THE \mathcal{K}_{up} -APPROXIMATION PROPERTY AND ITS DUALITY

JU MYUNG KIM

(Received 17 June 2014; accepted 11 October 2014; first published online 20 November 2014)

Communicated by A. Sims

Abstract

We introduce an approximation property (\mathcal{K}_{up} -AP, $1 \le p < \infty$), which is weaker than the classical approximation property, and discover the duality relationship between the \mathcal{K}_{up} -AP and the \mathcal{K}_p -AP. More precisely, we prove that for every $1 , if the dual space <math>X^*$ of a Banach space X has the \mathcal{K}_{up} -AP, then X has the \mathcal{K}_p -AP, and if X^* has the \mathcal{K}_p -AP, then X has the \mathcal{K}_{up} -AP. As a consequence, it follows that every Banach space has the \mathcal{K}_{u2} -AP and that for every $1 , <math>p \neq 2$, there exists a separable reflexive Banach space failing to have the \mathcal{K}_{up} -AP.

2010 Mathematics subject classification: primary 46B28; secondary 46B45, 47L20.

Keywords and phrases: p-compact operator, unconditionally *p*-compact operator, \mathcal{K}_p -approximation property, \mathcal{K}_{up} -approximation property.

1. Introduction and main results

A Banach space *X* is said to have the *approximation property* (AP) if for every compact subset *K* of *X* and every $\varepsilon > 0$, there exists a finite rank and continuous linear map (operator) *S* on *X* such that $\sup_{x \in K} ||Sx - x|| \le \varepsilon$. Grothendieck [G] proved that a Banach space *X* has the AP if and only if for every Banach space *Y*, $\mathcal{K}(Y, X) = \overline{\mathcal{F}(Y,X)}^{\|\cdot\|}$, where $\mathcal{K}(Y,X)$ and $\mathcal{F}(Y,X)$ respectively are the spaces of all compact operators and finite rank operators from *Y* to *X*. Oja [O] extended the criterion to an arbitrary Banach operator ideal $[\mathcal{B}, \|\cdot\|_{\mathcal{B}}]$. A Banach space *X* is said to have the \mathcal{B} -approximation property (\mathcal{B} -AP) if for every Banach space *Y*, $\mathcal{B}(Y,X) = \overline{\mathcal{F}(Y,X)}^{\|\cdot\|_{\mathcal{B}}}$. Delgado *et al.* [DPS1] investigated the \mathcal{K}_p -AP, where \mathcal{K}_p is the ideal of *p*-compact operators for $1 \le p \le \infty$.

The notion of the *p*-compact operator was introduced by Sinha and Karn [SK], and stems from Grothendieck's description [G] of compactness in Banach spaces. It was shown in [G] that a subset K of a Banach space X is relatively compact if and only if

This work was supported by NRF-2013R1A1A2A10058087 funded by the Korean Government.

 $[\]odot$ 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

there exists a null sequence (x_n) in X such that

$$K \subset \left\{ \sum_{n} \alpha_n x_n : (\alpha_n) \in B_{\ell_1} \right\},\$$

where B_Z is the unit ball of a Banach space Z. This criterion was extended in [SK] as follows. For $1 \le p \le \infty$, a subset K of X is said to be relatively *p*-compact if there exists an $(x_n) \in \ell_p(X)$ ($c_0(X)$ if $p = \infty$) such that

$$K \subset p - co(\{x_n\}) := \left\{ \sum_n \alpha_n x_n : (\alpha_n) \in B_{\ell_{p^*}} \right\},\$$

where $1/p + 1/p^* = 1$ and $\ell_p(X)$ (respectively, $c_0(X)$) is the Banach space with the norm $\|\cdot\|_p$ (respectively, $\|\cdot\|_{\infty}$) of all *X*-valued absolutely *p*-summable (respectively, null) sequences.

For $1 \le p \le \infty$, a linear map $T: X \to Y$ is said to be *p*-compact if $T(B_X)$ is a relatively *p*-compact subset of *Y*. Delgado *et al.* [DPS1] defined a norm on the space $\mathcal{K}_p(X, Y)$ of all *p*-compact operators from *X* to *Y*. For $T \in \mathcal{K}_p(X, Y)$, let

$$\kappa_p(T) := \inf\{\|(y_n)\|_p : (y_n) \in \ell_p(Y) \text{ and } T(B_X) \subset p - co(\{y_n\})\}$$

Then $[\mathcal{K}_p, \kappa_p]$ is a Banach operator ideal (see the note preceding [DPS2, Proposition 3.11]).

