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Abstract. Nulling Interferometry applied to the search and characterization of earth-like ex-
oplanets requires to eliminate the star’s contribution at a rejection level (Rej = collected en-
ergy/residual energy)larger than 106 over a large bandwidth (6 to 18 µm). Nulling test-benches
are in development in several laboratories so as to master such high a rejection. One approach
relies on a Mach-Zehnder set-up with Achromatic Phase Shifters (APS). One APS concept is
based on the focus-crossing property, providing an intrinsically achromatic phase shift by π.
Using a confocal configuration for the focus-crossing approach, a Fresnel’s diffraction effect de-
grades the rejection. Usual optical engineering softwares fail in assessing rejection performance
and an analytical approach is needed. We describe the bench optical configuration and the Fres-
nel’s diffraction effect as well as a possible way for correction. Then we describe the analytical
method, based on Lommel’s integrals, to evaluate the expectable rejection.
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1. Introduction
Nulling interferometry, recognized as the relevant tool in the search and spectral anal-

ysis for earth-like exoplanets, is the baseline of the ESA-Darwin mission (ESA, 2000).
In the framework of preliminary studies, nulling test benches are in development so as
to master the rejection process, a key-issue for such a mission. A convenient system is a
Mach-Zehnder-like interferometer where Achromatic Phase Shifters are installed so as to
provide the required π-phase shift yielding the elimination of the starlight via destructive
interferences. Among other approaches (Rabbia et al, 2002) the confocal APS based on
focus property (Gouy, 1890) is considered. With this peculiar device a Fresnel’s diffrac-
tion adverse effect degrade the rejection : Rej = (collected energy)/(residual energy).
Eventhough this effect occurs on the bench, not in the flying device, expectable rejection
performance on the bench must be calculated. At the very high level of rejection tar-
geted, currently available Optical Engineering Softwares fail to provide reliable results
(prohibitively large workspace and sampling rate needed). An analytical approach, using
Lommel’s formalism (Born & Wolf, 1980) taking advantage of circular apertures and
Gaussian beams, yields an alternate approach for calculation of rejection. We describe
the generic set-up of the bench, the APS based on the focus-crossing property, the adverse
effect and the analytical method for calculation of rejection. Finally expected rejection
versus wavelength curves in the effective conditions of operation on the bench are given.
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2. generic design, focus-crossing and associated APS
The set-up basically is a Mach-Zehnder interferometer, fed by a collimated beam from

a monomode fiber used as source. The output common beam after recombination by the
exit beam splitter is focused on a monomode fiber used as spatial filter.

Figure 1. from left to right : principle of mach-zehnder set-up used as nulling test-bench,
illustration of the focus-crossing property, principle of the associated APS and global architecture
of bench.

In each arm is set an APS component. One component (CF), based on the focus-
crossing property, is a confocal assembly of two half-paraboloids. The other component
(FF), simply is a couple of flat mirrors set to produce the same optical path and same
average incidence as in the other arm.

3. Adverse effect from Fresnel’s diffraction and remedies
As seen from the recombination plate at output, there is an axial separation for the

images of the input pupilla: the CF unit preserve the location of the input pupilla but
not the FF unit. Therefore, because of Fresnel’s diffraction effect (caused by unequal
propagation length in CF and FF channels) the amplitude distributions set to interfere
are not identical what is detrimental to the efficiency of destructive interference, hence
to rejection.

Figure 2. from left : axial separation (F : focal length in CF) for images of input pupilla on each
interferometer arm as seen from recombining plate, illustration of resulting wavefront mismatch,
insertion of “corrective” stops, “cleaning” effect of stops.

A way to reduce the degradation is to insert aperture stops at different locations in
such way that effective pupilla are now seen in the same plane from the recombination
plate. Moreover the diameter of stops is chosen so that amplitude distorsions (mainly
peripheral) are significantly eliminated (this, at the price of loosing some photons, rather
negligible with gaussian beams).

4. Using Lommel’s formalism
With a targeted rejection larger than 106 wavefronts errors as small as 2.10−3 radian

induce degradation. Softwares fail providing reliable amplitude maps. Analytical deriva-
tion of rejection is needed. Since apertures are circular and input wave is Gaussian,
Lommel’s integrals provide an analytical approach with sufficient accuracy.
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4.1. propagated complex amplitude
Notations are in Figure 3 below. Starting from the complex amplitude A0 (Gaussian
amplitude of width “b” at 1/e) coming out of a circular aperture of radius R, the com-
plex amplitude Ap obtained after propagation along the length “p” is given by the usual
convolution Ap(−→r ) =

∮
r,g ′<R,θ

A0(−→r ).Zp(−→r −−→
r′ ).r′.dr′.dθ where we use the usual “prop-

agation operator” Zp(−→r ) = exp(i.2.π .p
λ ).exp(i. π .r2

λ.p ) circularly symmetric.

Figure 3. beam and propagation parameters for complex amplitude calculation.

