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Abstract

The covariogram gK(x) of a convex body K ⊆ E
d is the function which associates to

each x ∈ E
d the volume of the intersection of K with K + x, where E

d denotes the
Euclidean d-dimensional space. Matheron (1986) asked whether gK determines K , up
to translations and reflections in a point. Positive answers to Matheron’s question have
been obtained for large classes of planar convex bodies, while for d ≥ 3 there are both
positive and negative results. One of the purposes of this paper is to sharpen some of
the known results on Matheron’s conjecture indicating how much of the covariogram
information is needed to get the uniqueness of determination. We indicate some subsets
of the support of the covariogram, with arbitrarily small Lebesgue measure, such that
the covariogram, restricted to those subsets, identifies certain geometric properties of the
body. These results are more precise in the planar case, but some of them, both positive
and negative ones, are proved for bodies of any dimension. Moreover some results regard
most convex bodies, in the Baire category sense. Another purpose is to extend the class
of convex bodies for which Matheron’s conjecture is confirmed by including all planar
convex bodies possessing two nondegenerate boundary arcs being reflections of each
other.
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tomography; set covariance; quasicrystal
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1. Introduction

Let K be a convex body in E
d . The covariogram gK of K is the function

gK(x) = V (K ∩ (K + x)),

where x ∈ E
d and V denotes the volume in E

d . This functional, which was introduced by
Matheron in his book [20] on random sets, is also sometimes called the set covariance, and it
coincides with the autocorrelation of the characteristic function 1{K} of K , i.e.

gK = 1{K} ∗ 1{−K} . (1)

The covariogram gK is clearly unchanged by a translation or a reflection of K . (The term
reflection will always mean reflection in a point.) Matheron [21] and, independently, Adler and
Pyke [2] asked the following question.
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Covariogram problem. Does the covariogram determine a convex body, among all convex
bodies, up to translations and reflections?

Matheron conjectured a positive answer for the case in which d = 2, but this conjecture has
not been completely settled.

Matheron [20, p. 86] observed that, for u ∈ S
d−1 and for all r > 0, the derivatives

∂gK(ru)/∂r give the distribution of the lengths of the chords of K parallel to u. Such
information is common in stereology, statistical shape recognition, and image analysis, when
properties of an unknown body are to be inferred from chord length measurements; see [25],
[10], and [29], for example. Blaschke (cf. [24]) asked whether the distribution of the lengths
of chords (in all directions) of a convex body characterizes the body, up to rigid motions, but
Mallows and Clark [19] proved that this is false even for convex polygons. In fact (see [23])
the covariogram problem is equivalent to the problem of determining a convex body from all
its separate chord length distributions, one for each direction u ∈ S

d−1.
Adler and Pyke [1], [2] asked Matheron’s question in probabilistic terms. Does the dist-

ribution of the difference X−Y of independent random variables X and Y uniformly distributed
over K determine K , up to translations and reflections? Since the convolution in (1) is, up to
a multiplicative factor, the probability density of X − Y , this problem is equivalent to the
covariogram one.

Matheron’s problem is also relevant in X-ray crystallography, where the atomic structure
of a crystal (or quasicrystal) is to be found from diffraction images. A convenient way of
describing many important examples of quasicrystals is via the cut and project scheme. Here,
to the atomic structure, represented by a discrete set S contained in a space E, is associated a
lattice N in a higher-dimensional space E ×E′ and a window W ⊂ E′ (which in many cases is
a convex set). In this setting, S coincides with the projection on E of the points of the lattice N

which belong to E × W . In many examples the lattice N can be determined by the diffraction
image. To determine S it is however necessary to know W : the covariogram problem enters at
this point, since the covariogram of W can be obtained by the diffraction image; see [4].

Enns and Ehlers [11], [12], [13] express, in terms of the covariogram, the distributions of
random line segments in a convex body, under different types of randomness with which they
are generated. The monograph [15] contains an extensive discussion of retrieval problems for
convex bodies, while the survey [30] deals with algorithmic aspects of reconstruction problems
in convex geometry.

The first contribution to Matheron’s question was made in 1993 by Nagel [23], who gave
a positive answer when K is a planar convex polygon; see also Schmitt [25]. Matheron’s
conjecture is still unsettled for general planar convex bodies, but it has been confirmed for C2

convex bodies, nonstrictly convex bodies, and convex bodies that are not C1; see [6]. It has
recently been shown that every convex polytope in E

3 is determined by its covariogram, up
to translations and reflections; see [8]. For d ≥ 4 there exist examples of convex polytopes
that are not determined by their covariogram; see [6]. However, [16, p. 87] proves that, if P

is a d-dimensional simplicial convex polytope in general relative position with respect to −P ,
then the determination by the covariogram data is unique for every d ≥ 2 (see Section 2 for all
unexplained definitions). Bianchi [7] discussed various open retrieval problems related to the
covariogram.

One of the purposes of this paper is to sharpen some of the known results on Matheron’s
conjecture, indicating how much of the covariogram information is needed to get the uniqueness
of determination. We indicate some subsets of the support of the covariogram, with arbitrarily
small Lebesgue measure, such that the covariogram, restricted to those subsets, identifies certain
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geometric properties of the body. These results are more precise in the planar case, but some
of them, both positive and negative ones, are proved for bodies of any dimension. Moreover
some results regard most convex bodies, in the Baire category sense. Another purpose is to
extend the class of convex bodies for which Matheron’s conjecture is confirmed by including
all planar convex bodies possessing two nondegenerate boundary arcs being reflections of each
other.