We need another vector-valued sequence to introduce the main notion of the paper. For $1 \le p \le \infty$, the space $\ell_p^u(X)$, which is a closed subspace of the Banach space $\ell_p^w(X)$ with the norm $\|\cdot\|_p^w$ of all X-valued weakly *p*-summable sequences, consists of all sequences (x_n) satisfying

$$||(0,\ldots,0,x_m,x_{m+1},\ldots)||_n^w \longrightarrow 0$$

as $m \to \infty$. In [K1], this sequence was called the *unconditionally p-summable* sequence, and the relatively *unconditionally p-compact* (*u-p*-compact) set and the *u-p*-compact operator were defined by replacing the space $\ell_p(X)$, in the definition of *p*-compactness, by the space $\ell_p^u(X)$. The space of all *u-p*-compact operators from X to Y is denoted by $\mathcal{K}_{up}(X, Y)$ and the norm u_p on $\mathcal{K}_{up}(X, Y)$ is defined by

$$u_p(T) := \inf \{ \| (y_n) \|_p^w : (y_n) \in \ell_p^u(Y) \text{ and } T(B_X) \subset p - co(\{y_n\}) \}.$$

Then $[\mathcal{K}_{up}, u_p]$ is a Banach operator ideal [K1, Theorem 2.1]. The main goal of this paper is to study the \mathcal{K}_{up} -AP, and the principal result is the following theorem.

THEOREM 1.1. Let $1 . If the dual space <math>X^*$ of a Banach space X has the \mathcal{K}_{up} -AP, then X has the \mathcal{K}_p -AP, and if X^* has the \mathcal{K}_p -AP, then X has the \mathcal{K}_{up} -AP.

We do not know whether Theorem 1.1 would be also true for the case p = 1. We prove Theorem 1.1 in Section 4 after studying the \mathcal{K}_{up} -AP and the \mathcal{K}_p -AP. First, we present some applications of Theorem 1.1. Since every Banach space has the \mathcal{K}_2 -AP (see [DPS1, Corollary 3.6]), from Theorem 1.1, we have the following corollaries.

COROLLARY 1.2. Every Banach space has the \mathcal{K}_{u2} -AP.

COROLLARY 1.3. For every $1 , <math>p \neq 2$, there exists a separable reflexive Banach space failing to have the \mathcal{K}_{up} -AP.

PROOF. Let $1 , <math>p \neq 2$. Then the dual space S^* of the Szankowski space S [S], failing to have the AP, which is a subspace of ℓ_p , does not have the \mathcal{K}_{up} -AP. Indeed, if S^* had the \mathcal{K}_{up} -AP, then, by Theorem 1.1, S would have the \mathcal{K}_p -AP. Since the \mathcal{K}_p -AP is equivalent to the AP for subspaces of ℓ_p (see [O, Theorem 1]), we have a contradiction.

We do not know whether Corollary 1.3 would be also true for the case p = 1. Moreover, we ask:

PROBLEM. Is there any Banach space failing to have the \mathcal{K}_{u1} -AP?

The final application shows that the converses of the duality results between the \mathcal{K}_{up} -AP and the \mathcal{K}_p -AP do not hold in general.

COROLLARY 1.4. For every $1 , <math>p \neq 2$, there exists a Banach space Y_p (respectively, Z_p) such that Y_p^{**} (respectively, Z_p^{**}) has a boundedly complete basis but Y_p^{***} (respectively, Z_p^{***}) is separable and does not have the \mathcal{K}_{up} -AP (respectively, \mathcal{K}_p -AP).

PROOF. Let $1 , <math>p \neq 2$. Then by Corollary 1.3 there exists a separable reflexive Banach space X_p failing to have the \mathcal{K}_{up} -AP. Since X_p^* is separable, by a result of Lindenstrauss [L] (cf. [C, Proposition 1.3]) there exists a Banach space Y_p such that Y_p^{**} has a boundedly complete basis and Y_p^{***} is isomorphic to $Y_p^* \oplus X_p^{**}$. Suppose that Y_p^{***} had the \mathcal{K}_{up} -AP. Then we see that X_p would have the \mathcal{K}_{up} -AP, which is a contradiction. One may take the dual space X_p^* in the above procedure to show the other part using Theorem 1.1.

2. Reformulations of the \mathcal{K}_{up} -AP and \mathcal{K}_{p} -AP

We define two vector topologies τ_{up} and $\tau_{\kappa p}$ on the space $\mathcal{L}(X, Y)$ of all operators from X to Y by the convergence of nets. Let $1 \le p \le \infty$. For a T and a net (T_{α}) in $\mathcal{L}(X, Y)$, we say that $T_{\alpha} \xrightarrow{\tau_{up}} T$ if $\lim_{\alpha} ||((T_{\alpha} - T)x_n)||_p^w = 0$ for every $(x_n) \in \ell_p^u(X)$. For $\hat{x} := (x_n) \in \ell_p(X)$ $(c_0(X)$ if $p = \infty)$ and $R \in \mathcal{L}(X, Y)$, the *p*-compact operator $E_{\widehat{R_X}} : \ell_{p^*} \to Y$ is defined by

$$E_{\widehat{Rx}}(\alpha_n) = \sum_n \alpha_n R x_n.$$

We say that $T_{\alpha} \xrightarrow{\tau_{\kappa p}} T$ if $\lim_{\alpha} \kappa_p(E_{(T_{\alpha}-T),x}) = 0$ for every $(x_n) \in \ell_p(X)$. We see that the topologies τ_{up} and $\tau_{\kappa p}$ are Hausdorff locally convex. We denote by τ_c the topology of uniformly compact convergence on $\mathcal{L}(X, Y)$ and recall the topology τ_p of uniformly *p*-compact convergence for $1 \le p < \infty$ (see [SK, CK]).

