Bull. Austral. Math. Soc. Vol. 37 (1988) [423-428]

QUASI-CONTINUITY WITH RESPECT TO SEMI-REGULARISATION TOPOLOGY

STANISŁAW PSYK

This paper gives some sufficient conditions under which upper, lower or both upper and lower quasi-continuity of multifunction in the process of semi-regularisation of a topological space are preserved. Analogous results for continuous maps are true.

A subset A of a topological space X is said to be semi open if there exists an open set U such that $U \subseteq A \subseteq \overline{U}$ [5]. It is easy to see that A is semi open if and only if $A \subseteq \overline{\text{Int}A}$. A subset B of a topological space (X, τ) is called *regular open* if $B = \text{Int}\overline{B}$ [2]. It is well known that the family of all regular open sets forms a base for a smaller topology τ_s on X, called the semi-regularisation of τ . The topological space (X, τ) is called semi-regular if $\tau = \tau_s$.

In the class of all topologies which have the same families of semi open sets as the topology τ , there exists the finest topology τ_{α} [7, Corollary 1]. All topologies from the above class determine the same families of regular open sets [7, Proposition 6], so they have the same semi-regularisations, but the topology τ_{α} and its semi-regularisation can have different families of semi open sets (see [7] or the topology τ in Example 1).

The symbols \overline{A}^i , $\operatorname{Int}_i A$ are used to denote closure and interior of the set A in the space (X, τ_i) . The symbol "i" may be replaced by " α " or "s" or may be omitted for topological spaces (X, τ_{α}) , (X, τ_{s}) or (X, τ) respectively.

The topological spaces are not assumed to satisfy any separation axioms, and regularity does not include the T_1 axiom. All notions and symbols which are not defined in this paper are used as in Engelking [2].

Let F be a multivalued map which to each point $x \in X$ assigns a non-empty subset F(x) of a topological space Y (for simplicity we will write $F: X \to Y$). For any set $A \subseteq X, B \subseteq Y$ we will write [1]

$$F(A) = \bigcup \{F(x) \colon x \in A\},$$

$$F^+(B) = \{x \in X \colon F(x) \subseteq B\},$$

$$F^-(B) = \{x \in X \colon F(x) \cap B \neq \emptyset\}$$

Received 13 August 1987

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

A multivalued map $F: X \to Y$ is said to be:

- upper (respectively lower) quasi-continuous at a point $x_0 \in X$ if for each open set $V \subseteq Y$ such that $F(x_0) \subseteq V$ (respectively $F(x_0) \cap V \neq \emptyset$) and for each open neighbourhood U of x_0 there exists an open non-empty set $U_1 \subseteq U$ such that $F(x) \subset V$ (respectively $F(x) \cap V \neq \emptyset$) for each $x \in U_1$ [9],

- upper (respectively lower) almost continuous at a point $_0 \in X$ if for each open set $V \subseteq Y$ such that $F(x_0) \subseteq V$ (respectively $F(x_0) \cap V \neq \emptyset$) we have $x_0 \in \operatorname{Int} \overline{F^+(V)}$ (respectively $x_0 \in \operatorname{Int} \overline{F^-(V)}$) [10, 11].

A multivalued map is said to be upper or lower quasi-continuous (almost continuous) if it has this property at each point.

In the sequel we will use the following equivalent conditions:

- a multivalued map $F: X \to Y$ is upper (respectively lower) quasi-continuous if and only if for any open set $V \subseteq Y$ the set $F^+(V)$ (respectively $F^-(V)$) is semi-open, - a multivalued map $F: X \to Y$ is upper (respectively lower) almost continuous if and only if for any open set $V \subseteq Y$ we have $F^+(V) \subseteq$ Int $\overline{F^+(V)}$ (respectively $F^-(V) \subseteq$ Int $\overline{F^-(V)}$) [10].

Any single-valued map $f: X \to Y$ can be considered as a multivalued map with values $\{f(x)\}$. In this case the above definitions give the definitions of quasi-continuity in the sense of Kempisty [4] (sometimes called semi-continuity [5]) and almost continuity in the sense of Husain [3].