Given two convex bodies K and H in E
d and a closed set X ⊆ E

d , we introduce the
following property involving K, H , and X (GC stands for ‘covariogram coincidence’, where
‘covariogram’ is traditionally denoted by the letter G):

GC(X) the equality gK(x) = gH (x) holds for all x in some neighborhood of X.

Theorem 1, below, presents two choices of the setX for which GC(X) implies the coincidence
of K and H up to translations and reflections, under the assumption K ∈ C2+. Before stating the
theorem we need to introduce the notion of local symmetry and give some related explanations.

A pair of closed boundary arcs of a planar convex body K is said to be a local symmetry of K

if they are reflections of each other in a point, have disjoint and nonempty relative interiors, and
they are not properly contained in a pair of boundary arcs with the same properties. A planar
convex body K is called locally symmetric if it possesses a local symmetry. Planar convex
bodies without local symmetries are called globally nonsymmetric. It is known that the support
of gK is the difference body of K , DK = {x − y : x, y ∈ K}, and that DK is o-symmetric. If
A+ and A− are arcs of bdK (where bd stands for boundary) which compose a local symmetry,
then the set 2(A+ ∪A−), translated in such a way to be o-symmetric, is the union of two arcs A

and −A of bdDK . We say that these arcs of bdDK correspond to the local symmetry A+, A−;
see Figure 1.

A convex body K is said to belong to the class C2+ if its boundary is a two-times continuously
differentiable manifold and all its principal curvatures are nonzero (for detailed information,
see [26, Section 2.5]).

Theorem 1. Let K and H be planar convex bodies and let K be C2+ regular. Let {±An}n∈N

be the collection of all the arcs of bdDK which correspond to local symmetries of K , for a
suitable N ⊂ N. By xn we denote the midpoint of the segment joining the endpoints of the arc
An. Let X0 := {±xn : n ∈ N } and let X = X0 ∪ bdDK or X = X0 ∪ {o}; see Figure 1. Then
GC(X) implies the coincidence of K and H , up to translations and reflections.

O

K DK

(a) (b)

Figure 1: Part (a) shows the body K with two local symmetries plotted in bold.
Part (b) shows arcs ±An of DK , corresponding to local symmetries of K , plotted

in bold; points of X0 are depicted by open circles.
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We remark that the two choices of X defined in the statement of Theorem 1 are in some
sense minimal for the assertion of the theorem to hold (for further details see Remark 1, below).
Moreover, the set X0 depends only on gK and not on K , in the sense that if H and K satisfy
GC(bdDK) or GC(o), then the same set X0 corresponds to H and K . This is the content of
the second part of Theorem 2, below.

The following corollary is a direct consequence of Theorem 1.

Corollary 1. Let K and H be planar convex bodies and let K be C2+ regular. Then the following
statements hold.

(i) There exists a closed and at most countable subset X of DK , with no accumulation points
in int DK (where int stands for interior) such that GC(X ∪ {o}) implies the coincidence
of K and H , up to translations and reflections. Furthermore, X can be chosen to be
lying on a strictly convex curve.

(ii) If K is globally nonsymmetric and X is either {o} or bdDK , then GC(X) implies the
coincidence of K and H , up to translations and reflections.

It is an open question whether Corollary 1(ii) holds for all strictly convex K not necessarily
C2+. The positive answer to this question would imply the confirmation of Matheron’s conjecture
for all planar convex bodies.

The following theorem presents determination results involving locally symmetric and
symmetric convex bodies.

Theorem 2. Let K and H be planar convex bodies with K strictly convex. Then the following
statements hold.

(i) If K is o-symmetric and A is a closed simple curve in int DK bounding an open region
in DK that contains the origin, then the conditions DK = DH and GC(A) imply the
coincidence of K and H , up to translations and reflections.

(ii) If X is either {o} or bdDK , then GC(X) implies the coincidence of all local symmetries
of K and H , up to translations.

The statement of the following corollary follows directly from Theorem 2(ii) and [6, Theo-
rem 1.1 and Proposition 1.4].

Corollary 2. Every locally symmetric convex body in E
2 is determined uniquely, up to trans-

lations and reflections, by its covariogram function.

Let B
d denote the closed unit ball in E

d centered at the origin. Furthermore, we introduce
the condition GC′(X), a relaxation of GC(X), and the ‘local coincidence’ condition LC:

GC′(X) the equality gK(x) = gH (x) + c holds for all x in some neighborhood of X and a
suitable constant c ∈ R,

LC for every boundary point p of K there exists a boundary point q of H such that for some
ε > 0 the bodies K ∩ (p + εB

d) and H ∩ (q + εB
d) coincide, up to translations and

reflections (the same statement also holds with the roles of K and H interchanged).

The relationship between the conditions GC({o}), GC′({o}), GC(bdDK), and LC is
discussed in the following theorem.

https://doi.org/10.1239/aap/1189518630 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518630


Retrieving convex bodies from restricted covariogram functions SGSA • 617

Theorem 3. Let K and H be convex bodies in E
d , d ≥ 2. Then the following statements hold.