PROPOSITION 2.1. For every $1 \le p < \infty$, $\tau_c \ge \tau_{up} \ge \tau_p$ and $\tau_c \ge \tau_{\kappa p} \ge \tau_p$.

PROOF. τ_{up} is actually the topology of uniformly *u*-*p*-compact convergence because, if *K* is a *u*-*p*-compact subset of *X*, then we may assume that $K = p - co(\{x_n\})$ for some $(x_n) \in \ell_p^u(X)$, and for every $R \in \mathcal{L}(X, Y)$ it is easily seen that $\sup_{x \in K} ||Rx|| = ||(Rx_n)||_p^w$. Thus $\tau_{up} \ge \tau_p$ follows.

For every $1 \le p < \infty$ and $(x_n) \in \ell_p^u(X)$, one may check that the above map $E_{\hat{x}} : \ell_{p^*} \to X$ is a compact operator. Thus every relatively *u*-*p*-compact set is relatively compact and so $\tau_c \ge \tau_{up}$ follows.

Now let (T_{α}) be a net in $\mathcal{L}(X, Y)$. Suppose that $T_{\alpha} \xrightarrow{\tau_{c}} 0$. To show that $T_{\alpha} \xrightarrow{\tau_{xp}} 0$, let $(x_{n}) \in \ell_{p}(X)$. Choose a sequence (β_{n}) of positive numbers with $\beta_{n} \longrightarrow \infty$ such that $\sum_{n} \beta_{n}^{p} ||x_{n}||^{p} < \infty$. Consider the relatively compact subset $\{x_{n}/(\beta_{n}||x_{n}||)\}$ of X. Since for every α , $E_{\widehat{T_{\alpha,x}}}(B_{\ell_{p^{*}}}) = p - co(\{T_{\alpha}x_{n}\})$,

$$\kappa_p(E_{\widehat{T_{\alpha x}}}) \le \|(T_{\alpha}x_n)\|_p \le \|(\beta_n\|x_n\|)\|_p \sup_n \|T_{\alpha}(x_n/(\beta_n\|x_n\|))\| \longrightarrow 0.$$

Hence $T_{\alpha} \xrightarrow{\tau_{\kappa p}} 0.$

Suppose that $T_{\alpha} \xrightarrow{\tau_{\kappa p}} 0$. To show that $T_{\alpha} \xrightarrow{\tau_p} 0$, let $(x_n) \in \ell_p(X)$ and let $\varepsilon > 0$ be given. Let β be such that $\alpha \geq \beta$ implies that $\kappa_p(E_{\overline{T_{\alpha}x}}) \leq \varepsilon/2$. Now for every α , there exists a $(y_n^{\alpha}) \in \ell_p(Y)$ such that $E_{\overline{T_{\alpha}x}}(B_{\ell_{p^*}}) \subset p\text{-}co(\{y_n^{\alpha}\})$ and $\|(y_n^{\alpha})\|_p \leq \kappa_p(E_{\overline{T_{\alpha}x}}) + \varepsilon/2$. Hence $\alpha \geq \beta$ implies that

$$\|(T_{\alpha}x_n)\|_p^w \le \|(y_n^{\alpha})\|_p \le \kappa_p(E_{\widehat{T_{\alpha}x}}) + \frac{\varepsilon}{2} \le \varepsilon.$$

The purpose of this section is to characterize the \mathcal{K}_{up} -AP (respectively, \mathcal{K}_p -AP) in terms of the topology τ_{up} (respectively, $\tau_{\kappa p}$). The following lemma is well known and easily verified by a standard argument.

LEMMA 2.2. Let K be a collection of sequences of positive numbers. If

$$\lim_{l} \sup_{(k_j)\in K} \sum_{j\geq l} k_j = 0,$$

then there exists a sequence (b_j) of real numbers with $b_j \nearrow \infty$ and $b_j > 1$ for all j such that

$$\lim_{l} \sup_{(k_j)\in K} \sum_{j\geq l} k_j b_j = 0.$$

THEOREM 2.3. Let $T \in \mathcal{L}(X) := \mathcal{L}(X, X)$ and let $1 \le p < \infty$. The following statements are equivalent.

- (a) $T \in \overline{\mathcal{F}(X)}^{\tau_{up}}$.
- (b) For every Banach space Y and every $R \in \mathcal{K}_{up}(Y, X)$,

$$TR \in \overline{\{SR : S \in \mathcal{F}(X)\}}^{u_p}.$$

(c) For every quotient space Y of ℓ_{p^*} and every injective u-p-compact operator $R: Y \to X$, we have $TR \in \overline{\mathcal{F}(Y,X)}^{\tau_{up}}$.

PROOF. (b) implies (c) is trivial.

