2, \ldots,
$$

where

$$
z=S_{n}(\zeta)=\frac{\zeta+\xi_{1}^{(n)}}{1+\bar{\xi}_{1}{ }^{(n)} \zeta}
$$

Let $\left\{g_{n_{k}}(\zeta)\right\}$ be that convergent subsequence with

$$
g_{n_{k}}(\zeta) \rightarrow g(\zeta), \quad k \rightarrow \infty
$$

Without loss of generality and for ease of notation we assume that $g_{n}(\zeta)$ is the desired subsequence.

Since

$$
g_{n}(0)=f\left(\xi_{1}{ }^{(n)}\right) \rightarrow w
$$

as $n \rightarrow \infty$, we have $g(0)=w$. We now show that the set of points $Z_{g}(w, 0)$ which also lie in $|\zeta|<\tanh A \equiv B$ is infinite. Consequently $g(\zeta) \equiv w$ in D, and we can argue as in the last paragraph of the proof of Lemma 1 to obtain this lemma.

Suppose there is a ring $R, 0<r^{\prime} \leqslant|\zeta| \leqslant r^{\prime \prime}<B, r^{\prime \prime}>r^{\prime}$, which contains no points of $Z_{g}(w, 0)$. Since $g(0)=0$, we take $r^{\prime}>0$. For any fixed n the set

$$
\left\{\xi_{i}^{(n)}: i=1, \ldots, m_{n}\right\}
$$

is transformed by

$$
S_{n}{ }^{-1}(z)
$$

onto a set of points we label

$$
\left\{\zeta_{i}^{(n)}: i=1, \ldots, m_{n}\right\}
$$

with
(i) $\quad \zeta_{1}{ }^{(n)}=0, \quad\left|\zeta_{m_{n}}{ }^{(n)}\right| \geqslant B$;
(ii) $\rho\left(\zeta_{i}{ }^{(n)}, \zeta_{i+1}{ }^{(n)}\right)<k_{n}, \quad i=1,2, \ldots, m_{n}-1$;
(iii) $g_{n}\left(\zeta_{i}^{(n)}\right)=w, \quad i=1,2, \ldots, m_{n}$.

There must be at most a finite number of such

$$
\zeta_{i}^{(n)}, \quad i=1,2, \ldots, m_{n}, n=1,2, \ldots,
$$

within R; otherwise this set would have a limit point, say ζ_{0}, and by the continuous convergence of $g_{n}(\zeta)$ to $g(\zeta)$ we would have $g\left(\zeta_{0}\right)=w$, contrary to assumption.

Thus there is an index N_{0} such that for $n>N_{0}$ no point of the form

$$
\zeta_{i}^{(n)}, \quad i=1,2, \ldots, m_{n}
$$

lies in R. If $n_{1}>N_{0}$ is chosen so that

$$
k_{n_{1}}<\rho\left(0, r^{\prime \prime}\right)-\rho\left(0, r^{\prime}\right)
$$

this is incompatible with (1) and the definition of R, whence $g(\zeta) \equiv w$.
We proceed to the main theorem. We demonstrate that if $w \in \Pi_{H(\gamma, r)}(f, \tau)$, $\gamma \in \Lambda(\tau)$, either Lemma 1 or Lemma 2 applies and conclude that

$$
w \in \Pi_{H\left(\gamma^{\prime}, r^{\prime}\right)}(f, \tau) \text { for all } \gamma^{\prime} \in \Lambda(\tau) \text { and any } r^{\prime}>0 .
$$

Consequently, $\Pi_{2}(f, \tau)=\Pi_{H(\gamma, \tau)}(f, \tau)$.
Theorem 1. Assume that $f(z)$ is normal in D. Then for any $\gamma, \gamma^{\prime} \in \Lambda(\tau)$ and $r, r^{\prime}>0$,

$$
\Pi_{H(\gamma, \tau)}(f, \tau)=\Pi_{H\left(\gamma^{\prime}, \tau^{\prime}\right)}(f, \tau)=\Pi_{\mathfrak{I}}(f, \tau) .
$$

Proof. For any given fixed curve $\gamma \in \Lambda(\tau)$ and a fixed $r>0$ let

$$
Z_{f}^{\prime}(w, 1 / n)=Z_{f}(w, 1 / n) \cap H(\gamma, r), \quad n=1,2, \ldots
$$

