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Abstract

We introduce an approximation property (Kup-AP, 1 ≤ p < ∞), which is weaker than the classical
approximation property, and discover the duality relationship between the Kup-AP and the Kp-AP. More
precisely, we prove that for every 1 < p < ∞, if the dual space X∗ of a Banach space X has the Kup-AP,
then X has theKp-AP, and if X∗ has theKp-AP, then X has theKup-AP. As a consequence, it follows that
every Banach space has theKu2-AP and that for every 1 < p <∞, p , 2, there exists a separable reflexive
Banach space failing to have the Kup-AP.
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1. Introduction and main results

A Banach space X is said to have the approximation property (AP) if for every compact
subset K of X and every ε > 0, there exists a finite rank and continuous linear map
(operator) S on X such that supx∈K ‖S x − x‖ ≤ ε. Grothendieck [G] proved that a
Banach space X has the AP if and only if for every Banach space Y , K(Y, X) =

F (Y, X)
‖ · ‖

, where K(Y, X) and F (Y, X) respectively are the spaces of all compact
operators and finite rank operators from Y to X. Oja [O] extended the criterion to
an arbitrary Banach operator ideal [B, ‖ · ‖B]. A Banach space X is said to have the

B-approximation property (B-AP) if for every Banach space Y , B(Y, X) = F (Y, X)
‖ · ‖B

.
Delgado et al. [DPS1] investigated the Kp-AP, where Kp is the ideal of p-compact
operators for 1 ≤ p ≤ ∞.

The notion of the p-compact operator was introduced by Sinha and Karn [SK], and
stems from Grothendieck’s description [G] of compactness in Banach spaces. It was
shown in [G] that a subset K of a Banach space X is relatively compact if and only if
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there exists a null sequence (xn) in X such that

K ⊂
{∑

n

αnxn : (αn) ∈ B`1

}
,

where BZ is the unit ball of a Banach space Z. This criterion was extended in [SK]
as follows. For 1 ≤ p ≤ ∞, a subset K of X is said to be relatively p-compact if there
exists an (xn) ∈ `p(X) (c0(X) if p =∞) such that

K ⊂ p-co({xn}) :=
{∑

n

αnxn : (αn) ∈ B`p∗

}
,

where 1/p + 1/p∗ = 1 and `p(X) (respectively, c0(X)) is the Banach space with the
norm ‖ · ‖p (respectively, ‖ · ‖∞) of all X-valued absolutely p-summable (respectively,
null) sequences.

For 1 ≤ p ≤ ∞, a linear map T : X → Y is said to be p-compact if T (BX) is a
relatively p-compact subset of Y . Delgado et al. [DPS1] defined a norm on the space
Kp(X,Y) of all p-compact operators from X to Y . For T ∈ Kp(X,Y), let

κp(T ) := inf{‖(yn)‖p : (yn) ∈ `p(Y) and T (BX) ⊂ p-co({yn})}.

Then [Kp, κp] is a Banach operator ideal (see the note preceding [DPS2, Proposition
3.11]).

We need another vector-valued sequence to introduce the main notion of the paper.
For 1 ≤ p ≤ ∞, the space `u

p(X), which is a closed subspace of the Banach space `w
p (X)

with the norm ‖ · ‖wp of all X-valued weakly p-summable sequences, consists of all
sequences (xn) satisfying

‖(0, . . . , 0, xm, xm+1, . . .)‖wp −→ 0

as m → ∞. In [K1], this sequence was called the unconditionally p-summable
sequence, and the relatively unconditionally p-compact (u-p-compact) set and the
u-p-compact operator were defined by replacing the space `p(X), in the definition of
p-compactness, by the space `u

p(X). The space of all u-p-compact operators from X to
Y is denoted by Kup(X,Y) and the norm up on Kup(X,Y) is defined by

up(T ) := inf
{
‖(yn)‖wp : (yn) ∈ `u

p(Y) and T (BX) ⊂ p-co({yn})
}
.

Then [Kup, up] is a Banach operator ideal [K1, Theorem 2.1]. The main goal of this
paper is to study the Kup-AP, and the principal result is the following theorem.

Theorem 1.1. Let 1 < p <∞. If the dual space X∗ of a Banach space X has theKup-AP,
then X has the Kp-AP, and if X∗ has the Kp-AP, then X has the Kup-AP.