(i) If K is strictly convex, then LC implies GC(bdDK).

(ii) If d = 2 and K is C2+, then LC is equivalent to GC(bdDK).

(iii) If d = 2 and K is strictly convex, then GC′({o}) is equivalent to GC(bdDK).

(iv) There exist planar convex bodiesK andH belonging to the classC2+ such that GC(bdDK)

holds, while GC({o}) does not.

(v) There exist K and H , which are convex d-polytopes, such that the conditions DK = DH

and GC({o}) hold, while GC(bdDK) does not.

It is an open problem whether, for C2+ convex bodies in E
d , d ≥ 3, the condition GC(bdDK)

implies LC.
The space Kd endowed with the Hausdorff metric is locally compact and therefore a Baire

space; see [17] and [26, p. 119]. Thus, we may speak about statements that hold for most
convex bodies, i.e. for all convex bodies with at most a meager set of exceptions. We recall that
a set is said to be meager if it is a countable union of nowhere dense sets and residual if it is
a complement of a meager set. Trivially, a finite intersection of residuals is a again a residual.
Furthermore, every set possessing a residual subset is also a residual.

Theorem 4. In the Baire category sense, for most convex bodies K and all convex bodies H

in E
d , the following statements hold.

(i) If K and H satisfy GC(bdDK), then K and H coincide, up to translations and reflections.

(ii) If d = 2 and K and H satisfy GC({o}), then K and H coincide, up to translations and
reflections.

Furthermore, the above two statements cannot be extended to all pairs of convex bodies
K and H , since, for each d ≥ 2, there exists bodies K and H in E

d not coinciding, up to
translations and reflections, and such that GC(bdDK ∪ {o}) holds. In addition, the bodies K

and H satisfying the above conditions can be chosen belonging to the class C2+.

It is an open question whether Theorem 4(ii) can be carried over to convex bodies of higher
dimensions.

Theorem 4 is related to [16, Theorem 2] and [9, Theorem 6.2]. Theorem 2 of [16] states
that most convex bodies K in E

d , for any d ≥ 3, are determined by the combined knowledge
of the width of K in direction u and of the (d − 1)-dimensional volume of K | u⊥ for each
u ∈ S

d−1. Here, u⊥ denotes the orthogonal complement to u, and K | u⊥ stands for the
orthogonal projection of K onto the hyperplane u⊥. (See also [28], where ‘local versions’ of
some results from [16] are obtained, as well as [15, Theorems 3.3.17 and 3.3.18].) The relation
with the covariogram comes from the fact that knowing its support DK is equivalent to knowing
the width of K in all directions, and that the knowledge of gK in a neighborhood of o gives the
volumes of all (d − 1)-dimensional projections of K . This follows from the formula

∂+gK(ru)

∂r

∣∣∣∣
r=0

= −Vd−1(K | u⊥), u ∈ S
d−1, (2)

proved in [20]. Here ∂+/∂r and Vd−1 stand for right derivative and (d−1)-dimensional volume,
respectively. Theorem 6.2 from [9] is another result related to our Theorem 4, which states that
most convex planar bodies are determined by the covariogram function over its entire support.
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In Section 3 we prove Theorem 3. Sections 4 and 5 are independent of each other and present
proofs of Theorem 1 and Theorem 2, respectively. In Section 6 we prove Theorem 4. In this
version of the paper the proofs of some of the most technical lemmas are omitted, and those of
a few theorems are just sketched. The complete version is available online [3].

2. Background from convex geometry

The Euclidean d-dimensional space with origin o, scalar product 〈 . , . 〉, and norm | · | is
denoted by E

d . The unit sphere and the unit ball in E
d are denoted by S

d−1 and B
d , respectively.

The orthogonal projection of a set X ⊆ E
d onto an affine space L ⊆ E

d is denoted by X|L.
If u ∈ E

d , then u⊥ stands for the orthogonal complement to u. We denote the j -dimensional
volume of a convex set in E

d of dimension at most j by Vj , j ∈ {1, . . . , d}. If j = d then we
omit the subscript and write simply V . We write H j for the j -dimensional Hausdorff measure
in E

d . In what follows, in integrals on j -dimensional spheres in E
d (with j ≤ d − 1) we

abbreviate H j (du) by du.
The abbreviations bd, int, relint, cl, and aff stand for boundary, interior, relative interior,

closure, and affine hull, respectively.
Following the monograph [26] we denote by Kd and Kd

0 the classes of nonempty, compact,
convex sets and compact, convex sets with nonempty interior, respectively. Elements of
Kd

0 are said to be convex bodies. If o ∈ K , then rK(u) := max{α > 0 : αu ∈ K},
u ∈ S

d−1, is called the radius function of K . We also introduce the support function of
K , hK(u) := max{〈x, u〉 : x ∈ K}, u ∈ E

d . The difference body of a convex body K is the
set DK := K + (−K). The function wK(u) := hDK(u) is called the width function of K .
Observe that for u ∈ S

d−1 the quantity wK(u) is equal to the distance between the two distinct
supporting hyperplanes of K orthogonal to u. The face of a convex body K ⊆ E

d in the direction
u ∈ E

d \ {o} is denoted by FK(u). Elements of Kd
0 representable as intersection of a

finite number of closed halfspaces are called convex d-polytopes. Two convex d-polytopes
P , Q ⊆ E

d are said to be in a general relative position if, for every u ∈ S
d−1 and x ∈ E

d ,
FP (u) ∩ (FQ(u) + x) is either empty or a singleton.

