THE NEVANLINNA-PICK THEOREM

AND A NON-POSITIVE DEFINITE MATRIX

Takahiko Nakazi

Let $\left\{z_{j}\right\}$ be an interpolation sequence in the open unit disc and $\left\{w_{j}\right\}$ a bounded sequence. In this note, it is shown that there is a function F in $H^{\infty}+C$ satisfying $\|F\|_{\infty} \leq 1$ and $\tilde{F}\left(z_{j}\right)-w_{j} \longrightarrow 0$ as $j \rightarrow \infty$ if and only if there exists a compact matrix $\left[t_{i j}\right]$ such that $\left[1-w_{i} \bar{w}_{j} / 1-z_{i} \bar{z}_{j}\right] \geq\left[a_{i j}\right]$ on $M \times \mathbb{K}$ where $\left[a_{i, j}\right]=\left[\omega_{j} \bar{t}_{j i}+\bar{w}_{i} t_{i j}\right]+\left[t_{i, j}\right]\left[\left(1-\left|z_{i}\right|^{2}\right)^{1 / 2}\left(1-\left|z_{j}\right|^{2}\right)^{1 / 2} /\right.$ $\left.1-\bar{z}_{i} z_{j}\right]^{-1}\left[\bar{t}_{j i}\right]$.

Let U be the open unit disc and ∂U the unit circle. For $0<p \leq \infty$, the spaces $I^{p}(d \theta / 2 \pi)$ will be denoted simply by I^{p}, and the corresponding Hardy classes by H^{p}. Let C denote the space of continuous complex valued functions on ∂U. It is well-known that $H^{\infty}+C$ is a closed subalgebra of L^{∞}. We shall identify a function in H^{∞} or $H^{\infty}+C$ with its holomorphic or harmonic extension to U. The space

Received 23 October 1986. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

[^0]$M\left(H^{\infty}+C\right)$ consists of $M\left(H^{\infty}\right)$ with U deleted.
For a function F in $H^{\infty}+C, Z(F)$ denotes the zero set of F in $M\left(H^{\infty}+C\right)$. If b is an interpolating Blaschke product, then $Z(b)$ is an interpolation subset for H^{∞}. Let ℓ^{∞} be the space of all bounded sequences of complex numbers and $\ell_{0}^{\infty}=\left\{\omega \in \ell^{\infty} ; \underset{j}{\lim } w_{j}=0\right\}$. We shall prove the following theorem.

THEOREM. Let b be an interpolating Blaschke product having zeros at $z_{1}, z_{2}, z_{3}, \ldots$ and u a continuous function on $Z(b)$. Then there exists a unique sequence $\left\{w_{j}\right\}$ in ℓ^{∞} modulo ℓ_{0}^{∞} such that $f\left(z_{j}\right)=w_{j}$ $j=1,2, \ldots, f=u$ on $2(b)$ and f in H^{∞} and the following are equivalent:
(1) there exists F in $H^{\infty}+C$ such that $\|F\|_{\infty} \leq \varepsilon$ and $F \mid z(b)=u ;$
(2) there exists F in $H^{\infty}+C$ such that $\|F\|_{\infty} \leq \varepsilon$ and $\left\{F\left(z_{j}\right)\right\}-\left\{\omega_{j}\right\} \quad$ in $\ell_{0}^{\infty} ;$
(3) there exists a compact matrix $\left[t_{i j}\right]$ such that
$\left[\varepsilon-w_{i} \bar{w}_{j} / 1-z_{i} \bar{z}_{j}\right] \geq\left[a_{i j}\right]$ on $\mathbb{M} \times \mathbb{K}$ where $\left[a_{i j}\right]=\left[w_{j} \bar{t}_{j i}+\bar{w}_{i} t_{i j}\right]+$ $\left[t_{i j}\right]\left[\left(1-\left|z_{i}\right|^{2}\right)^{1 / 2}\left(1-\left|z_{j}\right|^{2}\right)^{1 / 2} / 1-\bar{z}_{i} z_{j}\right]^{-1}\left[\overline{t_{j i}}\right] \quad$ and $\varepsilon \geq 0$.

To prove the theorem we require four lemmas.
LEMMA 1. If b is an interpolating Blaschke product with zeros $\left\{z_{j}\right\}$ then for any continuous function u on $Z(b)$ there exists a unique sequence $\left\{w_{j}\right\}$ in ℓ^{∞} moduzo ℓ_{0}^{∞} such that $f\left(z_{j}\right)=w_{j} j=1,2, \ldots$, $f=u$ on $Z(b)$ and f in H^{∞}.