We do not know whether Theorem 1.1 would be also true for the case p = 1. We
prove Theorem 1.1 in Section 4 after studying the Kup-AP and the Kp-AP. First, we
present some applications of Theorem 1.1. Since every Banach space has the K2-AP
(see [DPS1, Corollary 3.6]), from Theorem 1.1, we have the following corollaries.
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Corollary 1.2. Every Banach space has the Ku2-AP.

Corollary 1.3. For every 1 < p <∞, p , 2, there exists a separable reflexive Banach
space failing to have the Kup-AP.

Proof. Let 1 < p <∞, p , 2. Then the dual space S ∗ of the Szankowski space S [S],
failing to have the AP, which is a subspace of `p, does not have the Kup-AP. Indeed,
if S ∗ had the Kup-AP, then, by Theorem 1.1, S would have the Kp-AP. Since the
Kp-AP is equivalent to the AP for subspaces of `p (see [O, Theorem 1]), we have a
contradiction. �

We do not know whether Corollary 1.3 would be also true for the case p = 1.
Moreover, we ask:

Problem. Is there any Banach space failing to have the Ku1-AP?

The final application shows that the converses of the duality results between the
Kup-AP and the Kp-AP do not hold in general.

Corollary 1.4. For every 1 < p < ∞, p , 2, there exists a Banach space Yp
(respectively, Zp) such that Y∗∗p (respectively, Z∗∗p ) has a boundedly complete basis
but Y∗∗∗p (respectively, Z∗∗∗p ) is separable and does not have the Kup-AP (respectively,
Kp-AP).

Proof. Let 1 < p <∞, p , 2. Then by Corollary 1.3 there exists a separable reflexive
Banach space Xp failing to have the Kup-AP. Since X∗p is separable, by a result of
Lindenstrauss [L] (cf. [C, Proposition 1.3]) there exists a Banach space Yp such that
Y∗∗p has a boundedly complete basis and Y∗∗∗p is isomorphic to Y∗p ⊕ X∗∗p . Suppose
that Y∗∗∗p had the Kup-AP. Then we see that Xp would have the Kup-AP, which is a
contradiction. One may take the dual space X∗p in the above procedure to show the
other part using Theorem 1.1. �

2. Reformulations of theKup-AP andKp-AP

We define two vector topologies τup and τκp on the space L(X, Y) of all operators
from X to Y by the convergence of nets. Let 1 ≤ p ≤ ∞. For a T and a net (Tα)

in L(X, Y), we say that Tα
τup
−→ T if limα ‖((Tα − T )xn)‖wp = 0 for every (xn) ∈ `u

p(X).
For x̂ := (xn) ∈ `p(X) (c0(X) if p = ∞) and R ∈ L(X, Y), the p-compact operator
ER̂x : `p∗ → Y is defined by

ER̂x(αn) =
∑

n

αnRxn.

We say that Tα
τκp
−→ T if limα κp(E ̂(Tα−T )x) = 0 for every (xn) ∈ `p(X). We see that the

topologies τup and τκp are Hausdorff locally convex. We denote by τc the topology of
uniformly compact convergence on L(X, Y) and recall the topology τp of uniformly
p-compact convergence for 1 ≤ p <∞ (see [SK, CK]).

Proposition 2.1. For every 1 ≤ p <∞, τc ≥ τup ≥ τp and τc ≥ τκp ≥ τp.
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Proof. τup is actually the topology of uniformly u-p-compact convergence because, if
K is a u-p-compact subset of X, then we may assume that K = p-co({xn}) for some
(xn) ∈ `u

p(X), and for every R ∈ L(X, Y) it is easily seen that supx∈K ‖Rx‖ = ‖(Rxn)‖wp .
Thus τup ≥ τp follows.

For every 1 ≤ p < ∞ and (xn) ∈ `u
p(X), one may check that the above map

E x̂ : `p∗ → X is a compact operator. Thus every relatively u-p-compact set is relatively
compact and so τc ≥ τup follows.

Now let (Tα) be a net in L(X, Y). Suppose that Tα
τc
−→ 0. To show that Tα

τκp
−→ 0,

let (xn) ∈ `p(X). Choose a sequence ( βn) of positive numbers with βn −→ ∞ such that∑
n β

p
n‖xn‖

p <∞. Consider the relatively compact subset {xn/( βn‖xn‖)} of X. Since for
every α, ET̂αx(B`p∗ ) = p-co({Tαxn}),

κp(ET̂αx) ≤ ‖(Tαxn)‖p ≤ ‖(βn‖xn‖)‖p sup
n
‖Tα(xn/(βn‖xn‖))‖ −→ 0.

Hence Tα
τκp
−→ 0.