If K is a convex body in E
d and u ∈ E

d \ {o} then, for p ∈ relint FK(u), the normal cone
NK(p) does not depend on the choice of p in relint FK(u). We denote NK(p) by NK(u) and
call it the normal cone of K in direction u.

If X is a subset of bdK , then the set of all outward unit normals of K at points of the set X

is called the spherical image of X with respect to K . Two boundary arcs A and B of K ⊆ E
2

are said to be antipodal if their spherical images with respect to K are reflections of each other.
For ε > 0 the ε-neighborhood of a set X ⊆ E

d is the set X+ε · int B
d , i.e. the set consisting

of all those points x whose distance to some point of X is strictly less than ε. The Hausdorff
distance δ(X, Y ) between nonempty compact sets K and H in E

d is the least possible α ≥ 0
such that X ⊆ Y + α · B

d and Y ⊆ X + α · B
d . Information on the Hausdorff distance in

the class of convex bodies is collected in [26, Section 1.8]. We introduce the distance function
δ̄(X, Y ) for sets X, Y ⊆ E

d as the minimum of δ(X, φ(Y )), where φ ranges over all translations
and reflections.

The area measure of order d − 1 of a convex body K ⊆ E
d (see [26, Section 4.2]) is given

by

Sd−1(K, ω) := Hd−1({p ∈ bdK : some outward normal of K at p belongs to ω}),
where ω is a Borel set in S

d−1. If d = 2, then S1(K, ·) is said to be the length measure of K .
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Given a strictly convex body K ⊆ E
d , zK(u), u ∈ S

d−1, denotes the boundary point of K

with outward normal u. Note that zK+H (u) = zK(u)+zH (u) for all strictly convex K, H ⊆ E
d

and u ∈ S
d−1. If K ∈ C2+ and d = 2, we denote the curvature of K at zK(u) by τK(u). We

parametrize the unit circle S
1 in a standard manner by the vector function u(t) := (cos t, sin t),

where t ∈ R, and we put τK(t) := τK(u(t)) and zK(t) := zK(u(t)). For t1, t2 ∈ R with
t1 ≤ t2, we introduce the notation zK(t1, t2) := {zK(t) : t1 ≤ t ≤ t2}.

The knowledge of zK(t1) and the curvature τK(t) for t ∈ [t1, t2] allows us to determine
the arc zK(t1, t2). More formally, the parametrization zK(t), t1 ≤ t ≤ t2, of zK(t1, t2) is
determined from the representation

zK(t) = zK(t1) +
∫ t

t1

u(s + π/2)

τK(s)
ds. (3)

Equality (3) can be found in [14, p. 11] and [9, p. 186] (see also a more general result
[26, Theorem 4.3.2]). By (3) we see that two antipodal arcs zK(t1, t2) and zK(t1 + π, t2 + π)

with t1 < t2 and t2 − t1 < π are reflections of each other if and only if τK(t) = τK(t + π) for
every t ∈ [t1, t2].

3. The relationship between the local coincidence condition and covariogram data

In this section we prove parts (i), (iii), (iv), and (v) of Theorem 3. The proof of part (ii) is
postponed to Section 4.

Sketch of the proof of Theorem 3(i). Using LC and the strict convexity of K , we see that for
every u ∈ S

d−1, there exists a relatively open subset Gu of S
d−1 such that (−Gu) ∩ Gu = ∅,

u ∈ Gu, and the equality

{zK(Gu) + x1(u), −zK(−Gu) − x2(u)} = {zH (Gu), −zH (−Gu)} (4)

holds for some vector functions x1(u) and x2(u). This implies that

zDK(Gu) + x1(u) − x2(u) = zDH (Gu) for each u ∈ S
d−1. (5)

By strict convexity there is an unique way of gluing together adjacent neighborhoods of bdDH

(and of bdDK) and the identity (5) implies that DH = DK and, also, that x1(u) = x2(u) for
each u ∈ Sd−1. Once this is proved, it is straightforward to conclude, from (4), that gH and
gK coincide in a neighborhood of the boundary of their common support.

For x ∈ int DK \ {o}, let p and q be the endpoints of the arc (K + x) ∩ bdK . Then
p − x and q − x belong to bdK and PK(x) := conv{p, q, p − x, q − x} is a parallelogram.
Following [21] we define DK(x) to be ±(p − q) with the sign determined by the condition
〈x, Rπ/2 DK(x)〉 < 0; see Figure 2. It is known that

DK(x) = − Rπ/2(∇gK(x)), (6)

where Rπ/2 denotes, throughout the paper, the counterclockwise rotation about the origin by
the angle π/2 and ∇ stands for the gradient. We also have the equality

DK(DK(x)) = −x. (7)
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O

K DK(x)

(a) (b)

q – x

p – x

p

q

x

Figure 2: The parallelogram PK(x) and the vector DK(x).