There are two cases according as $\gamma \cap Z^{\prime}{ }_{f}(w, 1 / n)=\emptyset$ for some n or

$$
\gamma \cap Z_{f}^{\prime}(w, 1 / n) \neq \emptyset
$$

for all n. In the first case we refer to Lemma 1 and the theorem is immediate.
We now consider the second case. For each value of n decompose $Z_{f}^{\prime}(w, 1 / n)$ into its components

$$
\left\{Y_{i}^{(n)}: i=1, \ldots, j_{n} ; 1 \leqslant j_{n} \leqslant \infty\right\} .
$$

We classify a component $Y_{i}{ }^{(n)}$ as a crosscut if the boundary of this component meets both γ and the boundary of $H(\gamma, r)$. If for each value of n there is at least one component, say $Y_{i_{n}}{ }^{(n)}$, which is a crosscut, we apply Lemma 2 in the following manner.

Since the boundary of $Y_{i_{n}}{ }^{(n)}$ meets both γ and the boundary of $H(\gamma, r)$ for each value n, there is a finite set of points

$$
\left\{\xi_{j}{ }^{(n)}: j=1, \ldots, h_{n}\right\}
$$

with
(i) $\xi_{1}{ }^{(n)} \in H\left(\rho_{\tau}, r\right)$;
(ii) $\xi_{1}{ }^{(n)} \rightarrow \tau, \quad n \rightarrow \infty$:
(iii) $\rho\left(\xi_{j}{ }^{(n)}, \xi_{j+1}{ }^{(n)}\right)<2 / n, \quad j=1,2, \ldots, h_{n}-1$;
(iv) $\quad \rho\left(\xi_{1}{ }^{(n)}, \gamma\right)<1 / n, \quad \rho\left(\xi_{h_{n}}{ }^{(n)}, \operatorname{Bd} H(\gamma, r)\right)<1 / n$
and so

$$
\rho\left(\xi_{1}{ }^{(n)}, \xi_{h n}{ }^{(n)}\right) \geqslant r-2 / n:
$$

(v) $f\left(\xi_{j}{ }^{(n)}\right)=w, \quad j=1,2, \ldots, h_{n}, n=1,2, \ldots$

These five properties follow easily from the construction of $Y_{i_{n}}{ }^{(n)}$.
If we choose n_{0} so that $2 / n_{0}<r / 2$, then for $n \geqslant n_{0}$ the requirements of Lemma 2 are satisfied with $A=r / 2$ and $k_{n}=2 / n$ and the theorem is proved.

To conclude the proof, suppose there is an n_{0} such that no $Y_{i}{ }^{\left(n_{0}\right)}, i=1, \ldots, j_{n_{0}}$, is a crosscut. Let V denote the union of all those components of $Z^{\prime}{ }_{f}\left(w, 1 / n_{0}\right)$ that meet γ together with the set γ itself. This is a connected set lying entirely within $H(\gamma, r)$ and such that the closure of V meets C only at τ. There is a subset β of the boundary of V which is a boundary arc approaching τ within $H(\gamma, r)$ and, of course, with $\beta \cap Z^{\prime}{ }_{f}\left(w, 1 / n_{0}\right)=\emptyset$. Since $w \in C_{\beta}(f, \tau)$, an application of Lemma 1 completes the proof of the theorem.

Theorem 2. Let $f(z)$ be a function from D into W. Let $\gamma \in \Lambda(\tau), \tau \in C$, and let $r>0$ be given. Then there is a countable collection of boundary arcs at τ, $\left\{\gamma_{n}\right\}, \gamma_{n} \subset H(\gamma, r), n=1,2, \ldots$, and

$$
\Pi_{H(\gamma, \tau)}(f, \tau)=\bigcap_{i=1}^{\infty} C_{\gamma_{n}}(f, \tau) .
$$