(a) implies (b). Let *Y* be a Banach space and let $R \in \mathcal{K}_{up}(Y, X)$. Let $\varepsilon > 0$ be given. Then there exists an $(x_n) \in \ell_p^u(X)$ such that $R(B_Y) \subset p\text{-}co(\{x_n\})$. By (a) there exists an $S \in \mathcal{F}(X)$ such that

$$\|((S-T)x_n)\|_p^w \leq \varepsilon.$$

Since $(SR - TR)(B_Y) \subset p - co(\{(S - T)x_n\})$ and $((S - T)x_n) \in \ell_p^u(X)$,

$$u_p(SR - TR) \le \|((S - T)x_n)\|_p^w \le \varepsilon.$$

Hence $TR \in \overline{\{SR : S \in \mathcal{F}(X)\}}^{u_p}$.

(c) implies (a). This proof is essentially due to that of [DOPS, Theorem 2.1]. Let $(x_n) \in \ell_p^u(X)$ and let $\varepsilon > 0$ be given. Then by Lemma 2.2 there exists a sequence (β_n) of positive numbers with $\beta_n \longrightarrow 0$ such that $(z_n) := (x_n/\beta_n) \in \ell_p^u(X)$. Define the operators $D_\beta : \ell_{p^*} \rightarrow \ell_{p^*}$ and $E_z : \ell_{p^*} \rightarrow X$ by $D_\beta \alpha = (\alpha_n \beta_n)$ and $E_z \alpha = \sum_n \alpha_n z_n$, respectively. The injective operator $\hat{E}_z : \ell_{p^*}/\ker(E_z) \rightarrow X$ is defined by $\hat{E}_z[\alpha] = E_z \alpha$. A simple verification shows that the operators D_β and \hat{E}_z are *u*-*p*-compact. Let $\pi : \ell_{p^*} \rightarrow \ell_{p^*}/\ker(E_z)$ be the quotient operator. Then $\pi D_\beta(B_{\ell_{p^*}})$ is a relatively *u*-*p*-compact subset of $\ell_{p^*}/\ker(E_z)$:

$$\ell_{p^*} \xrightarrow{D_{\beta}} \ell_{p^*} \xrightarrow{\pi} \ell_{p^*} / \operatorname{ker}(E_z) \xrightarrow{\hat{E}_z} X.$$

Then by (c) there exists an $S \in \mathcal{F}(\ell_{p^*}/\ker(E_z), X)$ such that

$$\sup_{y \in \pi D_{\beta}(B_{\ell_{p^*}})} ||Sy - T\hat{E}_z y|| \le \frac{\varepsilon}{2}$$

We may write $S = \sum_{k=1}^{m} y_k^* \otimes x_k$, where $y_k^* \in (\ell_{p^*}/\ker(E_z))^*$, $x_k \in X$ for each k = 1, ..., mand $\sum_{k=1}^{m} ||x_k|| = 1$. Since \hat{E}_z is injective, $(\ell_{p^*}/\ker(E_z))^* = \overline{\hat{E}_z^*(X^*)}^* = \overline{\hat{E}_z^*(X^*)}^{\tau_c}$. The second equality follows from $(Z^*, weak^*)^* = (Z^*, \tau_c)^*$ for every Banach space Z (cf. [M, Theorem 2.7.8]). Thus for each k = 1, ..., m, there exists an $x_k^* \in X^*$ such that

$$\sup_{y \in \pi D_{\beta}(B_{\ell_{n^*}})} |y_k^*(y) - \hat{E}_z^{*}(x_k^*)(y)| \le \frac{\varepsilon}{2}.$$

Consider the operator $\sum_{k=1}^{m} x_k^* \otimes x_k \in \mathcal{F}(X)$. Then as in the proof of [K2, Theorem 5.5(d) implies (a)], for every $(\alpha_n) \in B_{\ell_p^*}$,

$$\left\|\sum_{k=1}^m x_k^* \left(\sum_n \alpha_n x_n\right) x_k - T\left(\sum_n \alpha_n x_n\right)\right\| \le \varepsilon.$$

Hence $T \in \overline{\mathcal{F}(X)}^{\tau_{up}}$.

THEOREM 2.4. Let $T \in \mathcal{L}(X)$ and let $1 \leq p < \infty$. The following statements are equivalent.

The \mathcal{K}_{up} -approximation property and its duality

- (a) $T \in \overline{\mathcal{F}(X)}^{\tau_{\kappa p}}$.
- (b) For every Banach space Y and every $R \in \mathcal{K}_p(Y, X)$,

$$TR \in \overline{\{SR : S \in \mathcal{F}(X)\}}^{\kappa_p}.$$

(c) For every quotient space Y of ℓ_{p^*} and every injective p-compact operator $R: Y \to X$, we have $TR \in \overline{\mathcal{F}(Y,X)}^{\kappa_p}$.

PROOF. (b) implies (c) is trivial.

(a) implies (b). Let *Y* be a Banach space and let $R \in \mathcal{K}_p(Y, X)$. Let $\varepsilon > 0$ be given. There exists an $(x_n) \in \ell_p(X)$ such that $R(B_Y) \subset p - co(\{x_n\})$. By (a) there exists an $S \in \mathcal{F}(X)$ such that $\kappa_p(E_{(S-T)x}) \leq \varepsilon/2$. Now let $(z_n) \in \ell_p(X)$ such that $E_{(S-T)x}(B_{\ell_p^*}) \subset p - co(\{z_n\})$ and $||(z_n)||_p \leq \kappa_p(E_{(S-T)x}) + \varepsilon/2$. Since $(SR - TR)(B_Y) \subset p - co(\{(S - T)x_n\}) \subset p - co(\{z_n\})$,

$$\kappa_p(SR - TR) \le ||(z_n)||_p \le \kappa_p(E_{(\widehat{S-T})x}) + \frac{\varepsilon}{2} \le \varepsilon.$$

Hence $TR \in \overline{\{SR : S \in \mathcal{F}(X)\}}^{\kappa_p}$.