Proof of Theorem 3(iii). First we prove that GC′({o}) implies GC(bdDK). In the plane
V1(K | u⊥) = wK(Rπ/2 u) = hDK(u) for every u ∈ S

1. Hence, from (2) we find that
GC′({o}) implies DK = DH .

It is easy to prove that the mapping DK : int DK \ {o} → int DK \ {o} is continuous and,
by (7), also that its inverse is continuous. Moreover, it maps a punctured neighborhood G of
o in a set G′ with bdDK ⊆ bdG′. Let G be a punctured neighborhood of o in which gK and
gH coincide, up to an additive constant. Then, in view of (6), DK(x) = − Rπ/2(∇gK(x)) =
− Rπ/2(∇gH (x)) = DH (x) for all x ∈ G and we get that PK(x) and PH (x) are translates of
each other; see the related Lemma 1.5 of [6].

The set K \ int PK(x) is the union of the four lunettes outside PK (where a lunette of K is
a compact set bounded by a chord of K and a boundary arc of K joining the endpoints of this
chord). Let p and q be as in the definition of DK . The sum of the areas of the two lunettes
adjacent to [p, q] and [p, q] − x equals gK(x), the sum of the areas of the other two lunettes
equals gK(DK(x)). Similar considerations hold for H too; thus

gK(DK(x)) = V (K) − V (PK(x)) − gK(x) = gK(o) − V (PK(x)) − gK(x), (8)

gH (DH (x)) = V (H) − V (PH (x)) − gH (x) = gH (o) − V (PH (x)) − gH (x). (9)

Since gK(x)−gK(o) = gH (x)−gH (o) for x ∈ G, we obtain, from (8) and (9), gK(x) = gH (x)

for x ∈ G′.
The proof of the converse implication is similar. An open subset G′ of DK with bdG′ ⊇

bdDK and gK(x) = gH (x) for x ∈ G,′ is mapped by DK onto a punctured neighborhood G

of the origin. Thus, using (8) and (9), we obtain gK(x) − gH (x) = V (K) − V (H) for x ∈ G.

Proof of Theorem 3(iv). In view of Theorem 3(i) and (ii), it suffices to construct K and H

satisfying LC and V (K) < V (H). Let T be a regular triangle of unitary edge length with
center at the origin. If u1, u2, and u3 denote the unit outer normals to the edges, the length
measure of T is

∑3
i=1 δui

, where δui
is the Dirac delta distribution on the manifold S

1 centered
in ui . For each i = 1, 2, 3, let φi be a continuous nonnegative function on S

1 supported
in a small arc centered at ui , whose integral on S

1 is 1. Moreover, choose the φi in such a
way that

∫
S1

∑3
i=1 φi(u)u du = 0. Let K1 be a convex body in E

2 whose length measure

has density
∑3

i=1 φi . It is clear that the measure S1(K1, ·) approximates, in some sense, the
measure S1(T , ·). In fact, it can be shown that the distance in the Prohorov metric (see [18] for
a definition) of S1(K1, ·) and S1(T , ·) can be made arbitrarily small.

https://doi.org/10.1239/aap/1189518630 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518630


Retrieving convex bodies from restricted covariogram functions SGSA • 621

K

(a) (b)

H

Figure 3: The covariograms of H and K coincide in a neighborhood of the
boundary of their support but do not coincide in any neighborhood of o.

Let K2 be a slight rotation of K1 such that the supports of the length measures of K1 and
K2 are disjoint. By a stability result for the Minkowski problem with respect to the Prohorov
metric proved in [18, Theorem 3.1] K1 + K2 is close to 2T , while K1 − K2 is close to DT in
the metric δ̄ (Theorem 3.1 from [18] is a strengthening of Theorem 7.2.2 from [26]; see also the
related Theorems 4.3.5 and 7.2.6 from this monograph). Consequently, the area of K1 + K2 is
close to 4V (T ), while the area of K1 − K2 is close to V (DT ) = 6V (T ). Let

K := K1 + K2 + B
2, H := K1 − K2 + B

2.

See Figure 3, which depicts possible choices of bodies K and H .
By construction, K and H are C2+ and they satisfy LC. Thus, by Theorem 3(i) and (ii) they

have equal covariograms in a neighborhood of bdDK . Furthermore, K has smaller area than
H , since by the two-dimensional version of the Steiner formula (see [26, Section 4.1]) we have
V (K) = V (K1 +K2)+H1(bdK1)+H1(bdK2)+π and V (H) = V (K1 −K2)+H1(bdK1)+
H1(bdK2) + π .

In the proof of Theorem 3(v) we shall need the following lemma, presenting a formula which
is also related to a formula given in [22, p. 18]. For the proof of Lemma 1 see [3].

Lemma 1. Let P be a convex polygon in E
2, and let G(P ) be given by

G(P ) :=
⋂

{DT : T = conv{p1, p2, p3}, p1, p2, p3 are consecutive vertices of P }.

Then o ∈ int G(P ) and, for u ∈ G(P ), we have gP (u) = V (P )−wP (Rπ/2 u)+|u|2C, where
C depends only on {NP (Rπ/2 u), NP (− Rπ/2 u)}.

If di ∈ N and Ki is a convex body in E
di (i = 1, 2), then the covariogram function of

K := K1 × K2 is given by

gK(x) = gK1(x1)gK2(x2), (10)

where xi ∈ E
di (i = 1, 2) and x := (x1, x2).

