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Abstract
We study the Hodge and weight filtrations on the localization along a hypersurface, using methods from birational
geometry and the V-filtration induced by a local defining equation. These filtrations give rise to ideal sheaves called
weighted Hodge ideals, which include the adjoint ideal and a multiplier ideal. We analyze their local and global
properties, from which we deduce applications related to singularities of hypersurfaces of smooth varieties.

A. Introduction

In this paper, we continue the study of weighted Hodge ideals that started in [Ola22], where the focus
was the 0-th weighted Hodge ideals, also called weighted multiplier ideals. We show that several results
satisfied by the weighted multiplier ideals can be generalized under suitable conditions.

Let X be a smooth complex variety of dimension n. To an effective reduced divisor D on X one can
associate a sequence of ideal sheaves 𝐼𝑝 (𝐷) ⊆ 𝒪𝑋 , called the Hodge ideals of D and studied in a series
of papers [MP19a], [MP18], [MP19b], [MP20b], [MP20a]. They arise from the theory of mixed Hodge
modules of M. Saito, which induces a Hodge filtration 𝐹•𝒪𝑋 (∗𝐷) by coherent𝒪𝑋 -modules on𝒪𝑋 (∗𝐷),
the sheaf of functions with poles along D, seen as a left 𝒟𝑋 -module. This 𝒟-module underlies the
mixed Hodge module 𝑗∗Q

𝐻
𝑈 [𝑛], where 𝑗 : 𝑈 = 𝑋 \ 𝐷 ↩→ 𝑋 . Saito showed that the Hodge filtration is

contained in the pole order filtration, that is,

𝐹𝑝𝒪𝑋 (∗𝐷) ⊆ 𝒪𝑋 ((𝑝 + 1)𝐷)

for all 𝑝 ≥ 0. Consequently, we can define the Hodge ideal 𝐼𝑝 (𝐷) by

𝐹𝑝𝒪𝑋 (∗𝐷) = 𝒪𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐼𝑝 (𝐷).

The 𝒟𝑋 -module 𝒪𝑋 (∗𝐷) is also endowed with a weight filtration 𝑊•𝒪𝑋 (∗𝐷) by 𝒟𝑋 -submodules. The
Hodge filtration of these submodules satisfies

𝐹𝑝𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) ⊆ 𝐹𝑝𝒪𝑋 (∗𝐷) ⊆ 𝒪𝑋 ((𝑝 + 1)𝐷),

and similarly we can define the weighted Hodge ideals by

𝐹𝑝𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) = 𝒪𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐼𝑊𝑙
𝑝 (𝐷).
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The weighted Hodge ideals form a chain of inclusions

𝐼𝑊0
𝑝 (𝐷) ⊆ 𝐼𝑊1

𝑝 (𝐷) ⊆ · · · ⊆ 𝐼𝑊𝑛
𝑝 (𝐷).

We can always understand the two extreme ideals in this chain. The first element in the list admits an
easy description:

𝐼𝑊0
𝑝 (𝐷) = 𝒪𝑋 (−(𝑝 + 1)𝐷).

On the other end, the last ideal in this chain is the usual p-th Hodge ideal, that is,

𝐼𝑝 (𝐷) = 𝐼𝑊𝑛
𝑝 (𝐷).

Unlike 𝐼𝑊0
𝑝 (𝐷), for all the other degrees, the support of the scheme defined by 𝐼𝑊𝑙

𝑝 (𝐷) is contained in
the singular locus of D.

Birational definition We give an alternative description of the weighted Hodge ideals in terms of a
resolution of singularities. Let 𝑓 : 𝑌 → 𝑋 be a resolution of singularities of the pair (𝑋, 𝐷) which is an
isomorphism over 𝑋 \ 𝐷, and let 𝐸 := ( 𝑓 ∗𝐷)red. This description stems from the birational definition
of Hodge ideals in [MP19a, §9], and uses right 𝒟-modules. The 𝒟𝑌 -module 𝜔𝑌 (∗𝐸) admits a filtered
resolution by 𝒟𝑌 -modules given by

𝐵• = 0 → 𝒟𝑌 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝒟𝑌 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝒟𝑌 → 0.

Similarly, using the weight filtration on the sheaves of logarithmic p-forms (see equation (1.4)), we show
that the complex

𝑊𝑙𝐵
• = 0 → 𝒟𝑌 → 𝑊𝑙Ω

1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝒟𝑌 → · · · → 𝑊𝑙𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝒟𝑌 → 0

is filtered quasi-isomorphic to the 𝒟𝑋 -module 𝑊𝑛+𝑙𝜔(∗𝐸) (see Proposition 4.1).
The 𝒟𝑋 -module 𝜔𝑋 (∗𝐷) can be described using the filtered resolution of 𝜔𝑌 (∗𝐸) described above.

More precisely, we can define the complex 𝐴• by

0 → 𝑓 ∗𝒟𝑋 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → 0

placed in degrees −𝑛, . . . , 0, and we have that,

𝑅0 𝑓∗𝐴
• � 𝜔𝑋 (∗𝐷)

(see [MP19a, §9]). To give the alternative description of the weighted Hodge ideals, we introduce the
complex 𝐶•

𝑙, 𝑝−𝑛 defined as

0 → 𝑓 ∗𝐹𝑝−𝑛𝒟𝑋 → 𝑊𝑙Ω
1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝−𝑛+1𝒟𝑋 → · · · → 𝑊𝑙𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝𝒟𝑋 → 0

and we show that the image of

𝑅0 𝑓∗𝐶
•
𝑙, 𝑝−𝑛 → 𝑅0 𝑓∗𝐴

• = 𝜔𝑋 (∗𝐷)

is precisely 𝐹𝑝−𝑛𝑊𝑛+𝑙𝜔𝑋 (∗𝐷) = 𝐼𝑊𝑙
𝑝 (𝐷) ⊗ 𝜔𝑋 ((𝑝 + 1)𝐷) (see Proposition 4.3).

Description of weighted Hodge ideals using the V-filtration. A very convenient local description
of Hodge ideals was given in terms of the Kashiwara–Malgrange V-filtration of the graph embedding
𝑖+𝒪𝑋 in [MP20b, Theorem A’] (see equation (5.1)), which works in the more general setting of Hodge
ideals ofQ-divisors. In this case, we suppose that the reduced divisor 𝐷 ⊆ 𝑋 can be defined by a regular
function 𝑓 ∈ 𝒪𝑋 (𝑋). Weighted Hodge ideals admit a similar description.
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Theorem A. Let X be a smooth complex variety and D a reduced divisor defined by a regular function
𝑓 ∈ 𝒪𝑋 (𝑋). Then,

𝐼𝑊𝑙
𝑝 (𝐷) =

⎧⎪⎨⎪⎩
𝑝∑
𝑗=0

𝑄 𝑗 (1) 𝑓 𝑝− 𝑗𝑣 𝑗 : 𝑣 =
𝑝∑
𝑗=0

𝑣 𝑗𝜕
𝑗
𝑡 𝛿 ∈ 𝑉1𝑖+𝒪𝑋 and (𝑡𝜕𝑡 )

𝑙𝑣 ∈ 𝑉>1𝑖+𝒪𝑋

⎫⎪⎬⎪⎭.
The proof is based on two ideas. First, we can relate the Hodge filtration of 𝑉1𝑖+𝒪𝑋 with that of

𝒪𝑋 (∗𝐷) (see 5.2). Second, the weight filtration on the nearby cycles sheaf can be related to that of the
local cohomology sheaf (Proposition 5.3). This is enough to understand all the weighted Hodge ideals
in the case when D only has isolated weighted-homogeneous singularities (see Remark 5.7).

The description in Theorem A is useful to relate the weighted Hodge ideals with some invariants of the
singularities, like the minimal exponent. Recall that to the variety 𝐷 ⊆ 𝑋 we can associate the Bernstein–
Sato polynomial 𝑏𝐷 (𝑠). The polynomial (𝑠 + 1) divides 𝑏𝐷 (𝑠), and we denote 𝑏𝐷 (𝑠) = 𝑏𝐷 (𝑠)/(𝑠 + 1).
The negative of the largest root of 𝑏𝐷 (𝑠) is called the minimal exponent of a D and is denoted 𝛼𝐷 . This
invariant encodes important properties of the singularities of D. For instance, it is a refined version of
the log-canonical threshold, since 𝑙𝑐𝑡 (𝑋, 𝐷) = min{𝛼𝐷 , 1}. In particular, this implies that (𝑋, 𝐷) is
log-canonical if and only if 𝛼𝐷 ≥ 1. Moreover, it is a result of Saito that D has rational singularities if
and only if 𝛼𝐷 > 1.

The notions of log-canonicity and rationality can be described in terms of weighted Hodge ideals.
Recall that 0-th weighted Hodge ideals, or weighted multiplier ideals, form a sequence of ideals
interpolating between the adjoint ideal and a multiplier ideal. This is the case, as 𝐼𝑊1

0 (𝐷) = adj(𝐷) (see,
for instance, [Ola22, Theorem A]) and 𝐼0(𝐷) = J ((1 − 𝜀)𝐷) for 0 < 𝜖 � 1 [BS05]. These two ideals
identify if a singularity is respectively rational or log-canonical. We give an analogous description for
the higher weighted Hodge ideals. The Hodge ideal 𝐼𝑝 (𝐷) is trivial if and only if 𝛼𝐷 ≥ 𝑝 + 1, in which
case we say that (𝑋, 𝐷) is p-log-canonical. Also, the weighted Hodge ideal 𝐼𝑊1

𝑝 (𝐷) is trivial if and only
if 𝛼𝐷 > 𝑝 + 1 (see Corollary 5.10), which some authors referred to as D being p-rational. The rest of
the p-weighted Hodge ideals filter and measure the ‘distance’ between (𝑋, 𝐷) having p-log-canonical
singularities and D being p-rational.

Isolated singularities. Recall that the weighted Hodge ideals satisfy

𝐼𝑊𝑙−1
𝑝 (𝐷) ⊆ 𝐼𝑊𝑙

𝑝 (𝐷).

The difference between the two ideals can be described by the coherent sheaf 𝐹𝑝 gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷) (see
equation (6.1)). If D has isolated singularities, we give a description of the dimension of this sheaf at
the singular points in terms of a resolution of singularities. For this, possibly after restricting to an open
set, assume D has one isolated singularity 𝑥 ∈ 𝐷. In this case, there exists a pure Hodge structure 𝐻𝑙 for
𝑙 ≥ 2, such that the dimension of their Hodge pieces describes the desired dimension. More concretely,

dim(𝐹𝑝 (gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))𝑥) =
𝑝∑

𝑟=0

(
𝑛 + 𝑝 − 𝑟

𝑝 − 𝑟

)
dim(Gr𝑛−𝑟𝐹 𝐻𝑙) (0.1)

(see §6 for more details). For this reason, to find the difference between two consecutive weighted Hodge
ideals, it is enough to compute the dimensions of the spaces Gr𝑛−𝑝

𝐹 𝐻𝑙 .

Theorem B. Let 𝑔 : 𝐷 → 𝐷 be a log-resolution of singularities that is an isomorphism outside of x.
Let 𝐺 ⊆ 𝐷 be the exceptional divisor. Then

dim(Gr𝑛−𝑝
𝐹 𝐻𝑙) = ℎ𝑝,𝑛−𝑙−𝑝 (𝐻𝑛−2 (𝐺))
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if 𝑙 ≥ 3, and

dim(Gr𝑛−𝑝
𝐹 𝐻2) = ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2 (𝐺)) − ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐺)),

where 𝐻𝑘 (𝐺) = 𝐻𝑘 (𝐺,C) and ℎ𝑝,𝑞 (𝐻𝑘 (𝐺)) = dim(𝐻 𝑝,𝑞 (Gr𝑊𝑝+𝑞 𝐻𝑘 (𝐺))).

When 𝑝 = 0 the second summand in the description of dim(Gr𝑛−𝑝
𝐹 𝐻2) is 0 because the dimension of

G is 𝑛 − 2, and therefore these dimensions are described as Hodge numbers of the middle cohomology
of G. For 𝑝 ≥ 1 we cannot expect this term to be 0 in general, but this dimension admits a geometric
interpretation (see Remark 6.8).

Vanishing results. Weighted Hodge ideals satisfy global results under suitable conditions. Let X
be a smooth projective variety and D an ample divisor with at most isolated singularities. Under this
assumptions, when 𝑝 = 0 we have that

𝐻𝑖 (𝑋, 𝜔𝑋 (𝐷) ⊗ 𝐼𝑊𝑙

0 (𝐷)) = 0

for 𝑖 ≥ 1 and 𝑙 ≥ 2 [Ola22, Theorem E]. To generalize this result for all 𝑝 ≥ 1, we require the condition
that 𝐼𝑊𝑙

𝑝−1(𝐷) = 𝒪𝑋 .
Theorem C. Let X be a smooth projective variety of dimension n, and D an ample reduced effective
divisor with at most isolated singularities. Suppose that 𝐼𝑊1

𝑝−1(𝐷) is trivial. Then
1. For 𝑙 ≥ 2 and 𝑖 ≥ 2,

𝐻𝑖 (𝑋, 𝜔𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐼𝑊𝑙
𝑝 (𝐷)) = 0.

2. If 𝐻 𝑗 (𝑋,Ω𝑛− 𝑗
𝑋 ((𝑝 − 𝑗 + 1)𝐷)) = 0 for all 1 ≤ 𝑗 ≤ 𝑝, then

𝐻1(𝑋, 𝜔𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐼𝑊𝑙
𝑝 (𝐷)) = 0

for 𝑙 ≥ 2.
When 𝑙 = 1 and 𝑖 = 1 the vanishing does not hold in general. For an example see Remark 7.2. A

Kodaira-type vanishing result is also satisfied for all 𝑙 ≥ 1, and the proof is based on a vanishing result
by Saito [Sai90, Proposition 2.33] (see Proposition 8.1).