(c) implies (a). This proof comes from a combination of those of [DOPS, Theorem 2.1] and [DPS1, Proposition 2.1]. Let $(x_n) \in \ell_p(X)$ and let $\varepsilon > 0$ be given. We should find an $S \in \mathcal{F}(X)$ such that $\kappa_p(E_{(\widehat{S-T})x}) \leq \varepsilon$. Choose a sequence (β_n) of positive numbers with $\beta_n \leq 1$ and $\beta_n \longrightarrow 0$ such that $(z_n) := (x_n/\beta_n) \in \ell_p(X)$.

Now let $D_{\beta} : \ell_{p^*} \to \ell_{p^*}, E_z : \ell_{p^*} \to X, \hat{E}_z : \ell_{p^*}/\ker(E_z) \to X$, and $\pi : \ell_{p^*} \to \ell_{p^*}/\ker(E_z)$ be the operators in the proof of Theorem 2.3(c) implies (a). Since the map \hat{E}_z is an injective *p*-compact operator, by (c) there exists a $U \in \mathcal{F}(\ell_{p^*}/\ker(E_z), X)$ such that

$$\kappa_p(U-T\hat{E}_z) \leq \frac{\varepsilon}{2}.$$

Put $U = \sum_{k=1}^{m} y_k^* \otimes x_k$, where $y_k^* \in (\ell_{p^*}/\ker(E_z))^*$ and $x_k \in X$ for each k = 1, ..., m. We may assume that $(\sum_{k=1}^{m} ||x_k||^p)^{1/p} = \varepsilon/2$. Since \hat{E}_z is injective, $(\ell_{p^*}/\ker(E_z))^* = \overline{\hat{E}_z^*(X^*)}^{\tau_c}$. Thus for each k = 1, ..., m, there exists an $x_k^* \in X^*$ such that

$$\sup_{y \in \pi D_{\beta}(B_{\ell_{p^*}})} |y_k^*(y) - \hat{E}_z^{*}(x_k^*)(y)| \le \frac{1}{m^{1/p^*}}.$$

We show that $S := \sum_{k=1}^{m} x_k^* \otimes x_k$ is the desired operator. Now, for every $(\alpha_n) \in B_{\ell_{n^*}}$,

$$(S\hat{E}_{z}\pi D_{\beta} - U\pi D_{\beta})(\alpha_{n}) = \sum_{k=1}^{m} (((\hat{E}_{z}^{*}x_{k}^{*})\pi D_{\beta} - y_{k}^{*}\pi D_{\beta})(\alpha_{n}))x_{k}$$

and

$$\sum_{k=1}^{m} |((\hat{E}_{z}^{*} x_{k}^{*}) \pi D_{\beta} - y_{k}^{*} \pi D_{\beta})(\alpha_{n})|^{p^{*}} \leq 1.$$

https://doi.org/10.1017/S1446788714000615 Published online by Cambridge University Press

369

[6]

J. M. Kim

Thus $(S \hat{E}_{z} \pi D_{\beta} - U \pi D_{\beta})(B_{\ell_{p^*}}) \subset p - co(\{x_1, ..., x_m, 0, ...\})$ and so

$$\kappa_p(S\hat{E}_z\pi D_\beta - U\pi D_\beta) \le \left(\sum_{k=1}^m ||x_k||^p\right)^{1/p} = \frac{\varepsilon}{2}.$$

Hence we have

$$\begin{aligned} \kappa_p(E_{(\widehat{S-T})x}) &= \kappa_p(SE_zD_\beta - TE_zD_\beta) \\ &= \kappa_p(S\hat{E}_z\pi D_\beta - T\hat{E}_z\pi D_\beta) \\ &\leq \kappa_p(S\hat{E}_z\pi D_\beta - U\pi D_\beta) + \kappa_p(U\pi D_\beta - T\hat{E}_z\pi D_\beta) \\ &\leq \frac{\varepsilon}{2} + \kappa_p(U - T\hat{E}_z) \leq \varepsilon. \end{aligned}$$

REMARK 2.5. Let $T = id_X$, the identity map, in Theorems 2.3 and 2.4. It follows from Proposition 2.1 that

$$AP \Longrightarrow \mathcal{K}_{up} \text{-} AP, \quad \mathcal{K}_p \text{-} AP \Longrightarrow p \text{-} AP.$$

In view of Theorem 2.3(c), we also see that every Banach space has the \mathcal{K}_{u2} -AP because every Hilbert space has the AP.