The symbols: $Q_u(F, \tau)$, $Q_l(F, \tau)$, $A_u(F, \tau)$, $A_l(F, \tau)$ are used to denote the sets of all points at which a multivalued map $F: (X, \tau) \to Y$ is upper or lower quasicontinuous or almost continuous respectively.

REMARKS 1: For topological spaces (x, τ) and (X, τ_s) we have:

- (a) $\operatorname{Int}_{\mathfrak{s}} \cup \subseteq \operatorname{Int} U$ for every set $U \subseteq X$;
- (b) $\overline{U} \subseteq \overline{U}^s$ for every set $U \subseteq X$;
- (c) Int $B = Int_{s}B$ for every τ -closed set $B \subseteq X$;
- (d) $\overline{A}^{s} = \overline{A}$ for every τ -open set $A \subset X$;
- (e) any τ_s -semi open set is τ -semi open;
- (f) τ_s -quasi-continuity implies τ -quasi-continuity;
- (g) Int $\overline{V} \subseteq$ Int, \overline{V}^{s} for every set $V \subseteq X$;
- (h) τ -almost continuity implies τ_s -almost continuity.

PROOFS: The properties (a) and (b) follow from $\tau_s \subseteq \tau$. Now we are going to prove (c). Int *B* is regular open, hence Int $B = \text{Int}_s(\text{Int } B) \subseteq \text{Int}_s B$. The converse inclusion $\text{Int}_s B \subseteq \text{Int } B$ follows from (a). Property (d) follows from (c) applied to the set $X \setminus A$. If *V* is τ_s -semi open then from (d) and (a) we have $V \subset \overline{\text{Int}_s V}^s = \overline{\text{Int}_s V} \subset \overline{\text{Int} V}$. Thus (e) is shown. Moveover (e) implies (f). From (c) and (b) we have

Int $\overline{V} = \text{Int}_s \overline{V} \subseteq \overline{\text{Int}_s V}^s$ which proves (g). Finally the property (h) is an immediate consequence of (g).

THEOREM 1. Let (X, τ) be a topological space and Y a regular one. If $F: X \to Y$ is a multivalued map with compact values, then $Int_s[Q_u(F, \tau) \cap Q_l(F, \tau)] \subset Q_u(F, \tau_s)$.

PROOF: Assume that $x_0 \in \operatorname{Int}_{\mathfrak{s}}[Q_{\mathfrak{u}}(F, \tau) \cap Q_l(F, \tau)] \setminus Q_{\mathfrak{u}}(F, \tau_{\mathfrak{s}})$. Then there exist an open set $W_0 \supseteq F(x_0)$ and a $\tau_{\mathfrak{s}}$ -open set U_0 such that $x_0 \in U_0 \subseteq \operatorname{Int}_{\mathfrak{s}}[Q_{\mathfrak{u}}(F, \tau) \cap Q_l(F, \tau)]$ and the following condition holds:

(1) every non-empty τ_s -open set $U \subseteq U_0$ contains a point x_u such that $F(x_u) \not\subset W_0$. Because $F(x_0)$ is compact and Y is a regular space, there exists an open

set $W \subset Y$ satisfying $F(x_0) \subseteq W \subseteq \overline{W} \subseteq W_0$. The point $x_0 \in Q_u(F, \tau)$; hence for sets U_0 and W, there exists a non-empty, τ -open set $M \subseteq U_0$ such that:

(2) $F(x) \subseteq W$ for every point $x \in M$.

The set M can be represented in the form $M = U \setminus N$ [8, Theorem 4.5] where $U \subseteq U_0$ is τ -regular open and N is a τ -nowhere dense set. In view of (1) there exists a point $x_u \in U$ such that $F(x_u) \cap (Y \setminus \overline{W}) \neq \emptyset$. Because $x_u \in Q_l(F, \tau)$ for the sets $Y \setminus \overline{W}$ and U there exists a nonempty, τ -open set $A \subseteq U$ such that:

(3) F(x) ∩ (Y \ W) ≠ Ø for every point x ∈ A. The sets A and U are non-empty, τ-open and A ⊆ U. So we have A ∩ (U \ N) = A ∩ M ≠ Ø. This means that A ∩ M contains a point satisfying (2) and (3). This is the contradiction which finishes the proof.