Applications. The global and local results we have discussed can be used to obtain results about the
geometry of certain isolated singularities of hypersurfaces in P𝑛. This is because the vanishing condition
in Theorem C is satisfied when X is a toric variety.
Corollary D. Let 𝐷 ⊆ P𝑛 be a hypersurface of degree d with at most isolated singularities. Let 𝑍𝑙, 𝑝 be
the scheme defined by 𝐼𝑊𝑙

𝑝 (𝐷). Then,

𝐻0(P𝑛,𝒪P𝑛 (𝑘)) →→ 𝐻0 (P𝑛,𝒪𝑍𝑙,𝑝 )

for 𝑘 ≥ (𝑝 + 1)𝑑 − 𝑛 − 1 if 𝑙 ≥ 2, and 𝑘 ≥ (𝑝 + 1)𝑑 − 𝑛 if 𝑙 ≥ 1.
This result gives a bound on a certain type of isolated singularities we describe next. For simplicity,

suppose D has at most one isolated singularity 𝑥 ∈ 𝐷, and assume 𝛼𝐷 = 𝑝+1. We describe first the case
𝑝 = 0. This case corresponds to a log-canonical and not rational singularity. In this case, according to
equation (0.1), the length of the scheme described by 𝐼𝑊1

0 (𝐷) is determined by Gr0
𝐹 (𝐻

𝑛−2 (𝐺)), using
the notation of Theorem B. Ishii proved that in this case, dim(Gr0

𝐹 (𝐻
𝑛−2 (𝐺))) = 1 [Ish85, Proposition

3.7]. This means that the ideal 𝐼𝑊1
0 (𝐷) is the maximal ideal of x in X and that there exists exactly one

degree 𝑙 ≥ 2 such that

dim(Gr𝑛𝐹 (𝐻𝑙)) = 1,
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while the dimension for the other degrees is 0. A log-canonical singularity is of type (0, 𝑛 − 𝑙) in this
case [Ish85, Definition 4.1].

Assume now that 𝛼𝐷 = 𝑝 + 1 for an 𝑝 ∈ Z≥0 and that D has at most one isolated singularity 𝑥 ∈ 𝐷.
In this case, we have an analogous picture. Namely, the ideal 𝐼𝑊1

𝑝 (𝐷) is the maximal ideal of x in X (see
Proposition 9.1), or equivalently, as 𝐼𝑝 (𝐷) = 𝒪𝑋 , the length of the scheme described by 𝐼𝑊1

𝑝 (𝐷) is 1.
This in particular means that

Gr𝑛−𝑟𝐹 𝐻𝑙 = 0

for 𝑙 ≥ 2 and 0 ≤ 𝑟 ≤ 𝑝 − 1 by equation (0.1) and Theorem B. Moreover, by the same results, we know
that there exists exactly one degree 𝑙 ≥ 2 such that

dim(Gr𝑛−𝑝
𝐹 𝐻𝑙) = 1,

while the dimension for all the other degrees is 0. Related invariants in similar conditions have been
studied by Friedman and Laza in [FL22, Theorem 6.11 and Corollary 6.14].

In analogy to the case of log-canonical singularities, we call the singularity described above of type
(𝑝, 𝑛 − 𝑙 − 𝑝) (see Definition 9.3). Weighted homogeneous singularities with 𝛼 𝑓 = 𝑝 + 1 are examples
of singularities of type (𝑝, 𝑛 − 2 − 𝑝) and the origin in 𝑍 (𝑥2 + 𝑦2 + 𝑧2 + 𝑢2𝑤2 + 𝑢4 + 𝑤5) ⊆ A5 gives an
example of a singularity of type (1, 5− 3− 1) = (1, 1) (see Example 9.5). For a hypersurface of P𝑛 with
at most isolated singularities and 𝛼𝐷 = 𝑝 + 1, we give a bound on the number of these singularities (see
Corollary 9.6).

Restriction theorem. Finally, we study the behavior of weighted Hodge ideals of a pair (𝑋, 𝐷) under
the restriction of a hypersurface of X. Let 𝐻 ⊆ 𝑋 be a smooth hypersurface, and 𝐷𝐻 the restriction of
D to H. If 𝐷𝐻 is reduced, then we can also consider the pair (𝐻, 𝐷𝐻 ) and their respective weighted
Hodge ideals.

Theorem E. Let X be a smooth variety and D an effective reduced divisor. Let 𝐻 ⊆ 𝑋 be a smooth
divisor such that 𝐻 � Supp(𝐷) and 𝐷𝐻 = 𝐷

��
𝐻

is reduced. Then, for every 𝑝 ≥ 0 and 𝑙 ≥ 0 we have

𝐼𝑊𝑙
𝑝 (𝐷𝐻 ) ⊆ 𝐼𝑊𝑙

𝑝 (𝐷) ·𝒪𝐻.

Moreover, if H is general, then we have an equality.

This is the analogue of the restriction theorem for Hodge ideals [MP18, Theorem A] and for multiplier
ideals [Laz04, Theorem 9.5.1].

B. Preliminaries

1. Mixed Hodge modules

In this section, we recall some facts about mixed Hodge modules and set up the notation we use
throughout this paper.

Let X be a smooth variety of dimension n. Mixed Hodge modules introduced by Saito in [Sai88]
are the main object used throughout this article. For a graded-polarizable mixed Hodge module M, we
denote the underlying left regular holonomic 𝒟𝑋 -module by M. In some contexts, it is more useful to
use right 𝒟𝑋 -modules. Recall that if M is a left 𝒟𝑋 -module, the corresponding right 𝒟𝑋 -module is
M ⊗𝒪𝑋 𝜔𝑋 , where 𝜔𝑋 is the canonical sheaf. We mostly use left 𝒟-modules, and in case we are using
right 𝒟-modules instead, we will say it explicitly.

A mixed Hodge module M is endowed with a weight filtration, which we denote by 𝑊•𝑀 , and

gr𝑊𝑙 𝑀 := 𝑊𝑙𝑀/𝑊𝑙−1𝑀
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is the quotient, which is a polarizable Hodge module of weight l. We denote by 𝐹•M the Hodge filtration.
The de Rham complex is defined as:

DR(M) =
[
M → Ω1

𝑋 ⊗𝒪𝑋 M → · · · → 𝜔𝑋 ⊗𝒪𝑋 M
]
[𝑛],

and the Hodge filtration of M induces a filtration on this complex:

𝐹𝑝 DR(M) =
[
𝐹𝑝M → Ω1

𝑋 ⊗𝒪𝑋 𝐹𝑝+1M → · · · → 𝜔𝑋 ⊗𝒪𝑋 𝐹𝑝+𝑛M
]
[𝑛] .

The p-th subquotient of this filtration is the complex

gr𝐹𝑝 DR(M) =
[

gr𝐹𝑝 M → Ω1
𝑋 ⊗𝒪𝑋 gr𝐹𝑝+1 M → · · · → 𝜔𝑋 ⊗𝒪𝑋 gr𝐹𝑝+𝑛 M

]
[𝑛] .

Let D be a reduced effective divisor. The mixed Hodge module we mostly study in this paper is
𝑗∗Q

𝐻
𝑈 [𝑛], where 𝑗 : 𝑈 = 𝑋 \ 𝐷 ↩→ 𝑋 , whose underlying 𝒟𝑋 -module is the sheaf of functions with

poles along D denoted by 𝒪𝑋 (∗𝐷). To study 𝒪𝑋 (∗𝐷), it is sometimes convenient to use a resolution
of singularities, and the properties of pushforwards. Fix a log-resolution of singularities of (𝑋, 𝐷), that
is, a proper birational morphism 𝑓 : 𝑌 → 𝑋 such that Y is smooth, it is an isomorphism over U, and
( 𝑓 ∗𝐷)𝑟𝑒𝑑 = 𝐸 is a divisor with simple normal crossings. In this setup, we have that

𝑓+𝒪𝑌 (∗𝐸) � 𝐻0 𝑓+𝒪𝑌 (∗𝐸) � 𝒪𝑋 (∗𝐷) (1.1)

(see, for example, [MP19a, Lemma 2.2]). Since E is a simple normal crossings divisor, the weight
filtration of the 𝒟𝑌 -module 𝒪𝑌 (∗𝐸) can be described in terms of the intersections of its irreducible
components. The lowest degree of the weight filtration is 𝑛 = dim𝑌 , that is:

𝑊𝑛−1𝒪𝑌 (∗𝐸) = 0.

The lowest piece corresponds to the canonical Hodge module of Y:

𝑊𝑛𝒪𝑌 (∗𝐸) � 𝒪𝑌 .

To describe the rest of the subquotients, we introduce the following very useful notation. Let

𝐸 =
⋃
𝑖∈𝐼

𝐸𝑖 .

The variety

𝐸 (𝑙) =
⊔
𝐽 ⊆𝐼
|𝐽 |=𝑙

𝐸𝐽 ,

with 𝐸𝐽 =
⋂
𝑗∈𝐽

𝐸 𝑗 , is a smooth and possibly disconnected variety. We denote 𝑖𝑙 : 𝐸 (𝑙) → 𝑌 the map

such that on each component is the inclusion. We have that

gr𝑊𝑛+𝑙 𝒪𝑌 (∗𝐸) � 𝑖𝑙+𝒪𝐸 (𝑙) (1.2)

with a Tate twist (see [KS21, Prop 9.2]).
In order to describe the weight filtration of a pushforward of a projective morphism, a useful tool is

to use the spectral sequence associated to the weight filtration:

𝐸 𝑝,𝑞
1 = 𝐻 𝑝+𝑞 𝑓+(gr𝑊−𝑝 𝒪𝑌 (∗𝐸)) ⇒ 𝐻 𝑝+𝑞 𝑓+𝒪𝑌 (∗𝐸), (1.3)
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which degenerates at 𝐸2, and there is an isomorphism:

𝐸 𝑝,𝑞
2 � gr𝑊𝑞 𝐻 𝑝+𝑞 𝑓+𝒪𝑌 (∗𝐸)

[Sai90, Proposition 2.15].
Finally, recall that the sheaf of p-forms with logarithmic poles along E denoted by Ω𝑝

𝑌 (log 𝐸) are
endowed with a weight filtration. This increasing filtration consists of subsheaves

𝑊𝑙Ω
𝑝
𝑌 (log 𝐸) ⊆ Ω𝑝

𝑌 (log 𝐸) (1.4)

such that if 𝑧1, . . . , 𝑧𝑛 are local coordinates on an open set V, and E is given by the equation

𝑧1 · · · 𝑧𝑟 = 0,

then in V, 𝑊𝑙Ω𝑝 (log 𝐸) is a 𝒪𝑉 module generated by elements of the form

𝑑𝑧𝑖1
𝑧𝑖1

∧ · · · ∧
𝑑𝑧𝑖𝑠
𝑧𝑖𝑠

∧ 𝑑𝑧 𝑗1 ∧ · · · ∧ 𝑑𝑧 𝑗𝑝−𝑠

with 𝑖𝑙 ≤ 𝑟 and 𝑠 ≤ 𝑘 (see [CEZGL14, 3.4.1.2] for more details). For 𝐼 = {𝑖1, . . . , 𝑖𝑠} and 𝐽 =
{ 𝑗1, . . . , 𝑗𝑝−𝑠} we use the notation

𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 =
𝑑𝑧𝑖1
𝑧𝑖1

∧ · · · ∧
𝑑𝑧𝑖𝑠
𝑧𝑖𝑠

∧ 𝑑𝑧 𝑗1 ∧ · · · ∧ 𝑑𝑧 𝑗𝑝−𝑠 .

C. Characterizations

2. Definition

In this section, we introduce weighted Hodge ideals using the theory of mixed Hodge modules.
A fundamental result by Saito about the Hodge filtration on 𝒪𝑋 (∗𝐷) states that

𝐹𝑝𝒪𝑋 (∗𝐷) ⊆ 𝒪𝑋 ((𝑝 + 1)𝐷)

(see [Sai93, Proposition 0.9]). The definition of Hodge ideals follows from this result. These ideals are
denoted by 𝐼𝑝 (𝐷) and are defined using the formula

𝐹𝑝𝒪𝑋 (∗𝐷) = 𝐼𝑝 (𝐷) ⊗ 𝒪𝑋 ((𝑝 + 1)𝐷)

(see [MP19a, Definition 9.4]). In this article, we study weighted Hodge ideals which are defined similarly
using the weight filtration with which𝒪𝑋 (∗𝐷) is endowed. The Hodge filtration of the sub-𝒟𝑋 modules
𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) satisfies

𝐹𝑝𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) ⊆ 𝐹𝑝𝒪𝑋 (∗𝐷) ⊆ 𝒪𝑋 ((𝑝 + 1)𝐷)

for all 𝑝 ≥ 0.

Definition 2.1 (Weighted Hodge ideals). Let X be a smooth complex variety and D a reduced divisor.
For 𝑙 ≥ 0 and 𝑝 ≥ 0, we define the ideal sheaf 𝐼𝑊𝑙

𝑝 (𝐷) on X by the formula

𝐹𝑝𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) = 𝐼𝑊𝑙
𝑝 (𝐷) ⊗ 𝒪𝑋 ((𝑝 + 1)𝐷).

We call 𝐼𝑊𝑙
𝑝 (𝐷) the l-th weighted p-th Hodge ideal of D.

https://doi.org/10.1017/fms.2023.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.48


8 Sebastián Olano

There is in fact a chain of inclusions

𝐼𝑊1
𝑝 (𝐷) ⊆ 𝐼𝑊2

𝑝 (𝐷) ⊆ · · · ⊆ 𝐼𝑊𝑛−1
𝑝 (𝐷) ⊆ 𝐼𝑊𝑛

𝑝 (𝐷) (2.2)

for all 𝑝 ≥ 0. Indeed, the weight filtration of 𝒪𝑋 (∗𝐷) is an increasing filtration, hence

𝐹𝑝𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) ⊆ 𝐹𝑝𝑊𝑛+𝑙+1𝒪𝑋 (∗𝐷),

or equivalently

𝒪𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐼𝑊𝑙
𝑝 (𝐷) ⊆ 𝒪𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐼𝑊𝑙+1

𝑝 (𝐷).

3. Simple normal crossings divisor

Weighted Hodge ideals can be described completely when the reduced divisor D has simple normal
crossings. In this case, the Hodge filtration of 𝒪𝑋 (∗𝐷) is fully understood, and from this information
we can deduce the Hodge filtration of 𝑊𝑛+𝑙𝒪𝑋 (∗𝐷).

Let D be a simple normal crossings divisor. In this case, the Hodge filtration of 𝒪𝑋 (∗𝐷) admits a
simple description:

𝐹𝑝𝒪𝑋 (∗𝐷) = 𝐹𝑝𝒟𝑋 ·𝒪𝑋 (𝐷) (3.1)

if 𝑝 ≥ 0 and 0 otherwise. Using this, one obtains a local description of the Hodge ideals. Let 𝑥1, . . . , 𝑥𝑛
be coordinates around 𝑧 ∈ 𝑋 , such that D is defined by (𝑥1 · · · 𝑥𝑟 = 0). For every 𝑝 ≥ 0, the ideal 𝐼𝑝 (𝐷)
is generated around z by

{𝑥𝑎1
1 · · · 𝑥𝑎𝑟𝑟 : 0 ≤ 𝑎𝑖 ≤ 𝑝,

∑
𝑎𝑖 = 𝑝(𝑟 − 1)} (3.2)

[MP19a, Proposition 8.2]. Weighted Hodge ideals of D admit a similar local description.