3. Dual spaces of $\mathcal{L}(X, Y)$

The purpose of this section is to establish some representations of dual spaces of $\mathcal{L}(X, Y)$ endowed with the topologies τ_{up} and $\tau_{\kappa p}$, which are crucial tools in the proof of Theorem 1.1. We need the following lemma, which is a consequence of [DPS1, Proposition 3.3] and [P, Corollary 1], to obtain a representation of $(\mathcal{L}(X, Y), \tau_{\kappa p})^*$.

LEMMA 3.1. Let $1 . The space <math>\mathcal{N}_{p^*}(\ell_p, X^*)$ of p^* -nuclear operators from ℓ_p to X^* is isometrically isomorphic to $(\mathcal{K}_p(\ell_{p^*}, X), \kappa_p)^*$ via $S \mapsto \operatorname{trace}(R^*S)$ for all $R \in \mathcal{K}_p(\ell_{p^*}, X)$.

Note that $f \in (\mathcal{L}(X, Y), \tau_{\kappa p})^*$ if and only if there exist C > 0 and $(x_n) \in \ell_p(X)$ such that $|f(T)| \leq C\kappa_p(E_{\widehat{Tx}})$ for every $T \in \mathcal{L}(X, Y)$.

THEOREM 3.2. Let $1 . Then the dual space <math>(\mathcal{L}(X, Y), \tau_{\kappa p})^*$ consists of all functionals of the form

$$f(T) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^*(Tx_n),$$

where $(x_n) \in \ell_p(X)$, $((\lambda_n^j)_n)_{j=1}^{\infty} \in \ell_{p^*}(\ell_{p^*})$ and $(y_j^*) \in \ell_p^w(Y^*)$.

PROOF. Suppose that f is of the above form. Let $T \in \mathcal{L}(X, Y)$. Consider the operators $\sum_{j} (\lambda_n^j)_n \otimes y_j^* \in \mathcal{N}_{p^*}(\ell_p, Y^*)$ and $\sum_n e_n \otimes Tx_n = E_{\widehat{Tx}} \in \mathcal{K}_p(\ell_{p^*}, Y)$. Then by Lemma 3.1,

$$|f(T)| = \left| \operatorname{trace} \left(\left(\sum_{n} e_{n} \otimes T x_{n} \right)^{*} \left(\sum_{j} (\lambda_{n}^{j})_{n} \otimes y_{j}^{*} \right) \right) \right|$$
$$\leq \nu_{p^{*}} \left(\sum_{j} (\lambda_{n}^{j})_{n} \otimes y_{j}^{*} \right) \kappa_{p}(E_{\widehat{Tx}}).$$

Hence $f \in (\mathcal{L}(X, Y), \tau_{\kappa p})^*$.

Conversely, suppose that $f \in (\mathcal{L}(X, Y), \tau_{\kappa p})^*$. Then there exist C > 0 and $(x_n) \in \ell_p(X)$ such that $|f(T)| \leq C\kappa_p(E_{\widehat{Tx}})$ for every $T \in \mathcal{L}(X, Y)$. Consider the linear subspace $\mathcal{Y} := \{E_{\widehat{Tx}} : T \in \mathcal{L}(X, Y)\}$ of $\mathcal{K}_p(\ell_{p^*}, Y)$ and the functional φ on \mathcal{Y} given by $\varphi(E_{\widehat{Tx}}) = f(T)$. We see that φ is well defined and linear, and $\|\varphi\|_{(\mathcal{Y},\kappa_p)^*} \leq C$. Thus there exists a Hahn–Banach extension $\hat{\varphi} \in (\mathcal{K}_p(\ell_{p^*}, Y), \kappa_p)^*$ of φ such that $f(T) = \varphi(E_{\widehat{Tx}}) = \hat{\varphi}(E_{\widehat{Tx}})$ for every $T \in \mathcal{L}(X, Y)$. By Lemma 3.1 there exist $((\lambda_n^j)_n)_{j=1}^{\infty} \in \ell_{p^*}(\ell_{p^*})$ and $(y_j^*) \in \ell_p^{\omega}(Y^*)$ such that for every $T \in \mathcal{L}(X, Y)$,

$$f(T) = \hat{\varphi}(E_{\widehat{Tx}}) = \operatorname{trace}\left((E_{\widehat{Tx}})^* \left(\sum_j (\lambda_n^j)_n \otimes y_j^*\right)\right) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^* (Tx_n).$$

We can use the proof of [CK, Theorem 2.5] by replacing $\ell_p(X)$ by $\ell_p^u(X)$ to obtain the following representation of $(\mathcal{L}(X, Y), \tau_{up})^*$.

THEOREM 3.3. Let $1 . Then the dual space <math>(\mathcal{L}(X, Y), \tau_{up})^*$ consists of all functionals of the form

$$f(T) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^*(Tx_n),$$

where $(x_n) \in \ell_p^u(X)$, $z_j := (\lambda_n^j)_{n=1}^{\infty} \in \ell_{p^*}$ for each $j \in \mathbb{N}$ and (y_j^*) in Y^* with $\sum_{i=1}^{\infty} ||z_j||_{p^*} ||y_i^*|| < \infty$.