Proof of Theorem 3(v). We introduce convex polygons P1, P2 ⊆ E
2 which are obtained

from the square Q := [−10, 10]2 by ‘cutting off’ isosceles triangles at the vertices of Q. The
polygon Pk (k = 1, 2) is constructed by cutting off the isosceles triangle with lateral sides
having length αk

i,j at the vertex (10i, 10j) of Q for each i, j ∈ {−1, 1}, where the constants
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P1

(a) (b)

P2

Figure 4: The covariograms of P1 and P2 have equal supports and coincide
in a neighborhood of o, but they do not coincide in any neighborhood of the

boundary of their support.

αk
i,j are defined as follows:

α1
1,1 = 10, α2

1,1 = 9,

α1−1,1 = 2, α2−1,1 = 1,

α1−1,−1 = 2, α2−1,−1 = 3,

α1
1,−1 = 8, α2

1,−1 = 9.

See Figure 4, which depicts P1 and P2. No translation or reflection of P1 coincides with P2
and, moreover, for each k ∈ {1, 2},

V (Pk) = V (Q) − 1

2

1∑
i,j=−1

(αk
i,j )

2 = 202 − 1

2
172.

Furthermore, it is easy to see that DP1 = DP2. Lemma 3.1 from [5] proves that, for each
u ∈ S

1, the knowledge of the covariogram of a convex polygon P ⊆ E
2 near the boundary of

its support determines the set {V1(FP (−u)), V1(FP (u))}. But, for u = (1, 1), we have

{10
√

2, 2
√

2} = {V1(FP1(−u)), V1(FP1(u))} �= {V1(FP2(−u)), V1(FP2(u))} = {9√
2, 3

√
2}.

Hence, gP1 and gP2 do not coincide in some neighborhood of bdDP1 = bdDP2.
For j ∈ {1, 2}, let G(Pj ) be defined as in the statement of Lemma 1. Since, for each u ∈ R

2,

{NP1(Rπ/2 u), NP1(− Rπ/2 u)} = {NP2(Rπ/2 u), NP2(− Rπ/2 u)},
Lemma 1 implies that gP1(v) = gP2(v) for each v ∈ G(P1) ∩ G(P2). Since this set is a
neighborhood of o the proof for d = 2 is concluded by putting K = P1 and H = P2.

For d ≥ 3, we define K = P1 × [−1, 1]d−2 and H = P2 × [−1, 1]d−2, and property (10)
proves the assertion.

4. Determination results for planar C2+ bodies

In [9, Lemma 2.1] it was shown that for planar C2+ convex bodies the asymptotic behaviour
of the covariogram function near the boundary of its support determines the nonordered pair
{τK(u), τK(−u)} for every u ∈ S

1. Thus, the following lemma holds.
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A

B

z

A + u

Figure 5: The arc A + u captures the endpoint z of B.

Lemma 2. Let K be a planar C2+ convex body. Then the covariogram of K over any neigh-
borhood of bdDK determines the mapping u �→ {τK(u), τK(−u)}, where u ranges over S

1.

Suppose that A and B are two disjoint antipodal boundary arcs of K . Let z be an endpoint
of B. Let us denote by B̄ the convex curve obtained by joining B and the appropriate half of
the line which is tangent to B at z. We say that the translated arc A + u, u ∈ E

d , captures the
endpoint z of B if A + u intersects B̄ at two points which bound an arc of B̄ containing z in its
relative interior; see Figure 5.

The following lemma on capturing arcs (whose proof is given in [3]) improves slightly
Lemma 4.2 of [9], since it also indicates which translation vector can be chosen for making a
capture.

Lemma 3. Let K be a planar C2+ convex body. Assume that the antipodal arcs zK(t1, t2) and
zK(t1 + π, t2 + π) (where t1 < t2 and t2 − t1 < π ) are not reflections of each other. Let t∗
be equal to t1 for the case in which τK(t1) �= τK(t1 + π) and be equal to the maximal value
in [t1, t2] such that for every t ∈ [t1, t∗] the equality τK(t) = τK(t + π) holds, otherwise. We
put z0 := 1

2 (zDK(t1) + zDK(t∗)). Then there exists a vector u arbitrarily close to z0, such that
either zK(t1) is captured by zK(t1 +π, t2 +π)+u or zK(t1 +π) is captured by zK(t1, t2)−u.

The following lemma states that C2+ regularity of a planar convex body K can be recognized
from the covariogram of K over every neighborhood of bdDK; see [3] for the proof.

Lemma 4. LetK andH be planar convex bodies withK ∈ C2+. Then the condition GC(bdDK)

implies that H also belongs to the class C2+.