THEOREM 2. Let (X, τ) be a topological space and Y a regular one. If $F: X \to Y$ is a multivalued map then $Int_s[Q_u(F, \tau) \cap Q_l(F, \tau)] \subseteq Q_l(F, \tau_s)$.

PROOF: Assume that $x_0 \in \operatorname{Int}_{\mathfrak{s}}[Q_u(F,\tau) \cap Q_l(F,\tau)] \setminus Q_l(F,\tau_{\mathfrak{s}})$. Then there exist an open set $W_0 \subseteq Y$ such that $W_0 \cap F(x_0) \neq \emptyset$ and a $\tau_{\mathfrak{s}}$ -open set U_0 such that $x_0 \in U_0 \subseteq \operatorname{Int}_{\mathfrak{s}}[Q_u(F,\tau) \cap Q_l(F,\tau)]$ and:

(1) every non-empty τ_s -open set $U \subseteq U_0$ contains a point x_u such that $F(x_u) \cap W_0 = \emptyset$.

Let us take any point $y_0 \in F(x_0) \cap W_0$ and an open set W for which $y_0 \in W \subseteq \overline{W} \subseteq W_0$ holds. Because $x_0 \in Q_l(F, \tau)$ there exists a τ -open non-empty set $M \subseteq U_0$ satisfying:

(2) $F(x) \cap W \neq \emptyset$ for every point $x \in M$. Let $M = U \setminus N$, where $U \subseteq U_0$ is a τ -regular open set and N is τ -nowhere dense [8, Theorem 4.5]. From (1) we have a point $x_u \in U$ such that $F(x_u) \subset Y \setminus \overline{W}$. The point $x_u \in Q_u(F, \tau)$, so there exists a τ -open set $A \subseteq U$ such that:

(3) $F(x) \subseteq Y \setminus \overline{W}$ for every point $x \in A$. The sets A and U are non-empty τ -open and $A \subseteq U$. So we have $A \cap (U \setminus N) = A \cap M \neq \emptyset$, this means that $A \cap M$ contains a point satisfying (2) and (3) and this is the contradiction completing the proof.

From Theorems 1, 2 and Remarks 1(f) we immediately obtain:

COROLLARY 1. Let (X, τ) be a topological space and Y a regular one. A multivalued map $F: X \to Y$ with compact values is lower and upper quasi-continuous if and only if it is simultaneously lower and upper τ_s -quasi-continuous.

COROLLARY 2. Let τ_1 and τ_2 be topologies on X which have the same semiregularisations. If Y is a regular space, then a single valued map $f: X \to Y$ is τ_1 -quasi-continuous if and only if it is τ_2 -quasi-continuous.

Observe that regularity of the space Y in Theorems 1 and 2 cannot be replaced by semi-regularity.

EXAMPLE 1.. Let us take on the real line \mathbf{R} the following topologies:

$$au = \{U \subseteq \mathbf{R} : 0 \in U\} \cup \{\emptyset\}, \ au_2 = \{\emptyset, \{0\}, \{2\}, \{0, 2\}, \mathbf{R}\}$$

It is easy to see that topology τ_2 is semi-regular and the semi-regularisation τ_s of τ is the indiscrete topology. The multifunction $F: (\mathbf{R}, \tau) \to (\mathbf{R}, \tau_2)$ given by the formula $F(x) = \{0\}$ for x = 2 and $F(x) = \{x\}$ for $x \neq 2$ is upper and lower τ -quasi-continuous but it is neither upper nor lower τ_s -quasi-continuous.