Proof. Let F be the family of all boundary arcs at τ contained in $H(\gamma, r)$. For $\gamma \in F$ let $B_{\gamma}=W-C_{\gamma}(f, \tau)$, which is an open set in W. Now

$$
\bigcup_{\gamma \in F} B_{\gamma}=W-\Pi_{H(\gamma, r)}(f, \tau)
$$

and by the Lindelöf covering property there is a countable subcovering $\left\{B_{\gamma_{n}}\right\}$ of $W-\Pi_{H(\gamma, \tau)}(f, \tau)$. Consequently

$$
\bigcup_{n=1}^{\infty} B_{\gamma_{n}}=W-\Pi_{H(\gamma, r)}(f, \tau),
$$

whence

$$
\bigcap_{n=1}^{\infty} C_{\gamma_{n}}(f, \tau)=\Pi_{H(\gamma, r)}(f, \tau) .
$$

If γ is a boundary arc at τ and f is defined in D taking values in W, define
$R_{H(\gamma, r)}(f, \tau), r>0$, as the set of all $w \in W$ such that there is a sequence $\left\{z_{n}\right\}$ in $H(\gamma, r), z_{n} \rightarrow \tau$ as $n \rightarrow \infty$, and $f\left(z_{n}\right)=w, n=1,2, \ldots$ Let int $R_{H(\gamma, r)}(f, \tau)$ denote the interior of $R_{H(\gamma, \tau)}(f, \tau)$ relative to W.

Finally set

$$
\widetilde{R}_{H(\gamma, r)}(f, \tau)=\bigcap_{r^{\prime}>r} \operatorname{int} R_{H\left(\gamma, r^{\prime}\right)}(f, \tau)
$$

A theorem of Rung (8, p. 44) can be formulated as follows:
Theorem A. If $f(z)$ is a normal function in D then for any $\tau \in C$, any boundary $\operatorname{arc} \gamma$ at τ, and $r>0$ we have

$$
C_{H(\gamma, \tau)}(f, \tau)-\widetilde{R}_{H(\gamma, \tau)}(f, \tau) \subseteq \Pi_{H(\gamma, r)}(f, \tau)
$$

(This theorem was originally proved in the case where γ was a rectilinear segment at τ : but it is easily seen that the method of proof yields the more general Theorem A.) In conjunction with Theorem 1, Theorem A yields the following theorem.

Theorem 3. Iff $f(z)$ is normal in D, then, for any $\tau \in C$, any $\gamma \in \Lambda(\tau)$, and any $r>0$,

$$
C_{H(\gamma, r)}(f, \tau)-\widetilde{R}_{H(\gamma, r)}(f, \tau) \subseteq \Pi_{\mathfrak{I}}(f, \tau)
$$

3. Examples. If $f(z)$ is merely required to be meromorphic and not normal, Theorem 1 fails. This can be seen by the following example. Let $\left\{\gamma_{n}\right\}, \gamma_{n} \in \Lambda(\tau)$, $n=1,2, \ldots$, be a sequence of mutually exclusive boundary arcs at $\tau=1$, such that for some $r_{0}>0$ each boundary arc $\gamma \subseteq H\left(\rho_{1}, r_{0}\right)$ intersects each γ_{n} infinitely often. Such a construction is obviously possible. Let $\left\{w_{n}\right\}$ be a sequence of distinct points that are dense in W. According to Bagemihl and Seidel (2, p. 1251), there exists a function holomorphic in D such that

$$
C_{\gamma_{n}}(f, 1)=w_{n}, \quad n=1,2, \ldots,
$$

thus

$$
\left.\Pi_{H\left(\rho_{1}, r_{0}\right)}\right)(f, 1)=W
$$

but

$$
\Pi_{H\left(\gamma_{1}, r\right)}(f, 1) \subseteq\left\{w_{1}\right\}
$$

for any $r>0$.
In Theorem 3 (and also in Theorem A), the set $\widetilde{R}_{H(\gamma, r)}(f, \tau)$ cannot be replaced by $R_{H(\gamma, \tau)}(f, \tau)$. To verify this, let $\left\{z_{n}\right\}$ be any sequence of points in D tending to $\tau=1$ such that, for some $r>0$, no z_{n} lies in $H\left(\rho_{1}, r\right)$, but there exists a sequence $\left\{\zeta_{n}\right\}$, contained in $H\left(\rho_{1}, r\right)$, for which $\rho\left(z_{n}, \zeta_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Cargo has shown (5, p. 142) that from the sequence $\left\{z_{n}\right\}$ we can extract a subsequence $\left\{z_{n_{k}}\right\}$ such that the corresponding Blaschke product

$$
B(z)=\prod_{k=1}^{\infty} \frac{z_{n k}}{\left|z_{n k}\right|}\left(\frac{z-z_{n k}}{1-z \bar{z}_{n k}}\right)
$$

converges in D and

$$
\begin{equation*}
|B(z)| \geqslant A>0, \quad z \in \rho_{1} \tag{1}
\end{equation*}
$$