Proposition 3.3. Let 𝑥1, . . . , 𝑥𝑛 be coordinates around 𝑧 ∈ 𝑋 such that D is defined by (𝑥1 · · · 𝑥𝑟 = 0).
Then, for every 𝑝 ≥ 0 and 𝑙 ≤ 𝑟 , 𝐼𝑊𝑙

𝑝 (𝐷) is generated around z by

{𝑥𝑎1
𝑗1
· · · 𝑥𝑎𝑙𝑗𝑙 𝑥

𝑝+1
𝐼\𝐽

: 𝐽 = { 𝑗1, . . . , 𝑗𝑙} ⊆ 𝐼, 0 ≤ 𝑎𝑖 ≤ 𝑝 and
∑

𝑎𝑖 = 𝑝(𝑙 − 1)},

where 𝐼 = {1, . . . , 𝑟}. For 𝑙 ≥ 𝑟 , 𝐼𝑊𝑙
𝑝 (𝐷) = 𝐼𝑝 (𝐷) around z.

Proof. The Hodge filtration of 𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) also admits a simple description:

𝐹𝑝𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) = 𝐹𝑝𝒟𝑋 · 𝐹0𝑊𝑛+𝑙𝒪𝑋 (∗𝐷). (3.4)

Indeed, this follows from the fact that gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷) � 𝑖𝑙+𝒪𝐸 (𝑙) with a Tate twist so that the analogous
statement of equation (3.4) is true for 𝑖𝑙+𝒪𝐸 (𝑙) (see, e.g., [Sai09, Remark 1.1 iii]).

For the rest of the proof, we use right 𝒟-modules. By [Ola22, Proposition 4.1],

𝐹0𝑊𝑛+𝑙𝜔𝑋 (∗𝐷) = 𝑊𝑙𝜔𝑋 (𝐷).

Around z, 𝑊𝑙𝜔𝑋 (𝐷) is generated by {
𝜔

𝑥𝐽

}
𝐽 ⊆𝐼 , |𝐽 |=𝑙

,
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where 𝜔 is the standard generator of 𝜔𝑋 . It is clear that 𝑊𝑙𝜔𝑋 (𝐷) · 𝐹𝑝𝒟𝑋 is generated by{
𝜔

𝑥1+𝑏1
𝑗1

· · · 𝑥1+𝑏𝑙
𝑗𝑙

:
∑

𝑏𝑖 = 𝑝, 𝐽 ⊆ 𝐼, and |𝐽 | = 𝑙

}
.

The result follows from the equation 𝜔

𝑥
1+𝑏1
𝑗1

· · ·𝑥
1+𝑏𝑙
𝑗𝑙

= 𝜔

𝑥
𝑝+1
𝐼

(𝑥𝑝−𝑏1
𝑗1

· · · 𝑥𝑝−𝑏𝑙
𝑗𝑙

𝑥𝑝+1
𝐼\𝐽

). The last statement follows

from the fact that, if 𝑙 > 𝑟, around z, 𝑊𝑙𝜔𝑋 (𝐷) = 𝜔𝑋 (𝐷). �

4. Birational definition

Let X be a smooth variety and D a reduced divisor. Consider a log-resolution 𝑓 : 𝑌 → 𝑋 of the pair
(𝑋, 𝐷), which is an isomorphism over 𝑋 \ 𝐷, and denote 𝐸 = ( 𝑓 ∗𝐷)red. A birational definition is given
for Hodge ideals in [MP19a, §9]. In this section, we give a similar equivalent definition for weighted
Hodge ideals. For the rest of this section, we use right 𝒟-modules as it is more convenient for the
construction. Recall that the right 𝒟𝑋 -module corresponding to 𝒪𝑋 (∗𝐷) is 𝜔𝑋 (∗𝐷), and

𝐹𝑝−𝑛𝜔𝑋 (∗𝐷) = 𝐼𝑝 (𝐷) ⊗ 𝜔𝑋 ((𝑝 + 1)𝐷).

Consider the following complex which we denote by 𝐴•:

0 → 𝑓 ∗𝒟𝑋 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → 0

placed in degrees −𝑛, . . . , 0. The results in [MP19a, §3] say that the complex 𝐴• represents the object

𝜔𝑌 (∗𝐸)
L
⊗𝒟𝑌 𝒟𝑌→𝑋 in the derived category of filtered right 𝑓 −1𝒟𝑋 -modules. Moreover, 𝑅0 𝑓∗𝐴

• �
𝜔𝑋 (∗𝐷).

For 𝑝 ≥ 0, define the subcomplex 𝐶•
𝑝−𝑛 = 𝐹𝑝−𝑛𝐴

• of 𝐴• by

0 → 𝑓 ∗𝐹𝑝−𝑛𝒟𝑋 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝−𝑛+1𝒟𝑋 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝𝒟𝑋 → 0.

The pushforward of this complex admits the following interpretation:

𝑅0 𝑓∗𝐶
•
𝑝−𝑛 = 𝐹𝑝−𝑛𝜔𝑋 (∗𝐷) = 𝐼𝑝 (𝐷) ⊗ 𝜔𝑋 ((𝑝 + 1)𝐷)

by [MP19a, Remark 9.3], Corollary 12.1.
We prove similar results in order to obtain a birational definition. Consider the complex 𝐵•:

0 → 𝒟𝑌 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝒟𝑌 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝒟𝑌 → 0

in degrees −𝑛, . . . , 0, where the map

Ω𝑝
𝑌 (log 𝐸) ⊗ 𝒟𝑌

𝑑′

→ Ω𝑝+1
𝑌 (log 𝐸) ⊗ 𝒟𝑌

is given by 𝜔 ⊗ 𝑃 → 𝑑𝜔 ⊗ 𝑃 +
∑

(𝑑𝑧𝑖 ∧ 𝜔) ⊗ 𝜕𝑖𝑃. The complex 𝐵• is filtered quasi-isomorphic to the
object 𝜔𝑌 (∗𝐸) in degree 0 [MP19a, Proposition 3.1].

Proposition 4.1. The complex

𝑊𝑙𝐵
• = 0 → 𝒟𝑌 → 𝑊𝑙Ω

1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝒟𝑌 → · · · → 𝑊𝑙𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝒟𝑌 → 0

in degrees −𝑛, . . . , 0 is quasi-isomorphic to 𝑊𝑛+𝑙𝜔𝑌 (∗𝐸).
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Proof. We see first that the complex 𝑊𝑙𝐵
• is exact in degrees −𝑛, . . . ,−1. Fix a degree −𝑝. We need to

see that

𝑊𝑙Ω
𝑛−𝑝−1
𝑌 (log 𝐸) ⊗ 𝒟𝑌 → 𝑊𝑙Ω

𝑛−𝑝
𝑌 (log 𝐸) ⊗ 𝒟𝑌

𝑏
→ 𝑊𝑙Ω

𝑛−𝑝+1
𝑌 (log 𝐸) ⊗ 𝒟𝑌

is exact. Let 𝑥 ∈ 𝑋 be a point and {𝑧1, . . . , 𝑧𝑛} be a set of coordinates in an open neighborhood around the
point. We localize at x, take the completion and identify the completion of𝒪𝑋,𝑥 with C
𝑧1, . . . , 𝑧𝑛�. Let
𝜂 ∈ ker �̂�. By exactness of 𝐵•, there exists 𝜔 in the completion ofΩ𝑛−𝑝−1

𝑌 (log 𝐸) ⊗𝒟𝑌 such that 𝑑 ′𝜔 = 𝜂

(we keep calling 𝑑 ′ the differentials of this complex). We can write 𝜔 =
∑

𝑔𝐼 ,𝐽 ,𝛼
𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 ⊗ 𝜕𝛼, with
𝑔𝐼 ,𝐽 ,𝛼 ∈ C
𝑧1, . . . , 𝑧𝑛�, since every element 𝑃 ∈ 𝒟𝑌 can be written as 𝑃 =

∑
𝑔𝛼𝜕

𝛼. Moreover,
expanding each 𝑔𝐼 ,𝐽 ,𝛼, we can write

𝜔 =
∑

𝐶
𝛽
𝐼 ,𝐽 ,𝛼𝑧

𝛽 𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 ⊗ 𝜕𝛼

so that no 𝑧𝑖 that appears in 𝑧𝐼 divides 𝐶𝛽
𝐼 ,𝐽 ,𝛼𝑧

𝛽 . From this description, it follows that for each summand
𝐶

𝛽
𝐼 ,𝐽 ,𝛼𝑧

𝛽 𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 ⊗ 𝜕𝛼, |𝐼 | determines the weight where the form 𝐶
𝛽
𝐼 ,𝐽 ,𝛼𝑧

𝛽 𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 lies.
Next, we write, 𝜔 = 𝜔≤𝑙 + 𝜔>𝑙 , where the first term consists of the summands with |𝐼 | ≤ 𝑙, and the

latter of the terms with |𝐼 | > 𝑙. Using the description of 𝑑 ′, we see that 𝑑 ′𝜔≤𝑙 is in the completion of
𝑊𝑙Ω

𝑛−𝑝
𝑌 (log 𝐸) ⊗ 𝒟𝑌 , and each summand of 𝑑 ′𝜔>𝑙 is not. Indeed,

𝑑 ′(𝐶
𝛽
𝐼 ,𝐽 ,𝛼𝑧

𝛽 𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 ⊗ 𝜕𝛼)

=
∑
𝑘

𝐶
𝛽
𝐼 ,𝐽 ,𝛼𝛽𝑘 𝑧

𝛽−𝑒𝑘 𝑑𝑧𝑘 ∧
𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 ⊗ 𝜕𝛼 +
∑
𝑘

𝑑𝑧𝑘 ∧ (𝐶
𝛽
𝐼 ,𝐽 ,𝛼𝑧

𝛽 𝑑𝑧𝐼
𝑧𝐼

∧ 𝑑𝑧𝐽 ) ⊗ 𝜕𝑘𝜕
𝛼

=
∑
𝑘

((−1) |𝐼 |𝐶𝛽
𝐼 ,𝐽 ,𝛼𝛽𝑘 ) 𝑧

𝛽−𝑒𝑘
𝑑𝑧𝐼
𝑧𝐼

∧ (𝑑𝑧𝑘 ∧ 𝑑𝑧𝐽 ) ⊗ 𝜕𝛼

+
∑
𝑘

((−1) |𝐼 |𝐶𝛽
𝐼 ,𝐽 ,𝛼) 𝑧

𝛽 𝑑𝑧𝐼
𝑧𝐼

∧ (𝑑𝑧𝑘 ∧ 𝑑𝑧𝐽 ) ⊗ 𝜕𝑘𝜕
𝛼 .

Since 𝜂 ∈ ker �̂�, 𝑑 ′𝜔>𝑙 = 0, and 𝑑 ′𝜔≤𝑙 = 𝜂, with 𝜔≤𝑙 in the completion of 𝑊𝑙Ω
𝑛−𝑝−1
𝑌 (log 𝐸) ⊗ 𝒟𝑌 .

Consider now the map,

𝑊𝑙𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝒟𝑌 → 𝑊𝑛+𝑙𝜔𝑌 (∗𝐸)

given by 𝜔
𝑓 ⊗ 𝑃 → 𝜔

𝑓 · 𝑃. Fixing a degree of the Hodge filtration and using the description of the Hodge
filtration of 𝑊𝑛+𝑙𝜔𝑌 (∗𝐸) (see, for example, Proposition 3.3), we see that this map is surjective. That the
kernel is the image of 𝑊𝑙Ω𝑛−1

𝑌 (log 𝐸) ⊗𝒪𝑌 𝒟𝑌 follows from [MP19a, Proposition 3.1] and an argument
similar to the one above. �

Consider next the complex

𝑊𝑙𝐴
• = 0 → 𝑓 ∗𝒟𝑋 → 𝑊𝑙Ω

1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → · · · → 𝑊𝑙𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → 0.

We have that 𝑊𝑙𝐴
• = 𝑊𝑙𝐵

• ⊗𝒟𝑌 𝒟𝑌→𝑋 , where 𝒟𝑌→𝑋 = 𝒪𝑌 ⊗ 𝑓 −1𝒪𝑋
𝑓 −1𝒟𝑋 is the transfer module.

Note that when we see it as an 𝒪𝑌 module, we simply write 𝑓 ∗𝒟𝑋 .

Lemma 4.2. The complex 𝑊𝑙𝐴
• represents 𝑊𝑛+𝑙𝜔𝑌 (∗𝐸)

L
⊗𝒟𝑌 𝒟𝑌→𝑋 in the derived category of filtered

right 𝑓 −1𝒟𝑋 -modules.
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Proof. It is enough to show that the elements 𝑊𝑙𝐵
𝑘 are acyclic with respect to − ⊗𝒟𝑌 𝒟𝑌→𝑋 . For any

k consider the following spectral sequence:

𝐸 𝑝,𝑞
2 = Tor𝒟𝑌

𝑝 (Tor𝒪𝑌
𝑞 (𝑊𝑙Ω

𝑘
𝑌 (log 𝐸),𝒟𝑌 ),𝒟𝑌→𝑋 ) ⇒ Tor𝒪𝑌

𝑝+𝑞 (𝑊𝑙Ω
𝑘
𝑌 (log 𝐸), 𝑓 ∗𝒟𝑋 )

[Wei94, Theorem 5.6.6]. As 𝒟𝑌 is a locally free 𝒪𝑌 -module, then 𝐸 𝑝,𝑞
2 = 0 for 𝑞 ≠ 0. Therefore,

Tor𝒟𝑌
𝑝 (𝑊𝑙Ω

𝑘
𝑌 (log 𝐸) ⊗𝒪𝑌 𝒟𝑌 ,𝒟𝑌→𝑋 ) � Tor𝒪𝑌

𝑝 (𝑊𝑙Ω
𝑘
𝑌 (log 𝐸), 𝑓 ∗𝒟𝑋 ) = 0

for 𝑝 ≠ 0, where the last equality follows from the fact that 𝑓 ∗𝒟𝑋 is locally free. �

The map

𝑅0 𝑓∗(𝑊𝑛+𝑙𝜔𝑌 (∗𝐸)
L
⊗𝒟𝑌 𝒟𝑌→𝑋 )

𝜑
→ 𝑅0 𝑓∗(𝜔𝑌 (∗𝐸)

L
⊗𝒟𝑌 𝒟𝑌→𝑋 )

is precisely the morphism

𝐻0 𝑓+(𝑊𝑛+𝑙𝜔𝑌 (∗𝐸)) → 𝐻0 𝑓+(𝜔𝑌 (∗𝐸)) = 𝜔𝑋 (∗𝐷),

whose image is 𝑊𝑛+𝑙𝜔𝑋 (∗𝐷). Moreover, the complex 𝐶•
𝑝−𝑛 described above corresponds to the

𝐹𝑝−𝑛 (𝜔𝑌 (∗𝐸)
L
⊗𝒟𝑌 𝒟𝑌→𝑋 ) using the identification

𝜔𝑌 (∗𝐸)
L
⊗𝒟𝑌 𝒟𝑌→𝑋 � 𝐵• ⊗𝒟𝑌 𝒟𝑌→𝑋 .