Using a reduced variable z = r′/R and after some algebraic work, we set v = 2.π .r.R
λ.p

and u = 2.π.[ R2

λ.p + R2

λ.ρ + i.R2

b2 ] so that we have the general expression:

Ap(−→r ) =
[
2.π.R2.

A0

i.λ.p
.exp(i.

2.π.r2

λ.p
)
]

. I[u, v]

with I[u, v] =
∫ 1

0
J0(z.v). exp( i

2 .z2.u).z.dz

Depending on the value of the set-up parameters included in “u” and “v”, we have:

I[u, v] = i
u .exp( i

2 .u).
[∑∞

n=1(
u

i.v )n .Jn (v)
]

when
∣∣ u

v

∣∣ < 1
or
I[u, v] = i

u .exp( i
2 .u).

[
exp(−i. u2+v2

2.u ) −
∑∞

n=0(
v

i.u )n .Jn (v)
]

when
∣∣ u

v

∣∣ > 1

The complex amplitude is now computed from a sum of Bessel’s functions (common
software tool), at a precision level (unachievable with optical engineering softwares) set
by the number of terms in the sum.

4.2. calculation of rejection
The Gaussian complex amplitude at entry ( monomode fiber used as source), is given by:
Gin (−→r ) = A. exp(−π. r2

b2 ). exp( i.π .r2

λ.ρ ) and the amplitude coming out of the input-pupilla
is A0(−→r ) = Gin (−→r ).Pin (−→r ) with Pin (−→r ) = Π( r

Ri n
) the classical circular pupilla function

with radius Rin .

Figure 4. One arm of the bench, with aperture stop on the way from entry to exit.
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Calculation of amplitude Aq arriving on the aperture stop at distance “q” from entry
is carried as described in the previous section. For writing convenience, now and on, we
use the simplified notation Aq = A0 ∗ Zq . The amplitude coming out of the aperture
stop (transmission Pstop , radius Rstop) simply is Aq .Pstop . After propagation along the
distance “Q”, we find the amplitude [Aq .Pstop ] ∗ ZQ and we finally have the amplitude
AQ = ([Aq .Pstop ] ∗ ZQ ) .Pout transmitted by the output pupilla (radius Rout , transmis-
sion Π( r

Ro u t
)).

To calculate the rejection Rej, we need to derive the algebraic expression of the am-
plitude driven into the monomode fiber at exit (serving as spatial filter). This expression
is given by the “superposition integral” involving the Gaussian mode Gout propagated
by the fiber:

a =
∮

r<Ro u t ,θ

AQ (−→r ).Gout(−→r ).r.dr.dθ

The point now, is that calculation of AQ cannot be carried like was done for Aq because
the Lommel’s approach requires a Gaussian amplitude, what is not the case for Aq .Pstop .
An algebraic derivation pretending to use the expression: AQ = ([A0 ∗ Zq ].Pstop) ∗ ZQ is
quite tricky and tedious.

Fortunately it is possible to use an alternate approach. The amplitude “a” can be a
little more explicitly written as:

a =
∮

r<Ro u t ,θ

[([A0 ∗ Zq ].Pstop) ∗ ZQ ].[Gout .Pout ]

Using the Parseval-Plancherel relation, we can write:

a =
∮

r<Ro u t ,θ

[([Â0.Ẑq ] ∗ P̂stop).ẐQ ].[Ĝout ∗ Ĝout ]

Now, playing with brackets and products within the integral and applying again the
Parseval-Plancherel relation we find the expression:

a =
∮

r<Ro u t ,θ

([Gin .Pin ] ∗ Zq ).(Pstop).(ZQ ∗ [Gout .Pout ]) =
∮

r<Ro u t ,θ

Uin .Pstop .Vout

In the second (compacted) expression are found Uin and Vout which both can be cal-
culated using the Lommel’s formalism (they can be seen as given by direct and reverse
propagation respectively). Applying this policy to both arms on the bench (CF: ConFocal
unit, FF: Flat-Flat unit) we have the collected and residual amplitudes (aF F and aC F )
from which we calculate the rejection:

Rej =
collected energie

residual energie
=

|aF F + aC F |2

|aF F − aC F |2

5. Exemples of expected rejection curves
Technological constraints, independent of the Focus-Crossing approach have led to split

the spectral domain, in two sub-domains. In addition, geometrical constraints prevented
to choose the appropriate set of parameters for beams and apertures, which would have
provided the required level of rejection over the whole of each spectral interval. Current
conditions yields rejection illustrated by the curves in figure 5, next page.
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Figure 5. rejection curves obtained with current constraints on bench, for apertures and
beam parameters.

6. Conclusion
Calculation of rejection in presence of Fresnel’s diffraction adverse effect, and with

“corrective” aperture stops in suitable locations, has been carried via Lommel’s formal-
ism, more reliable and convenient than usual optical engineering softwares in the present
context. This approach made appropriate by the use of circular apertures and Gaussian
beams can be applied to other set-ups.
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