Suppose that Tα
τκp
−→ 0. To show that Tα

τp
−→ 0, let (xn) ∈ `p(X) and let ε > 0 be

given. Let β be such that α � β implies that κp(ET̂αx) ≤ ε/2. Now for every α, there
exists a (yαn ) ∈ `p(Y) such that ET̂αx(B`p∗ ) ⊂ p-co({yαn }) and ‖(yαn )‖p ≤ κp(ET̂αx) + ε/2.
Hence α � β implies that

‖(Tαxn)‖wp ≤ ‖(y
α
n )‖p ≤ κp(ET̂αx) +

ε

2
≤ ε. �

The purpose of this section is to characterize the Kup-AP (respectively, Kp-AP) in
terms of the topology τup (respectively, τκp). The following lemma is well known and
easily verified by a standard argument.

Lemma 2.2. Let K be a collection of sequences of positive numbers. If

lim
l

sup
(k j)∈K

∑
j≥l

k j = 0,

then there exists a sequence (b j) of real numbers with b j ↗∞ and b j > 1 for all j such
that

lim
l

sup
(k j)∈K

∑
j≥l

k jb j = 0.

Theorem 2.3. Let T ∈ L(X) := L(X, X) and let 1 ≤ p < ∞. The following statements
are equivalent.

(a) T ∈ F (X)
τup

.
(b) For every Banach space Y and every R ∈ Kup(Y, X),

TR ∈ {SR : S ∈ F (X)}
up
.

(c) For every quotient space Y of `p∗ and every injective u-p-compact operator

R : Y → X, we have TR ∈ F (Y, X)
τup

.
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Proof. (b) implies (c) is trivial.
(a) implies (b). Let Y be a Banach space and let R ∈ Kup(Y, X). Let ε > 0 be given.

Then there exists an (xn) ∈ `u
p(X) such that R(BY ) ⊂ p-co({xn}). By (a) there exists an

S ∈ F (X) such that
‖((S − T )xn)‖wp ≤ ε.

Since (SR − TR)(BY ) ⊂ p-co({(S − T )xn}) and ((S − T )xn) ∈ `u
p(X),

up(SR − TR) ≤ ‖((S − T )xn)‖wp ≤ ε.

Hence TR ∈ {SR : S ∈ F (X)}
up

.
(c) implies (a). This proof is essentially due to that of [DOPS, Theorem 2.1].

Let (xn) ∈ `u
p(X) and let ε > 0 be given. Then by Lemma 2.2 there exists a sequence

( βn) of positive numbers with βn −→ 0 such that (zn) := (xn/βn) ∈ `u
p(X). Define

the operators Dβ : `p∗ → `p∗ and Ez : `p∗ → X by Dβα = (αnβn) and Ezα =
∑

n αnzn,
respectively. The injective operator Êz : `p∗/ker(Ez)→ X is defined by Êz[α] = Ezα.
A simple verification shows that the operators Dβ and Êz are u-p-compact. Let
π : `p∗ → `p∗/ker(Ez) be the quotient operator. Then πDβ(B`p∗ ) is a relatively u-p-
compact subset of `p∗/ker(Ez):

`p∗
Dβ

−→ `p∗
π
−→ `p∗/ker(Ez)

Êz
−→ X.

Then by (c) there exists an S ∈ F (`p∗/ker(Ez), X) such that

sup
y∈πDβ(B`p∗ )

‖S y − T Êzy‖ ≤
ε

2
.

We may write S =
∑m

k=1 y∗k ⊗ xk, where y∗k ∈ (`p∗/ker(Ez))∗, xk ∈ X for each k = 1, . . . ,m

and
∑m

k=1 ‖xk‖ = 1. Since Êz is injective, (`p∗/ker(Ez))∗ = Êz
∗(X∗)

weak∗

= Êz
∗(X∗)

τc

.
The second equality follows from (Z∗,weak∗)∗ = (Z∗, τc)∗ for every Banach space Z
(cf. [M, Theorem 2.7.8]). Thus for each k = 1, . . . ,m, there exists an x∗k ∈ X∗ such that

sup
y∈πDβ(B`p∗ )

|y∗k(y) − Êz
∗(x∗k)(y)| ≤

ε

2
.