By strictness, there is an injective map

𝑅0 𝑓∗𝐶
•
𝑝−𝑛 ↩→ 𝑅0 𝑓∗𝐴

• � 𝜔𝑋 (∗𝐷)

whose image is 𝐹𝑝−𝑛𝜔𝑋 (∗𝐷) = 𝐼𝑝 (𝐷) ⊗ 𝜔𝑋 ((𝑝 + 1)𝐷) (see [MP19a, Sections 4, 9, and 12]).
Similarly, we define 𝐶•

𝑙, 𝑝−𝑛 by

0 → 𝑓 ∗𝐹𝑝−𝑛𝒟𝑋 → 𝑊𝑙Ω
1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝−𝑛+1𝒟𝑋 → · · · → 𝑊𝑙𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝𝒟𝑋 → 0

which corresponds to 𝐹𝑝−𝑛 (𝑊𝑛+𝑙𝜔𝑌 (∗𝐸)
L
⊗𝒟𝑌 𝒟𝑌→𝑋 ) under the identification

𝑊𝑛+𝑙𝜔𝑌 (∗𝐸)
L
⊗𝒟𝑌 𝒟𝑌→𝑋 � 𝑊𝑙𝐵

• ⊗𝒟𝑌 𝒟𝑌→𝑋

given by Lemma 4.2.

Proposition 4.3. Using the notation above,

𝐼𝑊𝑙
𝑝 (𝐷) ⊗ 𝜔𝑋 ((𝑝 + 1)𝐷) = im[𝑅0 𝑓∗𝐶

•
𝑙, 𝑝−𝑛 ↩→ 𝑅0 𝑓∗𝑊𝑙𝐴

• → 𝑅0 𝑓∗𝐴
• � 𝜔𝑋 (∗𝐷)] .

Proof. By strictness, we have an injective map

𝑅0 𝑓∗𝐶
•
𝑙, 𝑝−𝑛 ↩→ 𝑅0 𝑓∗𝑊𝑙𝐴

•

whose image is 𝐹𝑝−𝑛𝐻
0 𝑓+𝑊𝑛+𝑙𝜔𝑋 (∗𝐷) (see for instance [MP19a, §4]). Taking the composition

𝑅0 𝑓∗𝐶
•
𝑙, 𝑝−𝑛 ↩→ 𝑅0 𝑓∗𝑊𝑙𝐴

• → 𝑅0 𝑓∗𝐴
• � 𝜔𝑋 (∗𝐷),

and using strictness in the middle morphism (since it underlies a morphism of mixed Hodge modules),
the image corresponds to 𝐹𝑝−𝑛𝑊𝑛+𝑙𝜔𝑋 (∗𝐷) = 𝐼𝑊𝑙

𝑝 (𝐷) ⊗ 𝜔𝑋 ((𝑝 + 1)𝐷). �
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The description in Proposition 4.3 for 𝐼𝑊𝑙

0 (𝐷) coincides with the description in [Ola22, Proposition 3]
since 𝑓∗𝑊𝑙𝜔𝑌 (𝐸) → 𝑓∗𝜔𝑌 (𝐸) is an inclusion. The complex 𝐶•

𝑙,1−𝑛 also has a simple description. Recall
that by definition

𝐶•
𝑙,1−𝑛 = [𝑊𝑙Ω

𝑛−1
𝑌 (log 𝐸) → 𝑊𝑙𝜔𝑌 (𝐸) ⊗ 𝑓 ∗𝐹1𝒟𝑋 ]

in degrees -1 and 0. Moreover, the map

Ω𝑛−1
𝑌 (log 𝐸) → 𝜔𝑌 (𝐸) ⊗ 𝑓 ∗𝐹1𝒟𝑋

is injective [MP19a, Lemma 3.4]. Using the fact that 𝑊𝑙Ω𝑛−1
𝑌 (log 𝐸) ↩→ Ω𝑛−1

𝑌 (log 𝐸) and 𝑊𝑙𝜔𝑌 (𝐸) ⊗
𝑓 ∗𝐹1𝒟𝑋 ↩→ 𝜔𝑌 (𝐸) ⊗ 𝑓 ∗𝐹1𝒟𝑋 are injective (since 𝐹1𝒟𝑋 is a locally free 𝒪𝑋 -module), we obtain that
the differential in 𝐶•

𝑙,1−𝑛 is also an inclusion. Let F𝑙,1 be the cokernel. This means that

𝐼𝑊𝑙

1 (𝐷) ⊗ 𝜔𝑋 (2𝐷) = im[ 𝑓∗F𝑙,1 → 𝜔𝑋 (𝐷)] .

This map can be interpreted by using the complex 𝐶•
1−𝑛. Indeed, let F1 be the cokernel of the differential

in 𝐶•
1−𝑛. We have an induced map F𝑙,1 → F1. Since 𝑓∗F1 = 𝐼1(𝐷) ⊗ 𝜔𝑋 (2𝐷),

𝐼𝑊𝑙

1 (𝐷) ⊗ 𝜔𝑋 (2𝐷) = im[ 𝑓∗F𝑙,1 → 𝑓∗F1] .

Note that, since weighted Hodge ideals were defined in terms of the Hodge and weight filtrations of
𝒪𝑋 (∗𝐷), the constructions presented in this section are independent of the resolution of singularities.

5. Weighted Hodge ideals and V-filtration

Let X be a smooth variety and D be an effective reduced divisor defined by the global equation
𝑓 ∈ 𝒪𝑋 (𝑋). The Hodge ideals 𝐼𝑝 (𝐷) can be described using the V-filtration of 𝑖+𝒪𝑋 , where i is the
graph embedding defined by f. Namely,

𝐼𝑝 (𝐷) =
⎧⎪⎨⎪⎩

𝑝∑
𝑗=0

𝑄 𝑗 (1) 𝑓 𝑝− 𝑗𝑣 𝑗 :
𝑝∑
𝑗=0

𝑣 𝑗𝜕
𝑗
𝑡 𝛿 ∈ 𝑉1𝑖+𝒪𝑋

⎫⎪⎬⎪⎭, (5.1)

where 𝑄 𝑗 (𝑥) =
∏ 𝑗−1

𝑖=0 (𝑥 + 𝑖), [MP20b, Theorem A’]. An equivalent description is obtained using the
following map:

𝜏 : 𝑉1𝑖+𝒪𝑋 → 𝒪𝑋 (∗𝐷)

given by

𝜏

(
𝑝∑

𝑖=0
𝑣𝑖𝜕

𝑖
𝑡 𝛿

)
=

𝑝∑
𝑖=0

𝑄𝑖 (1)
𝑣𝑖
𝑓 𝑖+1 .

The map 𝜏1 is a surjective morphism of 𝒟𝑋 -modules, and

𝐼𝑝 (𝐷) ⊗ 𝒪𝑋 ((𝑝 + 1)𝐷) = 𝐹𝑝𝒪𝑋 (∗𝐷) = 𝜏(𝐹𝑝+1𝑉
1𝑖+𝒪𝑋 ), (5.2)

see [MP20a, Proposition 5.4 and Lemma 5.1]. Moreover, the map 𝜏 induces a map

𝜏 : gr1
𝑉 𝑖+𝒪𝑋 → 𝒪𝑋 (∗𝐷)/𝒪𝑋 .

1The map 𝜏 corresponds to 𝜏1 in the notation of [MP20a]. See §1 for the discussion about the reduced case.

https://doi.org/10.1017/fms.2023.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.48


Forum of Mathematics, Sigma 13

Indeed, it is enough to see that 𝜏(𝑉>1𝑖+𝒪𝑋 ) ⊆ 𝒪𝑋 . This follows from the fact that 𝑉>1𝑖+𝒪𝑋 =
𝑉1+𝛼𝑖+𝒪𝑋 = 𝑡 · 𝑉 𝛼𝑖+𝒪𝑋 , with 𝛼 > 0, and that if 𝑗 > 0, 𝑡𝑢𝜕 𝑗

𝑡 𝛿 = 𝑓 𝑢𝜕
𝑗
𝑡 𝛿 − 𝑗𝑢𝜕

𝑗−1
𝑡 𝛿, and 𝑡𝑢𝛿 = 𝑓 𝑢𝛿. For

𝑣 =
∑𝑝

𝑗=0 𝑣 𝑗𝜕
𝑗
𝑡 𝛿 ∈ 𝑉>1𝑖+𝒪𝑋 , there exists 𝑢 =

∑𝑝
𝑗=0 𝑢 𝑗𝜕

𝑗
𝑡 𝛿 ∈ 𝑉 𝛼𝑖+𝒪𝑋 such that, 𝑡𝑢 = 𝑣. Hence,

𝜏(𝑣) = 𝜏( 𝑓 𝑢0𝛿 +

𝑝∑
𝑗=1

( 𝑓 𝑢 𝑗𝜕
𝑗
𝑡 𝛿 − 𝑗𝑢 𝑗𝜕

𝑗−1
𝑡 𝛿)) = 𝑢0,

as

𝑄 𝑗 (1)
𝑓 𝑢

𝑓 𝑗+1 − 𝑗𝑄 𝑗−1 (1)
𝑢

𝑓 𝑗
= 0

because 𝑄 𝑗 (1) = 𝑗𝑄 𝑗−1 (1).
The 𝒟𝑋 -module gr1

𝑉 𝑖+𝒪𝑋 underlies the mixed Hodge module 𝜓 𝑓 ,1𝒪𝑋 and its weight filtration can
be described in terms of the nilpotent operator 𝑡𝜕𝑡 . In order to complete the description in Theorem 5.6,
we first need to show that the map 𝜏 also preserves the weight filtration.

Proposition 5.3. The map 𝜏 sends the weight and Hodge pieces to the same image as the map 𝜏𝒟𝑋 that
underlies a morphism of mixed Hodge modules

𝜏𝐻 : 𝜓 𝑓 ,1𝒪𝑋 (−1) → H1
𝐷 (𝒪𝑋 ).

Proof. The map 𝜏 is surjective and using its description, we observe that its kernel is the image of the
map 𝜕𝑡 𝑡 − 1 on gr1

𝑉 𝑖+𝒪𝑋 . The same is true for the map 𝜏𝒟𝑋 . Indeed, the map 𝜕𝑡 𝑡 − 1 underlies the
composition 𝑉𝑎𝑟 ◦ 𝑐𝑎𝑛 on 𝜓 𝑓 ,1𝒪𝑋 . As 𝑐𝑎𝑛 : 𝜓 𝑓 ,1𝒪𝑋 → 𝜙 𝑓 ,1𝒪𝑋 is surjective because 𝑖+𝒪𝑋 has strict
support (see, for instance, [Sch14, §11]), the cokernel of 𝑉𝑎𝑟 ◦ 𝑐𝑎𝑛 coincides with the cokernel of

𝑉𝑎𝑟 : 𝜙 𝑓 ,1𝒪𝑋 → 𝜓 𝑓 ,1𝒪𝑋 (−1).

The cokernel of𝑉𝑎𝑟 is isomorphic to 𝑖𝐷∗H1𝑖!𝐷𝒪𝑋 , where 𝑖𝐷 : 𝐷 → 𝑋 is the inclusion [Sai90, Corollary
2.24]. Moreover, 𝑖𝐷∗H1𝑖!𝐷𝒪𝑋 is isomorphic to H1

𝐷 (𝒪𝑋 ) [Sai09, §2.2]. This means that 𝜏 and 𝜏𝒟𝑋 could
only differ by a 𝒟𝑋 -automorphism of H1

𝐷 (𝒪𝑋 ) and the result is a consequence of Lemma 5.4. �

Lemma 5.4. A 𝒟𝑋 -automorphism of H1
𝐷 (𝒪𝑋 ) preserves the Hodge and weight filtration.

Proof. We can restrict to an open affine subset. Let 𝑋 = Spec 𝑅, where D is defined by 𝑓 ∈ 𝑅, and 𝜑 an
𝒟𝑅-automorphism of 𝑅 𝑓 /𝑅. Let 𝑚 ≥ 2, then 𝜑[ 1

𝑓 𝑚 ] = [ 𝑔𝑚
𝑓 𝑚 ] for some 𝑔𝑚 ∈ 𝑅, since 𝑓 𝑚𝜑[ 1

𝑓 𝑚 ] = 0.
Using that 𝜑 is 𝒟𝑅-linear, we see that for every 𝑇 ∈ 𝐷𝑒𝑟C (𝑅), 𝑇 (𝑔𝑚) ∈ ( 𝑓 𝑚−1). This implies that
around each smooth point of 𝑃 ∈ 𝐷, using a regular system of parameters, we have an h such that
ℎ(𝑃) ≠ 0, and 𝑔𝑚 − 𝑔𝑚(𝑃) ∈ 𝑓 𝑚 · 𝑅ℎ . Restricting the automorphism to the open set defined by h, we
see that 𝜑ℎ acts by multiplying by a constant. This means that this constant doesn’t depend on m, and
after restricting to double intersections, we see that this constant doesn’t depend on the point. Let 𝜆 be
the constant. Since 𝜑 − 𝜆 · 𝐼𝑑 is 0 on all the smooth points, 𝜑 = 𝜆 · 𝐼𝑑 everywhere. In particular, 𝜑
preserves the Hodge and the weight filtration. �

We are very grateful to Mircea Mustaţă for suggesting the argument of Lemma 5.4.

Remark 5.5. A simpler proof of the Lemma was suggested by a referee. Using the Riemann–Hilbert
correspondence and Verdier duality, it is enough to verify the conclusion of the Lemma on the perverse
sheaf Q𝐷 [𝑛 − 1]. We leave the original proof to have an argument using only 𝒟-modules.

A consequence of the result above is that we can write a description of the weighted Hodge ide-
als in a similar way to equation (5.1). Let 𝑊𝑙𝑉

1𝑖+𝒪𝑋 be the submodule of 𝑉1𝑖+𝒪𝑋 which maps to
𝑊𝑛+𝑙−2 gr1

𝑉 𝑖+𝒪𝑋 via the canonical projection.
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Proposition 5.6. Using the notation above,

𝐼𝑊𝑙
𝑝 (𝐷) =

⎧⎪⎨⎪⎩
𝑝∑
𝑗=0

𝑄 𝑗 (1) 𝑓 𝑝− 𝑗𝑣 𝑗 :
𝑝∑
𝑗=0

𝑣 𝑗𝜕
𝑗
𝑡 𝛿 ∈ 𝑊𝑙𝑉

1𝑖+𝒪𝑋

⎫⎪⎬⎪⎭.
Proof. It follows from Proposition 5.3 that 𝜏(𝐹𝑝+1𝑊𝑙𝑉

1𝑖+𝒪𝑋 ) = 𝐹𝑝𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) = 𝐼𝑊𝑙
𝑝 (𝐷) ⊗

𝒪𝑋 ((𝑝 + 1)𝐷). �

The result above can be simplified even more using the description of the weight filtration of 𝜓 𝑓 ,1𝒪𝑋 ,
and that is the statement of Theorem A.