Since $\rho\left(z_{n}, \zeta_{n}\right) \rightarrow 0, n \rightarrow \infty$, then

$$
\left|B\left(z_{n k}\right)-B\left(\zeta_{n k}\right)\right| \rightarrow 0, \quad k \rightarrow \infty
$$

and hence

$$
0 \in C_{H\left(\rho_{1}, r\right)}(f, 1)-R_{H\left(\rho_{1}, r\right)}(f, 1),
$$

while

$$
0 \notin \Pi_{H\left(\rho_{1}, r\right)}(f, 1)
$$

on account of (1).
We conclude with a few remarks about the set $\Pi \mathfrak{}(f, \tau)$, where we assume that f is a normal meromorphic function in D. This set may be empty for all $\tau \in C$. Consider a Schwarzian triangle function $U(z)$ in D whose fundamental triangle has angles of, say, $\pi / 2, \pi / 7, \pi / 3$. Let its system of triangles be that displayed in (4, p. 444, Fig. 122) where we assume $U(0)=\infty$ and that at each vertex of the system, $U(z)$ assumes one of the values $0,1, \infty$. Now $U(z)$ is known to be a meromorphic normal function in D. For any value $w \in W$ the set $Z_{U}(w, r)$ consists of a countable number of disjoint disks in D for suitably small $r>0$. Since $U(z)$ assumes the same values in each disk of $Z_{U}(w, r)$, $U\left(Z_{U}(w, r)\right)$ is a neighbourhood N of w in W. Further no point of N is assumed by U in $D-Z_{U}(w, r)$. Thus if τ is any point of C, then $\Pi_{2}(f, \tau)=\emptyset$. Let us now consider the elliptic modular function $\mu(z)$. The above argument shows that $\Pi_{\mathfrak{2}}(\mu, \tau) \subseteq\{0,1, \infty\}$. However, if τ is a Plessner point of $\mu(z)$ (i.e. the equation

$$
C_{H(\gamma, r)}(\mu, \tau)=W
$$

is satisfied for any rectilinear segment γ at τ and any $r>0$), then Theorem 3 shows that $\Pi_{\mathfrak{N}}(\mu, \tau)=\{0,1, \infty\}$.

If we define

$$
\Pi_{\mathbf{T}}(f, \tau)=\cap_{\gamma} C_{\gamma}(f, \tau)
$$

where γ is any rectilinear segment at τ, Bagemihl (1, p. 4) and Rung (9, p. 48) showed independently that at a Plessner point τ of a normal function, $\Pi_{\mathrm{T}}(f, \tau)=W$. Thus the set $\Pi_{\mathfrak{Q}}(f, \tau)$ may be considerably smaller than $\Pi_{\mathrm{T}}(f, \tau)$.

Finally we construct a normal function f for which $\Pi_{\mathfrak{2}}(f, \tau)=W$ for $\tau=1$. We begin by defining a simply connected domain H in $\operatorname{Im}(z)>0$. First we construct a sequence of disjoint rectangles in the $z=x+i y$ plane symmetric about the imaginary axis with sides parallel to the real and imaginary axis. In

$$
S_{1}=\{z \mid 0 \leqslant \operatorname{Im}(z)<2 \pi\},
$$

set $R_{1,1}$ equal to the open rectangle symmetric about the line $\operatorname{Im}(z)=2 \pi / 2$ with the sides parallel to the real axis of length 1 and with the width of $R_{1,1}$ equal to $1 / 4$. In