Consider the operator
∑m

k=1 x∗k ⊗ xk ∈ F (X). Then as in the proof of [K2, Theorem
5.5(d) implies (a)], for every (αn) ∈ B`p∗ ,∥∥∥∥∥ m∑

k=1

x∗k
(∑

n

αnxn

)
xk − T

(∑
n

αnxn

)∥∥∥∥∥ ≤ ε.
Hence T ∈ F (X)

τup
. �

Theorem 2.4. Let T ∈ L(X) and let 1 ≤ p < ∞. The following statements are
equivalent.
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(a) T ∈ F (X)
τκp

.
(b) For every Banach space Y and every R ∈ Kp(Y, X),

TR ∈ {SR : S ∈ F (X)}
κp
.

(c) For every quotient space Y of `p∗ and every injective p-compact operator
R : Y → X, we have TR ∈ F (Y, X)

κp
.

Proof. (b) implies (c) is trivial.
(a) implies (b). Let Y be a Banach space and let R ∈ Kp(Y, X). Let ε > 0 be

given. There exists an (xn) ∈ `p(X) such that R(BY ) ⊂ p-co({xn}). By (a) there exists an
S ∈ F (X) such that κp(E ̂(S−T )x) ≤ ε/2. Now let (zn) ∈ `p(X) such that E ̂(S−T )x(B`p∗ ) ⊂
p-co({zn}) and ‖(zn)‖p ≤ κp(E ̂(S−T )x) + ε/2. Since (SR − TR)(BY ) ⊂ p-co({(S − T )xn})
⊂ p-co({zn}),

κp(SR − TR) ≤ ‖(zn)‖p ≤ κp(E ̂(S−T )x) +
ε

2
≤ ε.

Hence TR ∈ {SR : S ∈ F (X)}
κp

.
(c) implies (a). This proof comes from a combination of those of [DOPS,

Theorem 2.1] and [DPS1, Proposition 2.1]. Let (xn) ∈ `p(X) and let ε > 0 be given.
We should find an S ∈ F (X) such that κp(E ̂(S−T )x) ≤ ε. Choose a sequence ( βn) of
positive numbers with βn ≤ 1 and βn −→ 0 such that (zn) := (xn/βn) ∈ `p(X).

Now let Dβ : `p∗ → `p∗ , Ez : `p∗ → X, Êz : `p∗/ker(Ez) → X, and π : `p∗ →

`p∗/ker(Ez) be the operators in the proof of Theorem 2.3(c) implies (a). Since the
map Êz is an injective p-compact operator, by (c) there exists a U ∈ F (`p∗/ker(Ez), X)
such that

κp(U − T Êz) ≤
ε

2
.

Put U =
∑m

k=1 y∗k ⊗ xk, where y∗k ∈ (`p∗/ker(Ez))∗ and xk ∈ X for each k = 1, . . . ,m.
We may assume that (

∑m
k=1 ‖xk‖

p)1/p = ε/2. Since Êz is injective, (`p∗/ker(Ez))∗ =

Êz
∗(X∗)

τc

. Thus for each k = 1, . . . ,m, there exists an x∗k ∈ X∗ such that

sup
y∈πDβ(B`p∗ )

|y∗k(y) − Êz
∗(x∗k)(y)| ≤

1
m1/p∗ .

We show that S :=
∑m

k=1 x∗k ⊗ xk is the desired operator.
Now, for every (αn) ∈ B`p∗ ,

(S ÊzπDβ − UπDβ)(αn) =

m∑
k=1

(((Êz
∗
x∗k)πDβ − y∗kπDβ)(αn))xk

and
m∑

k=1

|((Êz
∗
x∗k)πDβ − y∗kπDβ)(αn)|p

∗

≤ 1.
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Thus (S ÊzπDβ − UπDβ)(B`p∗ ) ⊂ p-co({x1, . . . , xm, 0, . . .}) and so

κp(S ÊzπDβ − UπDβ) ≤
( m∑

k=1

‖xk‖
p
)1/p

=
ε

2
.

Hence we have

κp(E ̂(S−T )x) = κp(S EzDβ − T EzDβ)

= κp(S ÊzπDβ − T ÊzπDβ)

≤ κp(S ÊzπDβ − UπDβ) + κp(UπDβ − T ÊzπDβ)

≤
ε

2
+ κp(U − T Êz) ≤ ε. �

Remark 2.5. Let T = idX , the identity map, in Theorems 2.3 and 2.4. It follows from
Proposition 2.1 that

AP =⇒Kup-AP, Kp-AP =⇒ p-AP.

In view of Theorem 2.3(c), we also see that every Banach space has the Ku2-AP
because every Hilbert space has the AP.