Proof of Theorem A. First, we note that if 𝑣 ∈ 𝑉1𝑖+𝒪𝑋 , then 𝜏(𝑡𝜕𝑡𝑣) = 0. Indeed, let 𝑣 =
∑𝑝

𝑗=0 𝑣 𝑗𝜕
𝑗
𝑡 𝛿 ∈

𝑉1𝑖+𝒪𝑋 , then

𝑡𝜕𝑡𝑣 =
𝑝∑
𝑗=0

( 𝑓 𝑣 𝑗𝜕
𝑗+1
𝑡 𝛿 − ( 𝑗 + 1)𝑣 𝑗𝜕

𝑗
𝑡 𝛿),

and

𝜏(𝑡𝜕𝑡𝑣) =
𝑝∑
𝑗=0

(
𝑄 𝑗+1(1)

𝑓 𝑣 𝑗

𝑓 𝑗+2 − ( 𝑗 + 1)𝑄 𝑗 (1)
𝑣 𝑗

𝑓 𝑗+1

)
= 0.

The weight filtration of 𝜓 𝑓 ,1𝒪𝑋 admits the following description for 𝑘 ≥ 0:

𝑊𝑛−1+𝑘𝜓 𝑓 ,1𝒪𝑋 =
∑
𝑚≥0

(𝑡𝜕𝑡 )
𝑚(ker (𝑡𝜕𝑡 )2𝑚+𝑘+1)

(see [Sai94, 2.7] and for the monodromy filtration see, for example, [SZ85, Remark 2.3]). The only
piece that is not an image of (𝑡𝜕𝑡 ) is ker (𝑡𝜕𝑡 )𝑘+1. That means that the subset ker (𝑡𝜕𝑡 )𝑙 ⊆ 𝑊𝑙𝑉

1𝑖+𝒪𝑋 has
the same image as 𝑊𝑙𝑉

1𝑖+𝒪𝑋 via 𝜏. �

Remark 5.7. Let (𝑋, 𝐷) be a pair such that D has at most isolated weighted homogeneous singularities.
Theorem A gives a complete description of the weighted Hodge ideals using the description of the
V-filtration in [Sai09]. Using the notation above, in this case, (𝑡𝜕𝑡 )2𝑢 ∈ 𝑉>1𝑖+𝒪𝑋 for all 𝑢 ∈ 𝑉1𝑖+𝒪𝑋 .
For this reason, 𝐼𝑊2

𝑝 (𝐷) = 𝐼𝑝 (𝐷), for all 𝑝 ≥ 0. An argument without the use of the V-filtration in the
case of 𝑝 = 0 is described in [Ola22, §10].

A direct application of Theorem A is that we can recover the following result proved in [MP19a,
Theorem C]. The proof we give differs from the one in [MP19a] and is also much shorter.

Corollary 5.8. Let X be a smooth variety and D an effective reduced divisor. Then

𝐼𝑝 (𝐷) ⊆ adj(𝐷)

for all 𝑝 ≥ 1.

Proof. Recall that adj(𝐷) = 𝐼𝑊1
0 (𝐷) [Ola22, Theorem A]. Moreover, as 𝐼𝑝 (𝐷) ⊆ 𝐼1(𝐷) [MP19a,

Proposition 13.1], it is enough to prove that 𝐼1(𝐷) ⊆ 𝐼𝑊1
0 (𝐷).

Let 𝑢 ∈ 𝐼1(𝐷). By equation (5.1), 𝑢 = 𝑢0 𝑓 +𝑢1, where f is defining equation of D, and 𝑢0𝛿 +𝑢1𝜕𝑡𝛿 ∈
𝑉1𝑖+𝒪𝑋 . We also have that

𝑉1𝑖+𝒪𝑋 � ( 𝑓 − 𝑡) (𝑢0𝛿 + 𝑢1𝜕𝑡𝛿) = 𝑢1𝛿,
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and

𝜕𝑡 (𝑢1𝛿) = 𝑢1𝜕𝑡𝛿 + 𝑢0𝛿 − 𝑢0𝛿 ∈ 𝑉>0𝑖+𝒪𝑋 .

Finally, as 𝛿 ∈ 𝑉>0𝑖+𝒪𝑋 , then 𝑢0 𝑓 𝛿 = 𝑡 (𝑢0𝛿) ∈ 𝑉>1𝑖+𝒪𝑋 ⊆ 𝑊1𝑉
1𝑖+𝒪𝑋 . This means that 𝑢0 𝑓 𝛿 + 𝑢1𝛿 ∈

𝑊1𝑉
1𝑖+𝒪𝑋 , hence 𝑢0 𝑓 + 𝑢1 ∈ 𝐼𝑊1

0 (𝐷). �

There is a relation between the minimal exponent of f and the weighted Hodge ideals. Recall that if
we denote 𝑏 𝑓 (𝑠) the Bernstein–Sato polynomial, and �̃� 𝑓 (𝑠) the reduced one, we call 𝛼 𝑓 the negative
of the largest root of �̃� 𝑓 (𝑠). Saito proved in [Sai16] that 𝐼𝑝 (𝐷) = 𝒪𝑋 if and only if 𝛼 𝑓 ≥ 𝑝 + 1 (c.f.
[MP20b, Corollary 6.1]). Moreover, this result also holds in the case of Q-divisors, and it can be stated
in the following form.

Lemma 5.9 ([MP20a, Lemma 1.2]). For an integer p and 𝛼 ∈ (0, 1],

𝜕 𝑝
𝑡 𝛿 ∈ 𝑉 𝛼𝑖+𝒪𝑋 ⇔ 𝛼 𝑓 ≥ 𝑝 + 𝛼.

Using these ideas, we obtain the following result for the 1st weighted Hodge ideals.

Corollary 5.10. Using the notation above,

𝐼𝑊1
𝑝 (𝐷) = 𝒪𝑋 if and only if 𝛼 𝑓 > 𝑝 + 1.

Proof. Suppose first that 𝛼 𝑓 > 𝑝 + 1. Then, by Lemma 5.9, 𝜕 𝑝
𝑡 𝛿 ∈ 𝑉1𝑖+𝒪𝑋 . Moreover, there exists

𝛼 ∈ (0, 1] such that 𝛼 𝑓 ≥ 𝑝 + 1 + 𝛼. Again, by Lemma 5.9, 𝜕 𝑝+1
𝑡 𝛿 ∈ 𝑊1𝑉

1𝑖+𝒪𝑋 , and therefore,
𝐼𝑊1
𝑝 (𝐷) = 𝒪𝑋 .

Suppose now that 𝐼𝑊1
𝑝 (𝐷) = 𝒪𝑋 . Then, 𝐼𝑝 (𝐷) = 𝒪𝑋 , and in particular 𝛿, 𝜕𝑡𝛿, . . . , 𝜕 𝑝

𝑡 𝛿 ∈ 𝑉1𝑖+𝒪𝑋 .
Moreover, there exists 𝑣 =

∑𝑝
𝑗=0 𝑣 𝑗𝜕

𝑗
𝑡 𝛿 ∈ 𝑊1𝑉

1𝑖+𝒪𝑋 such that
∑𝑝

𝑗=0 𝑄 𝑗 (1) 𝑓 𝑝− 𝑗𝑣 𝑗 = 1. It is enough to
show that 𝜕 𝑝

𝑡 𝛿 ∈ 𝑊1𝑉
1𝑖+𝒪𝑋 . Indeed, by Proposition 5.6 and the injectivity of 𝑡 : gr0

𝑉 𝑖+𝒪𝑋 → gr1
𝑉 𝑖+𝒪𝑋

(see, e.g., [Sch14, §11]), this means that 𝜕 𝑝+1
𝑡 𝛿 ∈ 𝑉 𝛼𝑖+𝒪𝑋 with 𝛼 ∈ (0, 1], and therefore, 𝛼 𝑓 ≥

𝑝 + 1 + 𝛼 > 𝑝 + 1. We argue by induction. Suppose 𝑝 = 0. Then 𝑣 = 𝑣0𝛿 and by the second condition,
𝑣0 = 1. Hence, 𝛿 ∈ 𝑊1𝑉

1𝑖+𝒪𝑋 . By the induction hypothesis, we assume now that 𝜕𝑘
𝑡 𝛿 ∈ 𝑊1𝑉

1𝑖+𝒪𝑋 for
𝑘 = 0, . . . , 𝑝 − 1. It follows from the description of v that

𝑄𝑝 (1)𝑣𝑝 = 1 − 𝑓 (

𝑝−1∑
𝑗=0

𝑄 𝑗 (1) 𝑓 𝑝−1− 𝑗𝑣 𝑗 ),

and then

𝑣 = 𝜕 𝑝
𝑡 𝛿 − 𝑓 (

𝑝−1∑
𝑗=0

𝑄 𝑗 (1) 𝑓 𝑝−1− 𝑗𝑣 𝑗 )𝜕
𝑝
𝑡 𝛿 +

𝑝−1∑
𝑗=0

𝑣 𝑗𝜕
𝑗
𝑡 𝛿.

The result follows if we show that 𝑓 𝜕 𝑝
𝑡 𝛿 ∈ 𝑊1𝑉

1𝑖+𝒪𝑋 , and this is a consequence of 𝑓 𝜕 𝑝
𝑡 𝛿 = 𝑡𝜕𝑡 (𝜕

𝑝−1
𝑡 𝛿)+

𝑝𝜕 𝑝−1
𝑡 𝛿 ∈ 𝑊1𝑉

1𝑖+𝒪𝑋 . �

Remark 5.11. In general, we cannot obtain more information about the other p-weighted Hodge ideals.
In [Ola22, §13], the case of isolated log-canonical singularities, that are not rational, is discussed. This
case corresponds to 𝛼 𝑓 = 1. By the discussion above, it is clear that 𝐼0(𝐷) = 𝒪𝑋 and that 𝐼𝑊1

0 (𝐷) is not
trivial. For 𝑙 = 2, . . . , 𝑛 − 1, there are examples of f where the weighted multiplier ideals 𝐼𝑊𝑙

0 (𝐷) are
trivial and other examples where they are nontrivial [Ish85, Theorem 5.2].
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D. Local study

6. Measuring the difference between weighted Hodge ideals.

There is a short exact sequence that arises from the definition of the weight filtration on 𝒪𝑋 (∗𝐷):

0 → 𝑊𝑛+𝑙−1𝒪𝑋 (∗𝐷) → 𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) → gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷) → 0.

Applying 𝐹𝑝 , we obtain the short exact sequence

0 → 𝐼𝑊𝑛+𝑙−1
𝑝 (𝐷) ⊗ 𝒪𝑋 ((𝑝 + 1)𝐷) → 𝐼𝑊𝑛+𝑙

𝑝 (𝐷) ⊗ 𝒪𝑋 ((𝑝 + 1)𝐷) → 𝐹𝑝 gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷) → 0. (6.1)

When D has at most isolated singularities and 𝑙 ≥ 2, gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷) is supported on the singular points.
To simplify the notation, we use the following definition.

Definition 6.2. Suppose D has at most one isolated singularity 𝑥 ∈ 𝐷, and let 𝑖𝑥 : {𝑥} ↩→ 𝑋 . For 𝑙 ≥ 2,
we denote by 𝐻𝑙 the complex pure Hodge structure of weight 𝑛 + 𝑙 such that

gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷) � (𝑖𝑥)+𝐻𝑙 .

In order to describe the dimension of 𝐹𝑝 (𝑖𝑥)+𝐻𝑙 , it is enough to describe the dimension of Gr𝑛−𝑘𝐹 𝐻𝑙

for 0 ≤ 𝑘 ≤ 𝑝. This is a consequence of the local description of the Hodge filtration of (𝑖𝑥)+𝐻𝑙 . Let
𝑥1, . . . , 𝑥𝑛 be a set of coordinates around the point 𝑥 ∈ 𝑋 . We have the following description of the
pushforward of 𝐻𝑙 as a 𝒟-module:

(𝑖𝑥)+𝐻𝑙 = (𝑖𝑥)∗𝐻𝑙 ⊗C C[𝜕1, · · · , 𝜕𝑛], (6.3)

where 𝜕𝑖 = 𝜕
𝜕𝑥𝑖

, and

𝐹𝑝 (𝑖𝑥)+𝐻𝑙 =
⊕
𝜈∈Z𝑛

≥0

(𝑖𝑥)∗𝐹𝑝−|𝜈 |−𝑛𝐻𝑙 ⊗ 𝜕𝜈 , (6.4)

where 𝜕𝜈 = 𝜕𝜈1
1 · · · 𝜕𝜈𝑛

𝑛 , |𝜈 | = 𝜈1 + . . . + 𝜈𝑛 and 𝐹𝑘𝐻𝑙 = 𝐹−𝑘𝐻𝑙 . Since the lowest degree of the Hodge
filtration of 𝒪𝑋 (∗𝐷) is 0, and DR((𝑖𝑥)+𝐻𝑙) � (𝑖𝑥)∗𝐻𝑙 , that is, the pushforward of the pure Hodge
structure 𝐻𝑙 is a skyscraper sheaf, then the highest degree of the Hodge filtration of 𝐻𝑙 is n, in other
words, 𝐹𝑛+1𝐻𝑙 = 0. Using this, we obtain, for instance, that

𝐹0 (𝑖𝑥)+𝐻𝑙 = (𝑖𝑥)∗𝐹
𝑛𝐻𝑙 ⊗ 1 = (𝑖𝑥)∗ Gr𝑛𝐹 𝐻𝑙 ⊗ 1,

and

𝐹1 (𝑖𝑥)+𝐻𝑙 = (𝑖𝑥)∗𝐹
𝑛−1𝐻𝑙 ⊗ 1 ⊕

⊕
𝑖

(𝑖𝑥)∗𝐹
𝑛𝐻𝑙 ⊗ 𝜕𝑖 .