Proof. Since $Z(b)$ is an interpolation subset for H^{∞}, there exists an $f \in H^{\infty}$ such that $f=u$ on $2(b)$. Put $w_{j}=f\left(z_{j}\right) j=1,2, \ldots$ If $g \in H^{\infty}$ satisfies $g=u$ on $Z(b)$ then $\left\{f\left(z_{j}\right)-g\left(z_{j}\right)\right\} \in \ell_{0}^{\infty}$ because $Z(b)=\overline{\left\{z_{j}\right\}} \backslash\left\{z_{j}\right\}$ where $\overline{\left\{z_{j}\right\}}$ is the closure of $\left\{z_{j}\right\}$ in $M\left(H^{\infty}\right)$.

For an inner function b, put $K=H^{2} \theta b H^{2}$. The orthogonal projection in L^{2} with range K will be denoted by P. For f a function in $H^{\infty}+C$ let S_{f} denote the operator $P M_{f} \mid K$ where M_{f} is the multiplication on L^{2} that it determines.

LEMMA 2. For f a function in $H^{\infty}\left\|S_{f}\right\|=\left\|f+b H^{\infty}\right\|$ and $\left\|S_{f}\right\|_{e}=\left\|f+b\left(H^{\infty}+C\right)\right\|$, where the essential norm $\left\|S_{f}\right\|_{e}$ of S_{f} is the distance to the compact operators.

Proof. Theorem 1 in [4] shows $\left\|S_{f}\right\|=\left\|f+b H^{\infty}\right\|$. We shall show $\left\|S_{f}\right\|_{e}=\left\|f+b\left(H^{\infty}+C\right)\right\|$. The proof is similar to the calculation of the essential norm of a Hankel operator (see [1, p. 608]). We can show that $\left\|S_{f}\right\|_{e} \geq\left\|f+b\left(H^{\infty}+C\right)\right\|$ because $S_{z}^{* n} \longrightarrow 0$ strongly. For the converse inequality use Theorem 2 in [4].

If b is the Blaschke product with zeros $\left\{z_{j}\right\}$, the functions

$$
k_{j}(z)=\left(1-\left|z_{j}\right|^{2}\right)^{1 / 2} /\left(1-\bar{z}_{j} z\right)
$$

form a normalized (although not orthonormal) basis for K. We require an important property of interpolating sequences which was proved by Clark [2, Lemma 3.2].

LEMMA 3. Let b be an interpolating Blaschke product. Then the $\operatorname{map} G: k \rightarrow\left(a_{1}, a_{2}, \ldots\right)$ with $\left\{a_{n}\right\}$ given by

$$
k=\sum_{j=1}^{\infty} a_{j} k_{j}
$$

is a bounded invertible operator of K onto ℓ^{2}.
LEMMA 4. Let f be in H^{∞} and $\varepsilon \geq 0 .\left\|S_{f}\right\|_{e} \leq \varepsilon$ if and only if there exists a compact matrix $\left[t_{i j}\right]$ such that $\left[\varepsilon-w_{i} \bar{w}_{j} / 1-z_{i} \bar{z}_{j}\right] \geq\left[a_{i j}\right]$ on $\mathbb{N} \times \mathbb{N}$ where $\left[a_{i j}\right]=\left[w_{j} \bar{t}_{j i}+\bar{w}_{i} t_{i j}\right]+$ $\left[t_{i j}\right]\left[\left(1-\left|z_{i}\right|^{2}\right)^{1 / 2}\left(1-\left|z_{j}\right|^{2}\right)^{1 / 2} / 1-\bar{z}_{i} z_{j}\right]^{-1}\left[\bar{t}_{j i}\right]$.

Proof. If $\left\|S_{f}\right\|_{e} \leq \varepsilon$ then $\left\|f+b\left(H^{\infty}+C\right)\right\| \leq \varepsilon$ by Lemma 2. By Theorem 4 in [1] and Theorem 2 in [4], there exists a compact operator T on K such that $\left\|S_{f}+T\right\| \leq \varepsilon$. Hence

$$
\varepsilon^{2} I-S_{f} S_{f}^{*}-A \geq 0
$$

and

$$
A=S_{f} T^{*}+T S_{f}^{*}+T T^{*}
$$

where I denotes the identity operator on K. Let $\left\{e_{j}\right\}$ denote the orthonormal basis of ℓ^{2} given by $e_{j}=\left(\delta_{2 j}, \delta_{2 j}, \ldots\right)$. Then