If F is upper or lower quasi-continuous only, then Corollary 1 may be false, as the following shows:

EXAMPLE 2. Let N be the natural topology on **R** and let τ be the topology τ from Example 1. The multifunction $F_1: (\mathbf{R}, \tau) \to (\mathbf{R}, N)$ given by the formula $F_1(x) = \{0\}$ for $x \in (-\infty, 0)$ and $F_1(x) = \langle 0, 1 \rangle$ for $x \in (0, +\infty)$ has compact values and it is easy to verify that F_1 is upper τ -quasi-continuous but it is not upper τ_s -quasi-continuous. However the formula $F_2(x) = \{0\}$ for $x \in (-\infty, 0)$ and $F_2(x) = \langle 0, 1 \rangle$ for $x \in (0, +\infty)$ gives a multifunction which is lower τ -quasi-continuous but is not lower τ_s -quasi-continuous.

Stronger than Corollary 1 is the following:

THEOREM 3. Let (X, τ) be a topological space and Y a regular one. Let, for $i = 1, 2, 3, \tau_i$ be a topology on X such that $\tau_s \subseteq \tau_i \subseteq \tau_\alpha$ (in general $(\tau_i)_\alpha \neq (\tau_j)_\alpha \neq (\tau_i)_\alpha = \tau_\alpha$ and $\tau_i \not\subset \tau_j$ for i, j = 1, 2, 3). A multivalued map $F: X \to Y$ with compact values is lower τ_1 -quasi-continuous and upper τ_2 -quasi-continuous if and only if it is simultaneously upper and lower τ_3 -quasi-continuous.

PROOF: Because the semi-regularisation of τ_{α} is the topology τ_s ([7] Proposition 6), hence from the inclusion $\tau_s \subseteq \tau_i \subseteq \tau_{\alpha}$ and from Remark 1(d) we have $\overline{\operatorname{Int}_i A}^i \subset \overline{\operatorname{Int}_{\alpha} A}^{\sigma} = \overline{\operatorname{Int}_{\alpha} A}^{\alpha}$ for any set $A \subseteq X$. This means that any τ_i -semiopen set is τ_{α} -semiopen, so F is simultaneously lower and upper τ_{α} -quasi-continuous and in virtute of Corollary 1 it is τ_s -quasi-continuous. To this end we shall prove that the semiregularisation of τ_i is the topology τ_s and then apply Remark 1(f). If the set B is τ_i -regular open, then from $\tau_s \subseteq \tau_i \subseteq \tau_{\alpha}$ and from Remark 1(c) we have: $\operatorname{Int}_{\alpha}\overline{B}^{\alpha} = \operatorname{Int}_s\overline{B}^{\alpha} \subseteq \operatorname{Int}_i\overline{B}^i = B = \operatorname{Int}_{\alpha}B \subseteq \operatorname{Int}_{\alpha}\overline{B}^{\alpha}$. This means $B = \operatorname{Int}_{\alpha}\overline{B}^{\alpha}$ is τ_{α} (hence τ_s) regular open. On the other hand if B is τ_s -regular open, then $B = \operatorname{Int}_i B \subseteq \operatorname{Int}_i \overline{B}^i = Int_s \overline{B}^s = B$, so $B = \operatorname{Int}_i \overline{B}^i$ and the proof is complete.

Let us observe that if $(\tau_1)_s = (\tau_2)_s = (\tau_3)_s$ only, then Theorem 3 may be false as Example 2 shows together with the topology $\tau_3 = \{U \subset \mathbf{R} : 3 \in U\} \cup \{\emptyset\}$. The multifunction F_1 is upper τ -quasi-continuous and lower τ_3 -quasi-continuous, but it is neither lower nor upper τ_3 -quasi-continuous.

Now we will formulate some sufficient conditions under which upper (respectively lower) τ -quasi-continuity implies upper (respectively lower) τ_s -quasi-continuity.

THEOREM 4. Let (X, τ) be a topological space and Y a regular one. If $F: X \to Y$ is a multivalued map with compact values, then $\operatorname{Int}_{\mathfrak{s}}[Q_u(F,\tau) \cap A_l(F,\tau)] \subset Q_u(F,\tau_s)$.

PROOF: Just as in Theorem 4 we can prove that there exist sets $W, M = U \setminus N$ (where $W \subset Y$ is open $M \subseteq X$ is open, $U \subseteq X$ is regular open and $N \subseteq X$ is a nowhere dense set) and the point $x_u \in U$ for which $F(x_u) \cap (Y \setminus \overline{W}) \neq \emptyset$ and: (1) $F(x) \subseteq W$ for every point $x \in M$.