Since 𝐹𝑝 (𝑖𝑥)+𝐻𝑙 is a skyscraper sheaf, we denote by dim(𝐹𝑝 (𝑖𝑥)+𝐻𝑙) the dimension of the complex
vector space 𝐽𝑝 that satisfies 𝐹𝑝 (𝑖𝑥)+𝐻𝑙 = (𝑖𝑥)∗𝐽𝑝 . From the discussion above, we obtain that

dim(𝐹0 (𝑖𝑥)+𝐻𝑙) = dim(Gr𝑛𝐹 𝐻𝑙),

dim(𝐹1 (𝑖𝑥)+𝐻𝑙) = dim(𝐹𝑛−1𝐻𝑙) + 𝑛 dim(Gr𝑛𝐹 𝐻𝑙) = dim(Gr𝑛−1
𝐹 𝐻𝑙) + (𝑛 + 1) dim(Gr𝑛𝐹 𝐻𝑙),
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and in general

dim(𝐹𝑝 (𝑖𝑥)+𝐻𝑙) =
𝑝∑

𝑘=0

(
𝑛 − 1 + 𝑘

𝑘

)
dim(𝐹𝑛−𝑝+𝑘𝐻𝑙) =

𝑝∑
𝑟=0

dim(Gr𝑛−𝑟𝐹 𝐻𝑙)

𝑝−𝑟∑
𝑘=0

(
𝑛 − 1 + 𝑘

𝑘

)

=
𝑝∑

𝑟=0

(
𝑛 + 𝑝 − 𝑟

𝑝 − 𝑟

)
dim(Gr𝑛−𝑟𝐹 𝐻𝑙).

(6.5)

The dimension of Gr𝑛−𝑘𝐹 𝐻𝑙 is described in Theorem B.

Proof of Theorem B. We can and will assume that X is a projective variety. Indeed, there is an open set
around x which has a smooth projective compactification �̄� . Let �̄� be the closure of D in �̄� . Consider
a log-resolution of ( �̄� \ 𝑥, �̄� \ 𝑥) given by a sequence of blow ups with centers over the singular locus
of �̄� \ 𝑥. By blowing up the same sequence of centers over �̄� , we obtain a map 𝑋1 → �̄� . Let 𝐷1 be the
strict transform of �̄�. By construction, the map is an isomorphism over (𝑋, 𝐷), and 𝐷1 has only one
isolated singularity corresponding to 𝑥 ∈ 𝐷. We replace (𝑋, 𝐷) with (𝑋1, 𝐷1).

First, we prove that these dimensions do not depend on the log-resolution of singularities that is an
isomorphism outside of {𝑥}. Since for a pair of resolution of singularities one can find a third one that
dominates the two of them, it is enough to show that the dimensions are equal if we have two resolutions
of singularities 𝑔1 : 𝐷1 → 𝐷 and 𝑔2 : 𝐷2 → 𝐷 such that there is a morphism ℎ : 𝐷1 → 𝐷2 such that
𝑔1 = 𝑔2 ◦ ℎ. Let 𝐺𝑖 ⊆ 𝐷𝑖 be the exceptional divisor of 𝑔𝑖 . Consider the exact sequence of mixed Hodge
structures

· · · → 𝐻𝑘−1(𝐺1) → 𝐻𝑘 (𝐷2) → 𝐻𝑘 (𝐷1) ⊕ 𝐻𝑘 (𝐺2) → 𝐻𝑘 (𝐺1) → · · ·

(see [PS08, Proof of Theorem 6.15]). For 𝑙 ≥ 3, applying 𝐻 𝑝,𝑛−𝑙−𝑝 , we obtain that

𝐻 𝑝,𝑛−𝑙−𝑝 (𝐻𝑛−2 (𝐺2)) � 𝐻 𝑝,𝑛−𝑙−𝑝 (𝐻𝑛−2 (𝐺1)).

For 𝑙 = 2, applying 𝐻 𝑝,𝑛−𝑝−2 and 𝐻𝑛−𝑝−1, 𝑝+1 and noting that ℎ𝑝,𝑛−𝑝−2(𝐷𝑖) = ℎ𝑛−𝑝−1, 𝑝+1(𝐷𝑖), we
obtain that

ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2 (𝐺1)) − ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐺1)) = ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2 (𝐺2)) − ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐺2)).

Let 𝑓 : 𝑌 → 𝑋 be a log-resolution that is an isomorphism outside of x, and 𝐸 := 𝑓 −1(𝐷)𝑟𝑒𝑑 . This
resolution defines a log-resolution of singularities 𝑔 : 𝐷 → 𝐷 by restriction, that is an isomorphism
outside of x. We use the spectral sequence (1.3) for the constant map from X to a point. In this case, it
says

𝐸−𝑛−𝑙,𝑞
1 = H𝑞−𝑛−𝑙 (𝑋,DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))) ⇒ 𝐻𝑞−𝑙 (𝑈,C), (6.6)

noting that DR(𝒪𝑋 (∗𝐷)) � R 𝑗∗C𝑈 [𝑛], where 𝑗 : 𝑈 = 𝑋 \ 𝐷 ↩→ 𝑋 . We also have the isomorphism

𝐸−𝑛−𝑙,𝑞
2 � Gr𝑊𝑞 𝐻𝑞−𝑙 (𝑈).

Consider the maps

𝐸−𝑛−𝑙−1,𝑛+𝑙
1 → 𝐸−𝑛−𝑙,𝑛+𝑙

1 → 𝐸−𝑛−𝑙+1,𝑛+𝑙
1 ,

corresponding to

H−1 (𝑋,DR(gr𝑊𝑛+𝑙+1 𝒪𝑋 (∗𝐷))) → H0 (𝑋,DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))) → H1(𝑋,DR(gr𝑊𝑛+𝑙−1 𝒪𝑋 (∗𝐷))).
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Moreover, the degeneration of the Hodge-to-de-Rham spectral sequence says that

gr𝐹−𝑛+𝑝 H𝑖 (𝑋,DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))) � H𝑖 (𝑋, gr𝐹−𝑛+𝑝 DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))) (6.7)

(see, for example, [MP19a, Example 4.2]).
Consider first the case 𝑙 ≥ 3. Noting that H𝑖 (𝑋,DR((𝑖𝑥)+𝐻𝑙)) = 0 if 𝑖 ≠ 0 for 𝑙 ≥ 2, we obtain that

𝐸−𝑛−𝑙,𝑛+𝑙
2 � 𝐻𝑙 .

Applying gr𝐹−𝑛+𝑝 , using equation (6.7), and the 𝐸2-degeneration of the spectral sequence, we obtain that

gr𝐹−𝑛+𝑝 𝐸−𝑛−𝑙,𝑛+𝑙
2 � gr𝐹−𝑛+𝑝 𝐻𝑙 = Gr𝑛−𝑝

𝐹 𝐻𝑙 � 𝐻𝑛−𝑝,𝑙+𝑝 (𝐻𝑛 (𝑈)) � 𝐻 𝑝,𝑛−𝑙−𝑝 (𝐻𝑛
𝑐 (𝑈))∗,

where the last isomoprhism follows from Poincaré duality (see [PS08, Theorem 6.23]). Using the long
exact sequence of the pair (𝑋, 𝐷), we obtain that

𝐻 𝑝,𝑛−𝑙−𝑝 (𝐻𝑛
𝑐 (𝑈)) � 𝐻 𝑝,𝑛−𝑙−𝑝 (𝐻𝑛−1 (𝐷)),

as 𝐻𝑛−1 (𝑋) and 𝐻𝑛 (𝑋) have pure Hodge structures. Finally, as g has {𝑥} as discriminant, we have a
long exact sequence,

𝐻𝑛−2 (𝐷) → 𝐻𝑛−2 (𝐺) → 𝐻𝑛−1 (𝐷) → 𝐻𝑛−1 (𝐷).

As this is a sequence of mixed Hodge structures, we obtain

𝐻 𝑝,𝑛−𝑙−𝑝 (𝐻𝑛−1 (𝐷)) � 𝐻 𝑝,𝑛−𝑙−𝑝 (𝐻𝑛−2 (𝐺)).

Consider now 𝑙 = 2. In this case, the maps

𝐸−𝑛−3,𝑛+2
1 → 𝐸−𝑛−2,𝑛+2

1 → 𝐸−𝑛−1,𝑛+2
1 → 𝐸−𝑛,𝑛+2

1

correspond to

0 → 𝐻2
𝛽
→ 𝐻𝑛 (𝐷) (−1)

𝛾
→ 𝐻𝑛+2(𝑋).

Indeed, the first two terms follow from the explanation above. The third term follows from the
fact that DR(gr𝑊𝑛+1 𝒪𝑋 (∗𝐷)) � 𝐼𝐶𝐷 (−1), a Tate twist of the intersection complex of D [Sai09,
§2.2]. Furthermore, 𝐼𝐻𝑛 (𝐷) � 𝐻𝑛 (𝐷) [GM80, §6.1]. The last term in the complex, follow as
DR(gr𝑊𝑛 𝒪𝑋 (∗𝐷)) � C𝑋 [𝑛] . From the short exact sequence

ker 𝛽 → Gr𝑛−𝑝
𝐹 𝐻2 → im 𝛽,

where 𝛽 = gr𝐹−𝑛+𝑝 𝛽 and 𝛾 = gr𝐹−𝑛+𝑝 �̃�, we obtain that

dim(Gr𝑛−𝑝
𝐹 𝐻2) = dim ker 𝛽 + dim im 𝛽

= ℎ𝑝,𝑛−𝑝−2(𝐻𝑛
𝑐 (𝑈)) + ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐷))

− ℎ𝑝,𝑛−𝑝−2(𝑋) + ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2
𝑐 (𝑈)) − ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−1

𝑐 (𝑈)).
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Indeed, this follows from the descriptions of 𝐸𝑛−2+𝑠,𝑛+2
2 for 𝑠 = 0, 1, 2 and Poincaré duality. More

precisely, we have three short exact sequences

0 → 𝐻 𝑝,𝑛−𝑝−2(𝐻𝑛
𝑐 (𝑈))∗ → Gr𝑛−𝑝

𝐹 𝐻2 → im 𝛽 → 0,

0 → ker 𝛾 → Gr𝑛−𝑝
𝐹 𝐻𝑛+1 (𝐷) → im 𝛾 → 0,

0 → im 𝛾 → 𝐻 𝑝,𝑛−𝑝−2(𝑋)∗ → 𝐻 𝑝,𝑛−𝑝−2(𝐻𝑛−2
𝑐 (𝑈))∗ → 0,

and also that Gr𝑛−𝑝
𝐹 𝐸𝑛−1,𝑛+2

2 � 𝐻 𝑝,𝑛−𝑝−2(𝐻𝑛−1
𝑐 (𝑈))∗. Using the long exact sequence associated to the

pair (𝑋, 𝐷) to relate these three sequences, we obtain

dim(Gr𝑛−𝑝
𝐹 𝐻2) = ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐷)) − ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2 (𝐷)) + ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−1 (𝐷)).

Finally, using that the map g has {𝑥} as discriminant, we obtain that

dim(Gr𝑛−𝑝
𝐹 𝐻2) = ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2 (𝐺)) − ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐺)). �

Remark 6.8. In general, the term ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐺)) might not be 0. Consider for instance 𝑛 = 4 and
𝑝 = 1. In this case, ℎ2,2 (𝐻4 (𝐺)) = 𝑘 , where k is the number of irreducible components of G. Using
similar computations as above, we also see that

ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2 (𝐺)) − ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐺)) = ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐷)) − ℎ𝑝,𝑛−𝑝−2(𝐻𝑛−2 (𝐷)),

that is, the failure of Poincaré duality. Still, in the case 𝑝 = 0, the term ℎ𝑛−𝑝−1, 𝑝+1(𝐻𝑛 (𝐺)) is always 0,
as G is (𝑛 − 2)-dimensional (see [Ola22, Theorem B]).

E. Vanishing theorems

7. Ample divisors

Let X be a smooth projective variety of dimension n, and D an ample divisor. Let 𝑈 = 𝑋 \ 𝐷. As U is
smooth and affine, 𝐻𝑖+𝑛 (𝑈) = 0 for 𝑖 > 0 (see, for instance, [Laz04, Theorem 3.1.1]). In this setting, we
have the following result.

Lemma 7.1. There is a short exact sequence

0 → 𝐻𝑖 (𝑋,DR(𝑊𝑛+𝑙𝒪𝑋 (∗𝐷)) → 𝐻𝑖 (𝑋,DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))) →

→ 𝐻𝑖+1(𝑋,DR(𝑊𝑛+𝑙−1𝒪𝑋 (∗𝐷))) → 0.

Proof. In [Ola22, Proof of Proposition 12.1], using the spectral sequences

𝐸−𝑛−𝑙,𝑞
1 = 𝐻𝑞−𝑛−𝑙 (𝑋,DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))) ⇒ 𝐻𝑞−𝑙 (𝑈,C)

and

𝐸
′−𝑛−𝑙,𝑞
1 = 𝐻𝑞−𝑛−𝑙 (𝑋,DR(gr𝑊𝑛+𝑙 𝑊𝑛+𝑘𝒪𝑋 (∗𝐷))) ⇒ 𝐻𝑞−𝑛−𝑙 (𝑋,DR(𝑊𝑛+𝑘𝒪𝑋 (∗𝐷)))

and noting that

𝐸−𝑛−𝑙,𝑞
2 � Gr𝑊𝑞 𝐻𝑞−𝑙 (𝑈,C)

𝐸
′−𝑛−𝑙,𝑞
2 � gr𝑊𝑞 𝐻𝑞−𝑛−𝑙 (𝑋,DR(𝑊𝑛+𝑘𝒪𝑋 (∗𝐷)))
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we obtained:

(a) For 𝑠 ≥ 1,

gr𝑊𝑛+𝑘+𝑖−𝑠 𝐻
𝑖 (𝑋,DR(𝑊𝑛+𝑘𝒪𝑋 (∗𝐷))) � Gr𝑊𝑛+𝑘+𝑖−𝑠 𝐻

𝑖+𝑛 (𝑈,C).

(b) For 𝑠 ≥ 1,

gr𝑊𝑛+𝑘+𝑖+𝑠 𝐻
𝑖 (𝑋,DR(𝑊𝑛+𝑘𝒪𝑋 (∗𝐷))) = 0.

(c) Let

𝛼𝑘+1 : 𝐻𝑖−1(𝑋,DR(gr𝑊𝑛+𝑘+1 𝒪𝑋 (∗𝐷))) → 𝐻𝑖 (𝑋,DR(gr𝑊𝑛+𝑘 𝒪𝑋 (∗𝐷)))

corresponding to the map 𝐸−𝑛−𝑘−1,𝑖+𝑛+𝑘
1 → 𝐸−𝑛−𝑘,𝑖+𝑛+𝑘

1 . Then we have the following short exact
sequence:

0 → im𝛼𝑘+1 → gr𝑊𝑖+𝑛+𝑘 𝐻
𝑖 (𝑋,DR(𝑊𝑛+𝑘𝒪𝑋 (∗𝐷))) → Gr𝑊𝑖+𝑛+𝑘 𝐻

𝑖+𝑛 (𝑈,C) → 0.