$$
\begin{aligned}
& {\left[\left(A k_{i}, k_{j}\right)\right]=\left[\left(G^{*} A G e_{i}, e_{j}\right)\right]} \\
& =\left[\left(G^{*} S_{f} T^{*} G e_{i}, e_{j}\right)+\left(G^{*} T S_{f}^{*} G e_{i}, e_{j}\right)+\left(G^{*} T G\left(G^{*} G\right)^{-1} G^{*} T^{*} G e_{i}, e_{j}\right)\right] \\
& =\left[f\left(z_{j}\right)\left(G^{*} T^{*} G e_{i}, e_{j}\right)+\overline{f\left(z_{i}\right)}\left(G^{*} T G e_{i}, e_{j}\right)\right] \\
& +\left[\left(G^{*} T G e_{i}, e_{j}\right)\right]\left[\left(G^{*} G e_{i}, e_{j}\right)\right]^{-1}\left[\left(G^{*} T^{*} G e_{i}, e_{j}\right)\right] .
\end{aligned}
$$

Put $\left[t_{i j}\right]=\left[\left(G * T G e_{i}, e_{j}\right)\right]$ and $\left[\alpha_{i j}\right]=\left[\left(A k_{i}, k_{j}\right)\right]$, then the lemma follows. The converse follows by reversing the above steps.

Proof of Theorem. By Lemma 1 there exists a unique sequence $\left\{\omega_{j}\right\}$ in ℓ^{∞} modulo ℓ_{0}^{∞} such that $f\left(z_{j}\right)=w_{j} j=1,2, \ldots, f=u$ on $2(b)$ and f in H^{∞}.
(1) \Longrightarrow (2). Let $F \in H^{\infty}+C$ such that $\|F\|_{\infty} \leq \varepsilon$ and $F \mid Z(b)=u$,
then $F-f=0$ on $Z(b)$. We will prove that $F\left(z_{j}\right)-f\left(z_{j}\right) \longrightarrow 0$ as $j \longrightarrow \infty$. Suppose $\left\{F\left(z_{j}\right)-f\left(z_{j}\right)\right\} \notin \ell_{0}^{\infty}$. Then there exists a subsequence $\left\{s_{j}\right\}$ in $\left\{z_{j}\right\}$ and a nonzero complex number a such that $F\left(s_{j}\right)-f\left(s_{j}\right) \longrightarrow a$ as $j \longrightarrow \infty$. Moreover there exists a subnet $\left\{t_{j}\right\}_{\Lambda}$ in $\left\{s_{j}\right\}$ such that $t_{j} \xrightarrow[\Lambda]{ } \phi$ in $M\left(H^{\infty}\right)$ and $t_{j} \longrightarrow \phi(z)=\alpha$. Since $F \in H^{\infty}+C$, we can write $F=g+v$ for some $g \in H^{\infty}$ and $v \in C$. Then

$$
\begin{aligned}
& F\left(t_{j}\right)-f\left(t_{j}\right)=g\left(t_{j}\right)+v\left(t_{j}\right)-f\left(t_{j}\right) \\
& \longrightarrow \phi(g)+v(\alpha)-\phi(f)=\phi(F-f)=0 .
\end{aligned}
$$

This contradicts $a \neq 0$ and it follows that $F\left(z_{j}\right)-f\left(z_{j}\right) \longrightarrow 0$ $j \longrightarrow \infty$.
$(2) \Longrightarrow(3)$. Since $(F-f)\left(z_{j}\right) \longrightarrow 0$, if $\phi \in Z(b)$ then $\phi(F-f)=0$ and hence $F-f \in b\left(H^{\infty}+C\right)$ by [3, Theorem 1]. This and Lemma 2 imply $\left\|S_{f}\right\|_{e} \leq \varepsilon$. Now Lemma 4 implies (3).
$(3) \Longrightarrow(1)$. Use Lemmas 2 and 4.

References

[1] S. Axler, I.D. Berg, N. Jewell, and A. Shields, "Approximation by compact operators and the space $H^{\infty}+C$ ", Ann. of Math., 109 (1979), 601-612.
[2] D.N. Clark, "On interpolating sequences and the theory of Hankel and Toeplitz matrices", J. Funct. Anal. 5 (1970), 247-258.
[3] C. Guillory, K. Izuchi and D. Sarason, "Interpolating Blaschke products and division in Douglas algebras", Proc. Roy. Irish Acad. Sect. A, 84 (1984), 1-7.
[4] D. Sarason, "Generalized interpolation in H^{∞} ", Trans. Amer. Math. Soc., 127 (1967), 179-203.

Department of Mathematics
Faculty of Science (General Education)
Hokkaido University
Sapporo 060, Japan

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 $\$ \mathrm{~A} 2.00+0.00$.