$$
S_{\mathbf{z}}=\{2 \pi \leqslant \operatorname{Im}(z)<2(2 \pi)\},
$$

let $R_{i, 2}, i=1,2,3$, denote the open rectangle symmetric about the line $I(z)=2 \pi+2 \pi i / 2^{2}$ of length 2 and width $1 / 2^{3}$. For arbitrary $n=1,2, \ldots$, let $R_{i, n}, i=1,2, \ldots, 2^{n}-1$, be the open rectangle in

$$
S_{n}=(n-1) 2 \pi \leqslant \operatorname{Im}(z)<n(2 \pi)
$$

symmetric about the line $\operatorname{Im}(z)=(n-1) 2 \pi+2 \pi i / 2^{n}$ of length n and width $1 / 2^{n+1}$. Now connect each rectangle to the one above as follows. Let $R_{1,1}$ be joined to $R_{1,2}$ by an open set bounded by two parallel straight-line segments of distance $1 / 4$ apart starting from the upper right corner of $R_{1,1}$ to the lower right corner of $R_{1,2}$ and including appropriate boundary segments of the rectangles so that the union of $R_{1,1}, R_{1,2}$, and the connecting strip is a simply connected domain. We now join $R_{1,2}$ to $R_{2,2}$ by an open strip with sides parallel to the imaginary axis beginning at the upper left corner of $R_{1,2}$ and terminating at the lower left corner of $R_{2,2}$. Join $R_{2,2}$ to $R_{3,2}$ by a similar strip on the right corners and connect $R_{3,2}$ to $R_{1,3}$ by a rectilinear strip from the left upper corner of $R_{3,2}$ to the left lower corner of $R_{1,3}$. Having joined the adjacent rectangles together by connecting strips in such a manner that the union of all the rectangles $R_{i, n}$ and the connecting strips is a simply connected domain H, we map the unit circle $|\zeta|<1$ onto H by $z=f(\zeta)$ so that $\zeta=1$ corresponds to the prime end at ∞ of H. Then $g(\zeta)=\exp f(\zeta)$ clearly omits three values (for example the values $\left.e^{i \pi}, e^{i \pi / 2}, e^{i \pi / 4}\right)$ and therefore is normal. If A is any set of points in the $z=x+i y$ plane, let $S_{1}(A)$ denote the set of those $z \in S_{1}$ for which $z+2 \pi i n \in A$ for some integer n. Any curve γ^{*} in H that tends to $z=\infty$ has the property that $S_{1}\left(\gamma^{*}\right)$ is a dense subset of S. Consequently for any curve γ that approaches $\zeta=1$ from within $|\zeta|<1$, we have $C_{\gamma}(g, 1)=W$.

There exists a function $f(z)$ holomorphic in D (2, p. 1251) such that for every $\tau \in C$, any $\gamma_{1}, \gamma_{2} \in \Lambda(\tau)$, and any $r_{1}, r_{2}>0$,

$$
\Pi_{H\left(\gamma_{1}, r_{1}\right)}(f, \tau)=\Pi_{H\left(\gamma_{2}, r_{2}\right)}(f, \tau)=W
$$

Thus the conclusion of Theorem 1 may hold without $f(z)$ necessarily being normal, since the above function, having no Fatou points, cannot be normal (3, p. 16).

References

1. F. Bagemihl, Some approximation theorems for normal functions, Ann. Acad. Sci. Fenn. Ser. A, I (1963), 335.
2. F. Bagemihl and W. Seidel, Spiral and other asymptotic paths, and paths of complete indetermination, of analytic and meromorphic functions, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 1251-1258.
3. Köebe arcs and Fatou points of normal functions, Comment. Math. Helvt., 36 (1961), 9-18.
4. H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen (Berlin, 1955).
5. G. T. Cargo, Normal functions, the Montel property, and interpolation in H^{∞}, Michigan Math. J., 10 (1963), 141-146.
6. O. Lehto and K. I. Virtanen, Boundary behavior and normal meromorphic functions, Acta Math., 97 (1957), 47-64.
7. K. Noshiro, Cluster sets (Berlin, 1960).
8. D. C. Rung, Boundary behavior of normal functions defined in the unit disk, Michigan Math. J., 10 (1963), 43-51.
9. A. Hurwitz and R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen (Berlin-Göttingen-Heidelberg-New York: vierte Auflage, 1964).

Lehigh University and
Pennsylvania State University