If 𝑖 ≥ 1, then

im𝛼𝑘+1 � gr𝑊𝑖+𝑛+𝑘 𝐻
𝑖 (𝑋,DR(𝑊𝑛+𝑘𝒪𝑋 (∗𝐷))) � 𝐻𝑖 (𝑋,DR(𝑊𝑛+𝑘𝒪𝑋 (∗𝐷))).

Consider now the complex

𝐸−𝑛−𝑙−1,𝑛+𝑙+𝑖
1

𝛼𝑙+1
→ 𝐸−𝑛−𝑙,𝑛+𝑙+𝑖

1
𝛼𝑙
→ 𝐸−𝑛−𝑙+1,𝑛+𝑙+𝑖

1 .

As 𝐸−𝑛−𝑙,𝑛+𝑙+𝑖
2 = 0, using the analysis above, we obtain a short exact sequence

0 → im𝛼𝑙+1 → 𝐻𝑖 (𝑋,DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))) → im𝛼𝑙 → 0,

and the result follows. �

When 𝑝 = 0, the result above is enough to obtain that

𝐻𝑖 (𝑋, 𝜔𝑋 (𝐷) ⊗ 𝐼𝑊𝑙

0 (𝐷)) = 0

for 𝑙 ≥ 2 and 𝑖 ≥ 1. Indeed, as 0 is the lowest degree of the Hodge filtration on 𝒪𝑋 (∗𝐷), we have

𝐻𝑖 (𝑋, 𝜔𝑋 (𝐷) ⊗ 𝐼𝑊𝑙

0 (𝐷)) � gr𝐹−𝑛 𝐻𝑖 (𝑋,DR(𝑊𝑛+𝑙𝒪𝑋 (∗𝐷))).

This is no longer the case when we consider gr𝐹−𝑛+𝑝 for 𝑝 ≥ 1 instead. Nonetheless, following the idea
in [MP19a, Proof of Theorem F], we give conditions in Theorem C to obtain an analogue vanishing
theorem.

Proof of Theorem C. Since 𝐼𝑊𝑙

𝑝−1(𝐷) = 𝒪𝑋 , we have the following short exact sequence

0 → 𝜔𝑋 (𝑝𝐷) → 𝜔𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐼𝑊𝑙
𝑝 (𝐷) → 𝜔𝑋 ⊗ gr𝐹𝑝 (𝑊𝑛+𝑙𝒪𝑋 (∗𝐷)) → 0.

Using the long exact sequence of cohomologies and Kodaira vanishing, we note that it is enough to
prove that

𝐻𝑖 (𝑋, 𝜔𝑋 ⊗ gr𝐹𝑝 (𝑊𝑛+𝑙𝒪𝑋 (∗𝐷))) = 0.
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Consider now the complex

𝐶• := gr𝐹−𝑛+𝑝 DR(𝑊𝑛+𝑙𝒪𝑋 (∗𝐷)).

The complex 𝐶• can be identified with the complex[
Ω𝑛−𝑝

𝑋 ⊗ 𝒪𝑋 (𝐷) → Ω𝑛−𝑝+1
𝑋 ⊗ 𝒪𝐷 (2𝐷) → · · · → Ω𝑛−1

𝑋 ⊗ 𝒪𝐷 (𝑝𝐷) → 𝜔𝑋 ⊗ gr𝐹𝑝 (𝑊𝑛+𝑙𝒪𝑋 (∗𝐷))
]

concentrated in degrees−𝑝 to 0, since 𝐹0𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) = 𝒪𝑋 (𝐷) and gr𝐹𝑘 𝑊𝑛+𝑙𝒪𝑋 (∗𝐷) � 𝒪𝐷 ((𝑘+1)𝐷)
for 𝑘 ≤ 𝑝 − 1 (see §1 for the definition of gr𝐹𝑝 DR).

Suppose now that D has at most isolated singularities. By Lemma 7.1, we obtain that

H𝑖 (𝑋,DR(𝑊𝑛+𝑙𝒪𝑋 (∗𝐷))) = 0

for 𝑖 ≥ 1 and 𝑙 ≥ 2. In particular, this means that

H𝑖 (𝑋,𝐶•) = 0

for the same indices, by the Hodge-to-de-Rham degeneration. Next, we use the exact sequence

𝐸 𝑝,𝑞
1 = 𝐻𝑞 (𝑋,𝐶 𝑝) ⇒ H𝑝+𝑞 (𝑋,𝐶•).

Note that

𝐸0,𝑞
1 = 𝐻𝑞 (𝑋, 𝜔𝑋 ⊗ gr𝐹𝑝 (𝑊𝑛+𝑙𝒪𝑋 (∗𝐷))).

Since

𝐸−1,𝑞
1 = 𝐻𝑞 (𝑋,Ω𝑛−1

𝑋 ⊗ 𝒪𝐷 (𝑝𝐷)),

then 𝐸−1,𝑞
1 = 0 if 𝑞 ≥ 2 by Nakano vanishing. Moreover, 𝐸−1,1

1 = 0 by our hypothesis.
We continue with a similar analysis in the higher pages of the spectral sequence. More precisely, we

show that the hypothesis implies that 𝐸−𝑟 ,𝑞+𝑟−1
𝑟 = 0 for all 𝑟 ≥ 2. Note that this is enough to complete

the proof. Indeed, if this is the case, we obtain that

𝐸0,𝑞
∞ = 𝐻𝑞 (𝑋, 𝜔𝑋 ⊗ gr𝐹𝑝 (𝑊𝑛+𝑙𝒪𝑋 (∗𝐷))) = 0

for 𝑞 ≥ 1, where the last equality follows from the established equality with 𝐶•.
To complete the proof, note that

𝐸−𝑟 ,𝑞+𝑟−1
1 = 0

for 𝑟 ≥ 𝑝. Indeed, this is clear for the strict inequality by the degrees on which 𝐶• is concentrated, and

𝐸−𝑝,𝑞+𝑝−1
1 = 𝐻𝑞+𝑝−1(𝑋,Ω𝑛−𝑝

𝑋 ⊗ 𝒪𝑋 (𝐷)).

If 𝑞 ≥ 2, then this spaces vanishes by Nakano vanishing, and if 𝑞 = 1, it vanishes by our assumption.
Finally, for 𝑟 ≤ 𝑝 − 1, we have

𝐸−𝑟 ,𝑞+𝑟−1
1 = 𝐻𝑞+𝑟−1(𝑋,Ω𝑛−𝑟

𝑋 ⊗ 𝒪𝐷 ((𝑝 + 1 − 𝑟)𝐷)).

This space fits the a long exact sequence

→ 𝐻𝑞+𝑟−1(𝑋,Ω𝑛−𝑟
𝑋 ((𝑝 + 1 − 𝑟)𝐷)) → 𝐸−𝑟 ,𝑞+𝑟−1

1 → 𝐻𝑞+𝑟 (𝑋,Ω𝑛−𝑟
𝑋 ((𝑝 − 𝑟)𝐷)).
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If 𝑞 ≥ 2, then the two other terms vanish by Nakano vanishing, and if 𝑞 = 1, they vanish by the
assumption. �

Remark 7.2. This result does not hold in general for 𝑙 = 1 (see [Ola22, Remark 9]).

8. Kodaira-type vanishing

Using a similar idea to the one in the proof of Theorem C, we obtain a vanishing theorem for weighted
Hodge ideals. This is the analogue result to [MP19a, Theorem F].

Proposition 8.1. Let X be a smooth projective variety of dimension n, and D a reduced effective divisor.
Let L be a line bundle such that 𝐿(𝑘𝐷) is ample for 0 ≤ 𝑘 ≤ 𝑝, and assume 𝐼𝑊1

𝑝−1(𝐷) is trivial. Then

1. For 𝑙 ≥ 1 and 𝑖 ≥ 2,

𝐻𝑖 (𝑋, 𝜔𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐿 ⊗ 𝐼𝑊𝑙
𝑝 (𝐷)) = 0.

2. If 𝐻 𝑗 (𝑋,Ω𝑛− 𝑗
𝑋 ⊗ 𝐿((𝑝 − 𝑗 + 1)𝐷)) = 0 for all 1 ≤ 𝑗 ≤ 𝑝, then

𝐻1(𝑋, 𝜔𝑋 ((𝑝 + 1)𝐷) ⊗ 𝐿 ⊗ 𝐼𝑊𝑙
𝑝 (𝐷)) = 0

for 𝑙 ≥ 1.

Proof. Since 𝐼𝑊𝑙

𝑝−1(𝐷) = 𝒪𝑋 , we have the following short exact sequence

0 → 𝜔𝑋 ⊗ 𝐿(𝑝𝐷) → 𝜔𝑋 ⊗ 𝐿((𝑝 + 1)𝐷) ⊗ 𝐼𝑊𝑙
𝑝 (𝐷) → 𝜔𝑋 ⊗ 𝐿 ⊗ gr𝐹𝑝 (𝑊𝑛+𝑙𝒪𝑋 (∗𝐷)) → 0.

By Kodaira vanishing, it is enough to prove

𝐻𝑖 (𝑋, 𝜔𝑋 ⊗ 𝐿 ⊗ gr𝐹𝑝 (𝑊𝑛+𝑙𝒪𝑋 (∗𝐷))) = 0.

We have that

H𝑖 (𝑋, 𝐿 ⊗ gr𝐹−𝑛+𝑝 DR(𝑊𝑛+𝑙𝒪𝑋 (∗𝐷)) = 0

for 𝑖 ≥ 1 and 𝑙 ≥ 1 as a consequence of a vanishing result by Saito [Sai90, Proposition 2.33]. To
complete the proof, we use the same spectral sequence as in the proof of Theorem C. �

9. Applications

In this section, we combine the local study and the vanishing results. To obtain applications, we use
the vanishing theorems of the previous sections. A class varieties where the vanishing condition in
Theorem C and Proposition 8.1 is satisfied, is toric varieties. In this case, the Bott–Danilov-Steenbrink
vanishing theorem says that if A is an ample line bundle on the toric variety X, then

𝐻𝑖 (𝑋,Ω 𝑗 ⊗ 𝐴) = 0

for 𝑗 ≥ 0 and 𝑖 ≥ 1 (see, e.g., [Mus02, Theorem 2.4]). For the applications, we discuss the case of
𝑋 = P𝑛. We start with the proof of Corollary D.

Proof of Corollary D. Consider the exact sequence

0 → 𝒪P𝑛 (𝑘) ⊗ 𝐼𝑊𝑙
𝑝 (𝐷) → 𝒪P𝑛 (𝑘) → 𝒪𝑍𝑝,𝑙 (𝑘) → 0.

The result follows from passing to cohomology and applying Theorem C. �
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9.1. Isolated p-log-canonical singularities
Suppose the pair (𝑋, 𝐷) is p-log-canonical and has at most isolated singularities. If 𝑝 = 0, the pair
is log-canonical and in this case, 𝐼𝑊1

0 (𝐷) is the maximal ideal at each isolated singularity that is not
rational by a result of Ishii (see [Ola22, §5.3]). For simplicity, let 𝑥 ∈ 𝐷 be the only singularity and
𝑖 : {𝑥} ↩→ 𝑋 the inclusion, and suppose that it is log-canonical singularity and not rational. The result
above means that if we denote

𝑖∗𝐻𝑙 = DR(gr𝑊𝑛+𝑙 𝒪𝑋 (∗𝐷))

for 𝑙 ≥ 2, there exists exactly one degree l such that dim(gr𝐹−𝑛 𝐻𝑙) = 1, and the rest are 0. In this case,
using [Ola22, Theorem B], we say that the singularity is of type (0, 𝑛− 𝑙) [Ish85, Definition 4.1]. There
is a similar picture for the cases 𝑝 ≥ 1 we describe next.

Nonrational log-canonical singularities correspond to the case where the minimal exponent at the
singularity is 1. We then consider singularities with minimal exponent 𝑝 +1, in which case 𝐼𝑝 (𝐷) = 𝒪𝑋

and 𝐼𝑊1
𝑝 (𝐷) is nontrivial by Corollary 5.10. These singularities generalize the example of nonrational

log-canonical singularities in the following sense.

Proposition 9.1. Suppose D has at most one isolated singularity 𝑥 ∈ 𝐷, and 𝛼𝐷 = 𝑝 + 1. Then,

𝐼𝑊1
𝑝 (𝐷) = 𝔪𝑥 ,

the maximal ideal of x in X.

Proof. Suppose that D is defined by 𝑓 ∈ 𝒪𝑋 . Recall from the proof of Corollary 5.10, that as 𝛼 𝑓 = 𝑝+1,
then 𝛿, 𝜕𝑡𝛿, . . . , 𝜕

𝑝
𝑡 𝛿 ∈ 𝑉1𝐵 𝑓 . Moreover, we also know that 𝛿, 𝜕𝑡𝛿, . . . , 𝜕 𝑝−1

𝑡 𝛿 ∈ 𝑊1𝑉
1𝐵 𝑓 . It is then

enough to show that 𝑔𝜕 𝑝
𝑡 𝛿 ∈ 𝑊1𝑉

1𝐵 𝑓 if and only if 𝑔 ∈ 𝔪𝑥 . As D has an isolated singularity, we have
that

gr𝐹𝑝 gr𝛼𝑉 𝐵 𝑓 is annihilated by 𝔪𝑥

for 𝛼 < 1 [DS12, 4.11.1].
We also know that 𝜕 𝑝

𝑡 𝛿 ∈ 𝑉1𝐵 𝑓 \𝑊1𝑉
1𝐵 𝑓 , and this means that 𝜕 𝑝+1

𝑡 𝛿 ∈ 𝑉0𝐵 𝑓 \𝑉
>0𝐵 𝑓 . In particular,

the class of 𝜕 𝑝+1
𝑡 𝛿 in Gr𝐹𝑝 gr0

𝑉 𝐵 𝑓 is not zero. Using the result above, for any 𝑔 ∈ 𝔪𝑥 , the class of 𝑔𝜕 𝑝+1
𝑡 𝛿

in Gr𝐹𝑝 gr0
𝑉 𝐵 𝑓 is zero. This means that 𝑔𝜕 𝑝+1

𝑡 𝛿 ∈ 𝑉>0𝐵 𝑓 , and equivalently, 𝑔𝜕 𝑝
𝑡 𝛿 ∈ 𝑊1𝑉

1𝐵 𝑓 . Using
the description of Theorem A, we obtain that 𝑔 ∈ 𝐼𝑊1

𝑝 (𝐷) for any 𝑔 ∈ 𝔪𝑥 , and we know that the ideal
is not trivial, hence we have an equality. �

In other words, if D has one isolated singularity 𝑥 ∈ 𝐷, and 𝛼𝐷 = 𝑝 + 1, then∑
𝑙≥2

dim(Gr𝑛−𝑝
𝐹 𝐻𝑙) = 1

by Theorem B, that is, there is exactly one 𝑙 ≥ 2 such that

dim(Gr𝑛−𝑝
𝐹 𝐻𝑙) = 1,

and the rest are 0. Moreover, by the same result,
∑

𝑙≥2 dim(Gr𝑛−𝑟𝐹 𝐻𝑙) = 1, for 0 ≤ 𝑟 ≤ 𝑝 − 1.