COROLLARY 3.4. Let $1 . Then the dual space <math>(\mathcal{L}(X, Y), \tau_{up})^*$ consists of all functionals of the form

$$f(T) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^*(Tx_n),$$

where $(x_n) \in \ell_p^w(X)$, $((\lambda_n^j)_n)_{j=1}^\infty \in \ell_{p^*}(\ell_{p^*})$ and $(y_j^*) \in \ell_p(Y^*)$.

PROOF. Let *f* be of the above form. Since $\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} |\lambda_n^j|^{p^*} < \infty$, there exists a sequence $(\beta_n)_n$ of positive numbers with $\beta_n \longrightarrow 0$ such that

$$\sum_{n=1}^{\infty} \left(\sum_{j=1}^{\infty} |\lambda_n^j|^{p^*} \right) \bigg/ \beta_n^{p^*} < \infty.$$

J. M. Kim

Then we see that $(\beta_n x_n) \in \ell_p^u(X)$ and $((\lambda_n^j / \beta_n)_n)_{j=1}^{\infty} \in \ell_{p^*}(\ell_{p^*})$. For each $j \in \mathbf{N}$, put $z_j := (\lambda_n^j / \beta_n)_n$. Since $\sum_{j=1}^{\infty} ||z_j||_{p^*} ||y_j^*|| < \infty$, we obtain a representation of f in Theorem 3.3.

Now, let f be of the form in Theorem 3.3. We may assume that $\sum_{j=1}^{\infty} ||z_j||_{p^*} < \infty$ and $||y_j^*|| = 1$ for every $j \in \mathbf{N}$. Consider

$$||z_j||_{p^*}^{-1/p} z_j$$
 and $||z_j||_{p^*}^{1/p} y_j^*$

for each $j \in \mathbf{N}$. Then it follows that $(||z_j||_{p^*}^{-1/p} z_j) \in \ell_{p^*}(\ell_{p^*})$ and $(||z_j||_{p^*}^{1/p} y_j^*) \in \ell_p(Y^*)$. Hence we obtain the desired representation of f.

We can also use the proof of Corollary 3.4 using [CK, Theorem 2.5] to obtain an analogue of Corollary 3.4 for $(\mathcal{L}(X, Y), \tau_p)^*$ by only replacing $\ell_p^w(X)$ by $\ell_p(X)$.

4. Proof of Theorem 1.1

We need the following lemmas which were motivated by [K2, Theorem 3.1].

LEMMA 4.1. Let $1 . Let <math>(S_{\beta})_{\beta \in I}$ be a net in $\mathcal{L}(X, Y)$ and let $T \in \mathcal{L}(X, Y)$. If $S_{\beta}^* \xrightarrow{\tau_{up}} T^*$ in $\mathcal{L}(Y^*, X^*)$, then there exists a net (T_{α}) in the convex hull $co(\{S_{\beta}\}_{\beta \in I})$ of the set $\{S_{\beta}\}_{\beta \in I}$ such that

$$T_{\alpha} \xrightarrow{\tau_{\kappa p}} T \text{ and } T_{\alpha}^* \xrightarrow{\tau_{up}} T^*.$$

PROOF. If $S_{\beta}^* \xrightarrow{\tau_{up}} T^*$ in $\mathcal{L}(Y^*, X^*)$, then $g(S_{\beta}^*) \longrightarrow g(T^*)$ for every $g \in (\mathcal{L}(Y^*, X^*), \tau_{up})^*$. Let $\overline{\tau_{\kappa p}}$ be the topology on $\mathcal{L}(X, Y)$ induced by $(\mathcal{L}(X, Y), \tau_{\kappa p})^*$ in Theorem 3.2. We show that $S_{\beta} \xrightarrow{\overline{\tau_{\kappa p}}} T$. Then by passing to convex combinations, we complete the proof.

Let $f \in (\mathcal{L}(X, Y), \tau_{\kappa p})^*$ in Theorem 3.2. Then there exist $(x_n) \in \ell_p(X), ((\lambda_n^j)_n)_{j=1}^{\infty} \in \ell_{p^*}(\ell_{p^*})$ and $(y_i^*) \in \ell_p^{\omega}(Y^*)$ such that

$$f(R) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^*(Rx_n)$$

for every $R \in \mathcal{L}(X, Y)$. By Corollary 3.4,

$$g := \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \lambda_n^j i_X(x_n)(\cdot y_j^*) \in (\mathcal{L}(Y^*, X^*), \tau_{up})^*,$$

where $i_X : X \to X^{**}$ is the canonical isometry. Hence we have

$$f(S_{\beta}) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^*(S_{\beta} x_n) = g(S_{\beta}^*) \longrightarrow g(T^*) = f(T).$$

LEMMA 4.2. Let $1 . Let <math>(S_{\beta})_{\beta \in I}$ be a net in $\mathcal{L}(X, Y)$ and let $T \in \mathcal{L}(X, Y)$. If $S_{\beta}^* \xrightarrow{\tau_{\kappa_p}} T^*$ in $\mathcal{L}(Y^*, X^*)$, then there exists a net (T_{α}) in $co(\{S_{\beta}\})_{\beta \in I}$ such that

$$T_{\alpha} \xrightarrow{\tau_{up}} T \text{ and } T_{\alpha}^* \xrightarrow{\tau_{\kappa p}} T^*.$$