3. Dual spaces of L(X, Y)

The purpose of this section is to establish some representations of dual spaces of
L(X, Y) endowed with the topologies τup and τκp, which are crucial tools in the proof
of Theorem 1.1. We need the following lemma, which is a consequence of [DPS1,
Proposition 3.3] and [P, Corollary 1], to obtain a representation of (L(X,Y), τκp)∗.

Lemma 3.1. Let 1 < p < ∞. The space Np∗(`p, X∗) of p∗-nuclear operators from
`p to X∗ is isometrically isomorphic to (Kp(`p∗ , X), κp)∗ via S 7→ trace(R∗S ) for all
R ∈ Kp(`p∗ , X).

Note that f ∈ (L(X, Y), τκp)∗ if and only if there exist C > 0 and (xn) ∈ `p(X) such
that | f (T )| ≤ Cκp(ET̂ x) for every T ∈ L(X,Y).

Theorem 3.2. Let 1 < p < ∞. Then the dual space (L(X, Y), τκp)∗ consists of all
functionals of the form

f (T ) =

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(T xn),

where (xn) ∈ `p(X), ((λ j
n)n)∞j=1 ∈ `p∗(`p∗) and (y∗j) ∈ `

w
p (Y∗).
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Proof. Suppose that f is of the above form. Let T ∈ L(X, Y). Consider the operators∑
j(λ

j
n)n ⊗ y∗j ∈ Np∗(`p,Y∗) and

∑
n en ⊗ T xn = ET̂ x ∈ Kp(`p∗ ,Y). Then by Lemma 3.1,

| f (T )| =
∣∣∣∣∣trace

((∑
n

en ⊗ T xn

)∗(∑
j

(λ j
n)n ⊗ y∗j

))∣∣∣∣∣
≤ νp∗

(∑
j

(λ j
n)n ⊗ y∗j

)
κp(ET̂ x).

Hence f ∈ (L(X,Y), τκp)∗.
Conversely, suppose that f ∈ (L(X, Y), τκp)∗. Then there exist C > 0 and (xn) ∈

`p(X) such that | f (T )| ≤ Cκp(ET̂ x) for every T ∈ L(X,Y). Consider the linear subspace
Y := {ET̂ x : T ∈ L(X, Y)} of Kp(`p∗ , Y) and the functional ϕ on Y given by ϕ(ET̂ x) =

f (T ). We see that ϕ is well defined and linear, and ‖ϕ‖(Y,κp)∗ ≤ C. Thus there exists a
Hahn–Banach extension ϕ̂ ∈ (Kp(`p∗ , Y), κp)∗ of ϕ such that f (T ) = ϕ(ET̂ x) = ϕ̂(ET̂ x)
for every T ∈ L(X,Y). By Lemma 3.1 there exist ((λ j

n)n)∞j=1 ∈ `p∗(`p∗) and (y∗j) ∈ `
w
p (Y∗)

such that for every T ∈ L(X,Y),

f (T ) = ϕ̂(ET̂ x) = trace
(
(ET̂ x)∗

(∑
j

(λ j
n)n ⊗ y∗j

))
=

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(T xn). �

We can use the proof of [CK, Theorem 2.5] by replacing `p(X) by `u
p(X) to obtain

the following representation of (L(X,Y), τup)∗.

Theorem 3.3. Let 1 < p < ∞. Then the dual space (L(X, Y), τup)∗ consists of all
functionals of the form

f (T ) =

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(T xn),

where (xn) ∈ `u
p(X), z j := (λ j

n)∞n=1 ∈ `p∗ for each j ∈ N and (y∗j) in Y∗ with∑∞
j=1 ‖z j‖p∗‖y∗j‖ <∞.

Corollary 3.4. Let 1 < p < ∞. Then the dual space (L(X, Y), τup)∗ consists of all
functionals of the form

f (T ) =

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(T xn),

where (xn) ∈ `w
p (X), ((λ j

n)n)∞j=1 ∈ `p∗(`p∗) and (y∗j) ∈ `p(Y∗).

Proof. Let f be of the above form. Since
∑∞

n=1
∑∞

j=1 |λ
j
n|

p∗ <∞, there exists a sequence
( βn)n of positive numbers with βn −→ 0 such that

∞∑
n=1

( ∞∑
j=1

|λ
j
n|

p∗
) /

β
p∗
n <∞.
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Then we see that ( βnxn) ∈ `u
p(X) and ((λ j

n/βn)n)∞j=1 ∈ `p∗(`p∗). For each j ∈ N, put z j :=

(λ j
n/βn)n. Since

∑∞
j=1 ‖z j‖p∗‖y∗j‖ <∞, we obtain a representation of f in Theorem 3.3.