Remark 9.2. Friedman and Laza have studied related invariants of singularities in similar conditions
in [FL22, Theorem 6.11 and Corollary 6.14].

Definition 9.3. Let 𝑥 ∈ 𝐷 be an isolated singularity such that 𝛼𝐷𝑥 = 𝑝 + 1, that is an isolated p-log-
canonical that is not p-rational. Let l be the degree such that dim(Gr𝑛−𝑝

𝐹 𝐻𝑙) = 1. Then, we say that the
singularity is of type (𝑝, 𝑛 − 𝑙 − 𝑝).
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Remark 9.4. i) Definition 9.3 is analogous to the definition of isolated log-canonical singularities of
type (0, 𝑠) [Ish85, Definition 4.1], when 𝑥 ∈ 𝐷 is an isolated singularity and D is a hypersurface of
a smooth variety.

ii) Ishii defined these singularities more generally for normal isolated 1-Gorenstein log-canonical sin-
gularities. It is an open question how to generalize this definition for nonhypersurface singularities.

iii) The possible types are (𝑝, 𝑝), (𝑝, 𝑝 +1), . . . (𝑝, 𝑛−2− 𝑝). This is a consequence of the fact that the
nilpotency order of the vanishing cohomology is bounded by Briançon–Skoda exponent [Sch80,
Main Theorem]. This nilpotency order gives a bound for the nilpotency order of (𝜕𝑡 𝑡) on gr0

𝑉 𝐵 𝑓 ,
which in turn gives a bound for the order of (𝑡𝜕𝑡 ) on gr1

𝑉 𝐵 𝑓 . The Briançon–Skoda exponent is
bounded by 𝑛 − 2𝑝 − 1 (see, for instance, [JKSY22a]), which means that 𝑛 − 𝑙 − 𝑝 ≥ 𝑝.

Example 9.5. Suppose that 𝑓 ∈ C[𝑥1, . . . , 𝑥𝑛] is a polynomial with an isolated singularity at the origin
and a nondegenerate Newton boundary. Let Γ+( 𝑓 ) = Γ the Newton polyhedron of f, Γ( 𝑓 ) the union of
the compact faces of Γ+( 𝑓 ), and F the set of compact facets. For each 𝐹 ∈ F , there is a unique vector
𝐵𝐹 ∈ (Q≥0)

𝑛 such that 〈𝐴, 𝐵𝐹 〉 = 1 for all 𝐴 ∈ 𝐹. For every monomial 𝑥𝜈 , we define

�̃�𝐹 (𝑥
𝜈) = 〈𝜈 + 1, 𝐵𝐹 〉,

where 1 = (1, . . . , 1), and for any 𝑔 ∈ 𝒪, 𝑔 =
∑

𝑔𝐴𝑥
𝐴,

�̃�𝐹 (𝑔) = min{ �̃�𝐹 (𝑥
𝐴) : 𝑔𝐴 ≠ 0}.

Finally, we define

�̃�(𝑔) = min{ �̃�𝐹 (𝑔) : 𝐹 ∈ F }.

In this case, the minimal exponent is �̃�(1).
Suppose �̃� 𝑓 = 𝑝 + 1, which implies that 𝜕 𝑝

𝑡 𝛿 ∈ 𝑉1𝑖+𝒪𝑋 . Using the description of the microlocal
V-filtration (see [Sai94, Proposition 3.2]), we see that if

𝑟 = #{𝐹 ∈ F : �̃�𝐹 (1) = �̃�(1)},

then (𝑡𝜕𝑡 )
𝑟+1𝜕 𝑝

𝑡 𝛿 ∈ 𝑉>1𝑖+𝒪𝑋 , or equivalently,

1 ∈ 𝐼𝑊𝑟+1
𝑝 (𝐷).

In general, 𝑟 + 1 is not the degree with Gr𝑛−𝑝
𝐹 𝐻𝑙 ≠ 0.

i) Weighted homogeneous singularities with �̃� 𝑓 = 𝑝 + 1 are examples of singularities of type (𝑝, 𝑛 −
2− 𝑝) (see Remark 5.7). Isolated singularities with nondegenerate Newton boundary give examples
for different degrees of l. For instance, 𝑓 = 𝑥2 + 𝑦2 + 𝑧2 + 𝑢2𝑤2 + 𝑢4 + 𝑤5 ∈ C5 satisfies that
𝛼 𝑓 = 2, and 𝑟 = 2, using the notation above. We can also verify that (𝑡𝜕𝑡 )2𝜕𝑡𝛿 ∉ 𝑉>1𝑖+𝒪𝑋 since
𝑤5𝜕3

𝑡 𝛿 ∈ 𝑉0 \ 𝑉>0. Indeed, this follows from the fact that 𝑤5 ∉ 𝐽 ( 𝑓 ), where 𝐽 ( 𝑓 ) is the Jacobian
ideal, and [JKSY22b, Proposition 1.3]. Therefore, this singularity is of type (1, 1).

ii) Let Δ0 be the compact face that contains 1
𝑝+1 1 in its relative interior, and let 𝑠 = dimΔ0. Assume

also that the Newton polyhedron is simplicial. The number r defined above satisfies that 𝑠 = 𝑛 − 𝑟 .
Let l be the degree such that Gr𝑛−𝑝

𝐹 𝐻𝑙 ≠ 0. Then 𝑙 ≤ 𝑟 + 1 = 𝑛 − 𝑠 + 1, if 𝑠 > 0, and 𝑙 ≤ 𝑛 is 𝑠 = 0.
iii) If 𝑝 = 0, the previous inequalities are equalities (without the simplicial assumption) by a result of

Watanabe that says that the singularities are log-canonical of type (0, 𝑠 − 1) if 𝑠 > 0, and (0, 0) if
𝑠 = 0, which is equivalent to the equalities [Wat87, Corollary 3.14].

Using Proposition 9.1 and the vanishing results, we obtain a bound on the number of these singularities
in a hypersurface of P𝑛.
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Corollary 9.6. Let D be a reduced hypersurface of P𝑛 of degree d with at most isolated singularities.
Assume that the pair (P𝑛, 𝐷) is strictly p-log-canonical, that is, 𝛼𝐷 = 𝑝 + 1. Let Z be the union of the
strictly p-log-canonical singular points of D and 𝑍2 the union of those of type (𝑝, 𝑝), . . . , (𝑝, 𝑛−3− 𝑝).
Then,

#𝑍2 ≤

(
(𝑝 + 1)𝑑 − 1

𝑛

)
,

and

#𝑍 ≤

(
(𝑝 + 1)𝑑

𝑛

)
.

Proof. By Proposition 9.1, the scheme Z is defined by the ideal 𝐼𝑊𝑙
𝑝 (𝐷). Therefore, the result follows

from Corollary D. �

F. Restriction theorem

Let (M, 𝐹) be a filtered right 𝒟-module underlying a mixed Hodge module M on X. Let 𝐻 ⊆ 𝑋 be
a smooth hypersurface and 𝑖 : 𝐻 ↩→ 𝑋 the inclusion. In this section, we change the notation of the
V-filtration by 𝑉𝑘 = 𝑉−𝑘 , which is the notation used in [MP18]. There exists a canonical morphism

gr𝑉0 M 𝜎
→ gr𝑉−1 M ⊗𝒪𝑋 𝒪𝑋 (𝐻) (9.7)

satisfying

H0𝑖!M � ker(𝜎) and H1𝑖!M � coker(𝜎)

with the filtrations induced by the filtrations on M (see [MP18, §2]). Moreover, on an open set 𝑈 ⊆ 𝑋
where H is given by a local equation t, this map corresponds to

Var = ·𝑡 : gr𝑉0 M → gr𝑉−1 M

between the vanishing and nearby cycles along H.
In the proof of [MP18, Theorem A], the authors defined for all k a morphism

𝐹𝑘H1𝑖!M → 𝐹𝑘M ⊗𝒪𝑋 𝒪𝐻 (𝐻). (9.8)

First, we define a morphism

𝜂 : 𝐹𝑘 gr𝑉−1 M =
𝐹𝑘𝑉−1M
𝐹𝑘𝑉<−1M

→ 𝐹𝑘M ⊗𝒪𝑋 𝒪𝐻

such that for 𝑢 ∈ 𝐹𝑘𝑉−1M, 𝜂(𝑢) is the class of u in 𝐹𝑘M ⊗𝒪𝑋 𝒪𝐻 . This map is well defined, as on an
open set U where H is defined by an equation t, the V-filtration satisfies

(𝐹𝑘𝑉𝛼M) · 𝑡 = 𝐹𝑘𝑉𝛼−1M for 𝛼 < 0,

and 𝐹𝑘M · 𝑡 maps to 0 in 𝐹𝑘M ⊗𝒪𝑋 𝒪𝐻 . The map 𝜂 induces a map on 𝐹𝑘H1𝑖!M. Indeed, since locally
𝜎 is right multiplication by t, the image of 𝜎 is mapped to 0 by 𝜂 ⊗ 𝒪𝑋 (𝐻).

Proof of Theorem E. Let M = 𝑊𝑛+𝑙𝜔𝑋 (∗𝐷). For every k, we have the canonical morphism (9.8):

𝐹𝑘H1𝑖!M → 𝐹𝑘M ⊗𝒪𝑋 𝒪𝐻 (𝐻).
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Note that the sheaf

𝐹𝑘−𝑛M ⊗𝒪𝑋 𝒪𝐻 (𝐻) = 𝐼𝑊𝑙

𝑘 (𝐷) ⊗ 𝜔𝑋 ((𝑘 + 1)𝐷) ⊗ 𝒪𝐻 (𝐻) � 𝐼𝑊𝑙

𝑘 (𝐷) ⊗ 𝜔𝐻 ((𝑘 + 1)𝐷𝐻 ).

Consider the short exact sequence

0 → M → 𝜔𝑋 (∗𝐷) → C → 0.

Applying the functor 𝑖! and taking cohomology, we obtain an exact sequence

0 → H0𝑖1C → H1𝑖!M → H1𝑖!𝜔𝑋 (∗𝐷) → H1𝑖!C → 0,

as H0𝑖!𝜔𝑋 (∗𝐷) = 0. As gr𝑊𝑖 C = 0 for 𝑖 < 𝑛 + 𝑙 + 1,

gr𝑊𝑖 H0𝑖!C = 0 for 𝑖 < 𝑛 + 𝑙 + 1,

and

gr𝑊𝑖 H1𝑖!C = 0 for 𝑖 < 𝑛 + 𝑙 + 2

by [Sai90, Proposition 2.26]. Therefore, we obtain a short exact sequence

0 → 𝑊𝑛+𝑙+1H0𝑖1C → 𝑊𝑛+𝑙+1H1𝑖!M → 𝑊𝑛+𝑙+1H1𝑖!𝜔𝑋 (∗𝐷) → 0.

Note that as

Ext1 (𝑊𝑛+𝑙+1H1𝑖!𝜔𝑋 (∗𝐷),𝑊𝑛+𝑙+1H0𝑖1C) = 0

(see [Sch14, §23]), there is a split map

𝑊𝑛+𝑙+1H1𝑖!𝜔𝑋 (∗𝐷) → 𝑊𝑛+𝑙+1H1𝑖!M. (9.9)

The source of this maps admits the following interpretation:

𝑊𝑛+𝑙+1H1𝑖!𝜔𝑋 (∗𝐷) � 𝑊𝑛−1+𝑙𝜔𝐻 (∗𝐷𝐻 ).

Indeed,

H1𝑖!𝜔𝑋 (∗𝐷) � 𝜔𝐻 (∗𝐷𝐻 ) (−1)

[MP18, Proof of Theorem A].
Taking the corresponding piece of the Hodge filtration in equation (9.9) and composing it with

equation (9.8), we obtain a morphism

𝐹𝑘𝑊𝑛+𝑙+1H1𝑖!𝜔𝑋 (∗𝐷) → 𝐹𝑘M ⊗𝒪𝑋 𝒪𝐻 (𝐻).

Using the morphism above and switching k to 𝑘 − 𝑛, we obtain a map

𝐹𝑘−𝑛+1𝑊𝑛−1+𝑙𝜔𝐻 (∗𝐷𝐻 ) = 𝐼𝑊𝑙

𝑘 (𝐷𝐻 ) ⊗ 𝜔𝐻 ((𝑘 + 1)𝐷𝐻 ) → 𝐼𝑊𝑙

𝑘 (𝐷) ⊗ 𝜔𝐻 ((𝑘 + 1)𝐷𝐻 ),

and hence

𝐼𝑊𝑙

𝑘 (𝐷𝐻 ) → 𝐼𝑊𝑙

𝑘 (𝐷) ⊗ 𝒪𝐻 .
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Composing this map with 𝐼𝑊𝑙

𝑘 (𝐷) ⊗ 𝒪𝐻 → 𝐼𝑊𝑙

𝑘 (𝐷) ·𝒪𝐻 , we obtain a morphism

𝐼𝑊𝑙

𝑘 (𝐷𝐻 ) → 𝐼𝑊𝑙

𝑘 (𝐷) ·𝒪𝐻 . (9.10)

By construction, this map is compatible with restriction to open sets. Let𝑉 = 𝐻\𝐷𝐻 be the complement.
When restricted to V, this map is the identity on 𝒪𝑉 , and therefore it is an inclusion.

For the last statement, we note that a general H is in particular noncharacteristic with respect to
𝜔𝑋 (∗𝐷). By the description of the V-filtration in this case [Sai88, Lemma 3.5.6], the map 𝜎 is the zero
map, and therefore equation (9.8) is a surjection. Moreover, in this case

H1𝑖!M = H1𝑖!𝑊𝑛+𝑙𝜔𝑋 (∗𝐷) � 𝑊𝑛+𝑙+1H1𝑖!𝜔𝑋 (∗𝐷)

where the first equality is the definition of M and the isomorphism is a result of Saito [Sai90, Lemma
2.25]. Hence, in this case equation (9.10) is an isomorphism. �

Remark 9.11. A similar result can be obtained when H is an intersection of several general hyperplane
sections. For more details, see [Ola22, Remark 12].
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