Proof of Theorem 1. Assume that X = X0 ∪bdDK . First, by Lemma 4 we deduce that H ∈
C2+. If K is centrally symmetric, then the knowledge of the mapping u �→ {τK(u), τK(−u)},
u ∈ S

1, determines K . Thus, in view of Lemma 2, we get the assertion. Now let us assume
that K is not centrally symmetric. Furthermore, let X′ be an arbitrary open set with X ⊆ X′.
Let us prove, by contradiction, that K is determined within the class C2+ by its covariogram
over X′. Assume the contrary, i.e. there exists a planar convex body H from the class C2+
such that H cannot be obtained from K by reflection or translation and gK(x) = gH (x) for
all x ∈ X′. Let t0 ∈ R be such that τK(t0) �= τK(t0 + π). In [9, pp. 186–187] it was shown
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that by replacing H by an appropriate translation or reflection there exist arcs A+ and A−
containing zK(t0) and zK(t0 + π), respectively, in their relative interiors and contained in the
set bdK ∩ bdH . Furthermore, in [9] it was also noted that if we additionally assume that A+
and A− are maximal arcs with the above properties, then A+ and A− are antipodal to each
other, i.e. A+ = zK(t1, t2) and A− = zK(t1 + π, t2 + π), for t1, t2 ∈ R with t1 < t0 < t2 and
t2 − t1 < π . We shall get a contradiction by showing that A+ or A− is not maximal, i.e. there
exists an arc which strictly contains A+ or A− and is contained in (bdK) ∩ (bdH).

Obviously, τK(t) = τH (t) for t ∈ [t1, t2]∪[t1 +π, t2 +π ]. By Lemma 2 we get the equality

{τK(t), τK(t + π)} = {τH (t), τH (t + π)} (11)

for each t ∈ R. If τK(t1) �= τK(t1+π), then using the equalities τK(t1) = τH (t1), τK(t1+π) =
τH (t1 +π), (11), and the continuity of the functions τK(t) and τH (t) we get that there exists an
ε > 0 such that the equality τK(t) = τH (t) holds for t ∈ [t1 − ε, t1]. Consequently, by (3) we
have zK(t1−ε, t1) = zH (t1−ε, t1), a contradiction to the maximality of A+. Thus, in the sequel
we assume that τK(t1) = τK(t1 + π). If there exists an ε > 0 such that τK(t) = τK(t + π)

for t ∈ [t1 − ε, t1], then in view of (11) we have τK(t) = τH (t) for t ∈ [t1 − ε, t1], which,
by (3), implies the equality of the arcs zK(t1 − ε, t1) and zH (t1 − ε, t1), a contradiction to the
maximality of A+.

Now let us switch to the case when, for every ε > 0, the functions τK(t) and τK(t + π)

restricted to [t1 − ε, t1] are not identically equal, i.e. there exists a t ∈ [t1 − ε, t1] with τK(t) �=
τK(t + π). Let t∗ be the maximal scalar such that t1 ≤ t∗ ≤ t2 and τK(t) = τK(t + π) for
t ∈ [t1, t∗]. If t∗ = t1, we put v = zK(t1). If t∗ > t1, then for some n ∈ N the arc zK(t1, t

∗)
is a translate of 1

2An or − 1
2An. In this case, we put v = xn.

By Lemma 3 we see that either the endpoint zK(t1) of A+ can be captured by A− or the
endpoint zK(t1 +π) of A− can be captured by A+. Furthermore, the corresponding translation
vector can be chosen arbitrarily close to v or −v. Without loss of generality, we assume
that zK(t1) is captured by A−. In [9, pp. 188–189] it was shown that in this case a small arc
zK(t1+π −ε′, t1+π), ε′ > 0, is determined by the knowledge of zK(t1, t2), zK(t1+π, t2+π),
and the values of the covariogram functions at points arbitrarily close to v. This means that we
have the equality zK(t1 + π − ε′, t1 + π) = zH (t1 + π − ε′, t1 + π), a contradiction to the
maximality of A−.

Theorem 3(iii) and the statement of Theorem 1 for the case in which X = X0 ∪ bdDK

trivially imply the statement of Theorem 1 for the case in which X = X0 ∪ {o}.
Proof of Theorem 3(ii). We only need to verify the implication GC ⇒ LC for planar C2+

convex bodies K , since the reverse implication is covered by Theorem 3(i). The proof of this
implication uses ideas very similar to those of the proof of Theorem 1, and therefore we omit
it and direct the reader to [3] for the details.

Remark 1. It is natural to look for minimal (with respect to inclusion) sets X such that GC(X)

implies coincidence of K and H , up to translations and reflections. Since the covariogram is
o-symmetric, we limit our discussion to o-symmetric sets X. We claim that the set X defined
in Theorem 1 is minimal in the following sense. For certain C2+ sets K it suffices to remove
from X0 two pairs of opposite points to violate the conclusion of Theorem 1. Let us construct a
corresponding counterexample. Assume that two local symmetries of K have the same center
of symmetry, say o. Let ±A1 and ±A2 be the arcs that constitute these local symmetries, and
±x1 and ±x2 be the midpoints defined as in the statement of Theorem 1, which correspond to
the local symmetries ±A1 and ±A2. Let Bi , i ∈ {1, 2, 3, 4}, be the connected components
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(in counterclockwise order) of bdK \ (±A1 ∪ ±A2). We claim that there exist a convex body
H which is not a translation or a reflection of K and such that GC(X \ {±x1, ±x2}) holds. It
suffices to define H as the body obtained from K by flipping the boundary arcs B1 and B3.
That is, the boundary of H is composed of the arcs ±Ai (i = 1, 2), B2, B4, −B1, and −B3.
The bodies K and H satisfy LC and thus their covariograms coincide in a neighborhood of
bdDK ∪ {o}, by Theorem 3(iii). Moreover, if C and D are the arcs which constitute a local
symmetry of K , different from ±A1 and ±A2, then the boundaries of K and H (properly
translated and, possibly, reflected) coincide in a neighborhood of C and D. Therefore, gK

and gH coincide in a neighborhood of the midpoints corresponding to the local symmetry. We
emphasize that the example constructed here is similar in nature to the example from the proof
of Theorem 4 (for the case in which d = 2).