Because $x_u \in A_l(F,\tau)$, $F^-(Y \setminus \overline{W})$ is τ -dense in the set Int $\overline{F^-(Y \setminus \overline{W})}$ and consequently the set $G = U \cap F^-(Y \setminus \overline{W})$ is non-empty and dense in the set $H = U \cap$ Int $\overline{F^-(Y \setminus \overline{W})}$. Because $G \cap (H \setminus N) \neq \emptyset$ and $H \cap M = H \cap (U \setminus N) = (H \cap U) \setminus N = H \setminus N$ we have $G \cap M \supseteq G \cap H \cap M \neq \emptyset$. But $F(x) \not\subset \overline{W}$ for every point $x \in G$, hence we have a contradiction to (1), so the proof is completed.

Using arguments similar to those in the proofs of Theorem 2 and 4 we can prove:

THEOREM 5. Let (x, τ) be a topological space and Y a regular one. If $F: X \to Y$ is a multivalued map then $Int_{\delta}[A_{u}(F, \tau) \cap Q_{l}(F, \tau)] \subseteq Q_{l}(F, \tau_{\delta})$.

S. Psyk

COROLLARY 3. Let (X,τ) be a topological space and Y a regular one. If a multivalued map $F: X \to Y$ with compact values is upper quasi-continuous and lower almost continuous, then it is upper τ_s -quasi-continuous.

COROLLARY 4. Let (X,τ) be a topological space and Y a regular one. If a multivalued map $F: X \to Y$ is lower quasi-continuous and upper almost continuous, then it is lower τ_s -quasi-continuous.

Observe that in Theorems 4 and 5 the assumption of lower or upper almost continuity cannot be weakened by lower or upper τ_s -almost continuity, respectively. In Example 2 both multifunctions F_1 , F_2 are upper and lower τ_s -almost continuous but are neither upper nor lower τ_s -quasi-continuous. Moreover Example 1 shows that the assumption of regularity of the space Y is essential.

REMARK 2: Theorems 1, 3, 4 will be true if we consider multifunctions with closed values in a normal space. This same applies to Corollaries 1 and 3.

REMARK 3: If in all our considerations, beginning from Theorem 1, the term "quasi-continuity" is replaced by "continuity", similar results for continuous maps are obtained. In this case (for example) from Corollary 2 we have a theorem of Katetov [6, Lemma 2].

REFERENCES

- [1] C. Berge, Espaces topologiques. Functions multivoques (Paris, 1966).
- [2] R. Engelking, General topology (Warszawa, 1977).
- [3] T. Husain, 'Almost continuous mappings', Prace Mat. 10 (1966), 1-7.
- [4] S. Kempisty, 'Sur les functions quasicontinues', Fund. Math. 19 (1932), 184-197.
- [5] N. Levine, 'Semi-open sets and semi-continuity in topological spaces', Amer. Math. Monthly 70 (1963), 36-41.
- [6] M. Mrševič, I.L. Reilly and M.K. Vamanamurthy, 'On semi-regularization topologies', J. Austral. Math. Soc. Ser. A 38 (1985), 40-54.
- [7] O. Njåstad, 'On some classes of nearly open sets', Pacific J. Math. 15 (1965), 961-970.
- [8] J.C. Oxtoby, Measure and category (Springer-Verlag, New York Heidelberg Berlin, 1971).
- [9] V. Popa, 'Asupra unei descompuneri a cvasicontinuitati multifunctiilor', Stud. Cerc. Mat. 27 (1975), 325-328.
- [10] V. Popa, 'Asupra unor proprietății ale multifuncțiilor cvasicontinue si aproape continue', Stud. Cerc. Mat. 30 (1978), 441-446.
- [11] R.E. Smithson, 'Almost and weak continuity for multifunctions', Bull. Calcutta Math. Soc. 70 (1978), 383-390.

Department of Mathematics Pedagogical University Arciszewskiego 22 76–200 Słupsk Polaud