PROOF. If $S_{\beta}^* \xrightarrow{\tau_{\kappa p}} T^*$ in $\mathcal{L}(Y^*, X^*)$, then $g(S_{\beta}^*) \longrightarrow g(T^*)$ for every $g \in (\mathcal{L}(Y^*, X^*), \tau_{\kappa p})^*$. Let $\overline{\tau_{up}}$ be the topology on $\mathcal{L}(X, Y)$ induced by $(\mathcal{L}(X, Y), \tau_{up})^*$ in Corollary 3.4. We should show that $S_{\beta} \xrightarrow{\overline{\tau_{up}}} T$. Let $f \in (\mathcal{L}(X, Y), \tau_{up})^*$. Then there exist $(x_n) \in \ell_p^w(X)$, $((\lambda_n^j)_n)_{j=1}^{\infty} \in \ell_{p^*}(\ell_{p^*})$ and $(y_j^*) \in \ell_p(Y^*)$ such that

$$f(R) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^*(Rx_n)$$

for every $R \in \mathcal{L}(X, Y)$. Since $((\lambda_n^j)_j)_{n=1}^{\infty} \in \ell_{p^*}(\ell_{p^*})$, by Theorem 3.2,

$$g := \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \lambda_n^j i_X(x_n)(\cdot y_j^*) \in (\mathcal{L}(Y^*, X^*), \tau_{\kappa p})^*.$$

Hence

$$f(S_{\beta}) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \lambda_n^j y_j^*(S_{\beta} x_n) = g(S_{\beta}^*) \longrightarrow g(T^*) = f(T).$$

We are now ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. We only prove the first part because the second part has essentially the same proof. If X^* has the \mathcal{K}_{up} -AP, then, by Theorem 2.3, $id_{X^*} \in \overline{\mathcal{F}(X^*)}^{\tau_{up}}$. Since $\mathcal{F}(X^*) \subset \overline{\{S^* : S \in \mathcal{F}(X)\}}^{\tau_c}$ (cf. [LT, Lemma 1.e.17]) and $\tau_c \geq \tau_{up}$ (see Proposition 2.1), we have $id_{X^*} \in \overline{\{S^* : S \in \mathcal{F}(X)\}}^{\tau_{up}}$. By Lemma 4.1, $id_X \in \overline{\mathcal{F}(X)}^{\tau_{xp}}$. It follows from Theorem 2.4 that X has the \mathcal{K}_p -AP.

Acknowledgement

The author would like to thank the referee for valuable comments.

References

- [C] P. G. Casazza, 'Approximation properties', in: *Handbook of the Geometry of Banach Spaces*, Vol. 1 (eds. W. B. Johnson and J. Lindenstrauss) (Elsevier, Amsterdam, 2001), 271–316.
- [CK] Y. S. Choi and J. M. Kim, 'The dual space of $(\mathcal{L}(X, Y), \tau_p)$ and the *p*-approximation property', *J. Funct. Anal.* **259** (2010), 2437–2454.
- [DOPS] J. M. Delgado, E. Oja, C. Piñeiro and E. Serrano, 'The *p*-approximation property in terms of density of finite rank operators', *J. Math. Anal. Appl.* 354 (2009), 159–164.
- [DPS1] J. M. Delgado, C. Piñeiro and E. Serrano, 'Density of finite rank operators in the Banach space of *p*-compact operators', *J. Math. Anal. Appl.* 370 (2010), 498–505.
- [DPS2] J. M. Delgado, C. Piñeiro and E. Serrano, 'Operators whose adjoints are quasi p-nuclear', Studia Math. 197 (2010), 291–304.
 - [G] A. Grothendieck, 'Produits tensoriels topologiques et espaces nucléaires', Mem. Amer. Math. Soc. 16 (1955).
 - [K1] J. M. Kim, 'Unconditionally p-null sequences and unconditionally p-compact operators', Studia Math., to appear.
 - [K2] J. M. Kim, 'The approximation properties via the Grothendieck *p*-compact sets', *Math. Nachr.* 286 (2013), 360–373.

J. M. Kim

- [L] J. Lindenstrauss, 'On James' paper "Separable conjugate spaces", *Israel J. Math.* **9** (1971), 279–284.
- [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces (Springer, Berlin, 1977).
- [M] R. E. Megginson, An Introduction to Banach Space Theory (Springer, New York, 1998).
- [O] E. Oja, 'A remark on the approximation of *p*-compact operators by finite-rank operators', *J. Math. Anal. Appl.* 387 (2012), 949–952.
- [P] A. Persson, 'On some properties of *p*-nuclear and *p*-integral operators', *Studia Math.* **33** (1969), 213–222.
- [SK] D. P. Sinha and A. K. Karn, 'Compact operators whose adjoints factor through subspaces of l_p', Studia Math. 150 (2002), 17–33.
- [S] A. Szankowski, 'Subspaces without the approximation property', *Israel J. Math.* **30** (1978), 123–129.

JU MYUNG KIM, Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Korea e-mail: kjm21@kaist.ac.kr