Now, let f be of the form in Theorem 3.3. We may assume that
∑∞

j=1 ‖z j‖p∗ < ∞
and ‖y∗j‖ = 1 for every j ∈ N. Consider

‖z j‖
−1/p
p∗ z j and ‖z j‖

1/p
p∗ y∗j

for each j ∈ N. Then it follows that (‖z j‖
−1/p
p∗ z j) ∈ `p∗(`p∗) and (‖z j‖

1/p
p∗ y∗j) ∈ `p(Y∗).

Hence we obtain the desired representation of f . �

We can also use the proof of Corollary 3.4 using [CK, Theorem 2.5] to obtain an
analogue of Corollary 3.4 for (L(X,Y), τp)∗ by only replacing `w

p (X) by `p(X).

4. Proof of Theorem 1.1

We need the following lemmas which were motivated by [K2, Theorem 3.1].

Lemma 4.1. Let 1 < p < ∞. Let (S β)β∈I be a net in L(X, Y) and let T ∈ L(X, Y). If

S ∗β
τup
−→ T ∗ in L(Y∗, X∗), then there exists a net (Tα) in the convex hull co({S β}β∈I) of

the set {S β}β∈I such that

Tα
τκp
−→ T and T ∗α

τup
−→ T ∗.

Proof. If S ∗β
τup
−→ T ∗ in L(Y∗, X∗), then g(S ∗β) −→ g(T ∗) for every g ∈ (L(Y∗, X∗), τup)∗.

Let τκp be the topology on L(X, Y) induced by (L(X, Y), τκp)∗ in Theorem 3.2. We

show that S β

τκp
−→ T . Then by passing to convex combinations, we complete the proof.

Let f ∈ (L(X, Y), τκp)∗ in Theorem 3.2. Then there exist (xn) ∈ `p(X), ((λ j
n)n)∞j=1 ∈

`p∗(`p∗) and (y∗j) ∈ `
w
p (Y∗) such that

f (R) =

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(Rxn)

for every R ∈ L(X,Y). By Corollary 3.4,

g :=
∞∑

n=1

∞∑
j=1

λ
j
niX(xn)( · y∗j) ∈ (L(Y∗, X∗), τup)∗,

where iX : X → X∗∗ is the canonical isometry. Hence we have

f (S β) =

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(S βxn) = g(S ∗β) −→ g(T ∗) = f (T ). �

Lemma 4.2. Let 1 < p < ∞. Let (S β)β∈I be a net in L(X, Y) and let T ∈ L(X, Y). If

S ∗β
τκp
−→ T ∗ in L(Y∗, X∗), then there exists a net (Tα) in co({S β})β∈I such that

Tα
τup
−→ T and T ∗α

τκp
−→ T ∗.
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Proof. If S ∗β
τκp
−→ T ∗ in L(Y∗, X∗), then g(S ∗β) −→ g(T ∗) for every g ∈ (L(Y∗, X∗), τκp)∗.

Let τup be the topology on L(X, Y) induced by (L(X, Y), τup)∗ in Corollary 3.4. We

should show that S β

τup
−→ T . Let f ∈ (L(X, Y), τup)∗. Then there exist (xn) ∈ `w

p (X),
((λ j

n)n)∞j=1 ∈ `p∗(`p∗) and (y∗j) ∈ `p(Y∗) such that

f (R) =

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(Rxn)

for every R ∈ L(X,Y). Since ((λ j
n) j)∞n=1 ∈ `p∗(`p∗), by Theorem 3.2,

g :=
∞∑

n=1

∞∑
j=1

λ
j
niX(xn)( · y∗j) ∈ (L(Y∗, X∗), τκp)∗.

Hence

f (S β) =

∞∑
j=1

∞∑
n=1

λ
j
ny∗j(S βxn) = g(S ∗β) −→ g(T ∗) = f (T ). �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We only prove the first part because the second part has
essentially the same proof. If X∗ has the Kup-AP, then, by Theorem 2.3, idX∗ ∈

F (X∗)
τup

. Since F (X∗) ⊂ {S ∗ : S ∈ F (X)}
τc

(cf. [LT, Lemma 1.e.17]) and τc ≥ τup

(see Proposition 2.1), we have idX∗ ∈ {S ∗ : S ∈ F (X)}
τup

. By Lemma 4.1, idX ∈

F (X)
τκp

. It follows from Theorem 2.4 that X has the Kp-AP. �
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