5. Determination results for symmetric and locally symmetric bodies

Lemma 5. let K and H be strictly convex bodies in E
2. Let K be o-symmetric and let DK =

DH . Then, for scalars t0, t1, and t2 with t0 ≤ t1 ≤ t2 and t2 − t0 ≤ π , the subset

zH (t1, t2) ∪ zH (t1 + π, t2 + π) ∪ {zH (t0), zH (t0 + π)}
of bdH is centrally symmetric if and only if for every t ∈ [t1, t2] we have ∇gK(xt ) = ∇gH (xt ),
where xt := 1

2 (zDK(t0) + zDK(t)).

Proof. Let us prove the sufficiency. The equality ∇gK(xt ) = ∇gH (xt ) is equivalent
to the condition that PH (xt ) is a translate of PK(xt ) (see (6) for the relation among the
gradient and PK ). But, since K is o-symmetric, PK(xt ) = conv{± 1

2zDK(t0), ± 1
2zDK(t)}.

Consequently, the diagonals of PH (xt ) are translates of [o, zDK(t0)] and [o, zDK(t)]. The
chord [zH (t0), zH (t0 +π)] is the only chord of H being a translate of [o, zH (t0)− zH (t0 +π)]
(because that chord is an affine diameter, i.e. zH (t0) and zH (t0 + π) are antipodal). Since

zH (t0) − zH (t0 + π) = zDH (t0) = zDK(t0),

[zH (t0), zH (t0+π)] is a diagonal of PH (xt ). A similar argument implies that [zH (t), zH (t+π)]
is the other diagonal of PH (xt ). Hence, for every t ∈ [t1, t2], the point zH (t) is a reflection of
zH (t +π) with respect to the midpoint 1

2 (zH (t0)+zH (t0 +π)) of the diagonal [zH (t0), zH (t0 +
π)] and the sufficiency is verified.

Now let us show the necessity. If zH (t1, t2) ∪ zH (t1 + π, t2 + π) ∪ {zH (t0), zH (t0 + π)} is
centrally symmetric, then a translate of this set is contained in 1

2 bdDH . Since DK = DH and
K is o-symmetric, a translate of the same set coincides with zK(t1, t2) ∪ zK(t1 + π, t2 + π) ∪
{zK(t0), zK(t0 + π)}. The latter implies that for every t ∈ [t1, t2] the parallelogram PH (xt ) is
a translate of PK(xt ) and, in view of (6), shows the sufficiency.

Proof of Theorem 2(i). The equality DK = DH implies that H is strictly convex. Let G

be any open set containing A. We pick an arbitrary s ∈ R and show that for a sufficiently small
ε > 0 the boundary arcs bdH ∩ (zH (s) + ε · B

2) and bdH ∩ (zH (s + π) + ε · B
2) around the

antipodal points zH (s) and zH (s+π), respectively, are symmetric with respect to a reflection in
a point. If t is ranging from s to s +π , then the midpoint of the chord [zDH (s), zDH (t)] of DH

traverses a path starting at zDK(s) and terminating at the origin. Thus, for some t0 ∈ [s, s +π ],
the midpoint 1

2 (zDH (s) + zDH (t0)) of [zDH (s), zDH (t0)] lies in A; see Figure 6.
Clearly, for some ε > 0, the midpoint of [z, zDH (t0)] lies in G for all z ∈ bdDH with

|z − zDH (s)| < ε. Let t1 and t2 be scalars such that

bdDH ∩ (zDH (s) + ε · B
2) = {zDH (t) : t1 ≤ t ≤ t2}.
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O

zDH(s)

zDH(t0)

DH

Figure 6: The set G containing A is shaded in gray

The assumption of the theorem and (6) imply that ∇gH (xt ) = ∇gK(xt ), where xt := 1
2 (zDH (t0)

+ zDH (t)) and t ∈ [t1, t2]. Hence, in view of Lemma 5, zH (t1, t2) is a reflection of zK(t1 +
π, t2 + π) in a point. Thus, each pair of antipodal points of H can be enclosed in the relative
interior of symmetric boundary arcs of H , which implies the central symmetry of H .

Proof of Theorem 2(ii). The case in which X = {o} can be transformed to the case in which
X = bdDK using Theorem 3(iii). Thus, we assume that X = bdDK . The statement of the
theorem then follows from Lemma 5 applied for arbitrary t0 ≤ t1 ≤ t2 with t0 = t1 and t2
sufficiently close to t1.

Proof of Corollary 2. Let K be an arbitrary locally symmetric convex body in E
2. Let us

show that gK determines K , up to translations and reflections. We assume that K is strictly
convex, since for nonstrictly convex bodies the determination was verified in [6, Theorem 1.1].
By Theorem 2(ii) we can determine all local symmetries of K , up to translations. But then the
theorem follows from Proposition 1.4 of [6], stating that if additionally to the knowledge of
gK a nondegenerate boundary arc of K is known, then K can be determined uniquely, up to
translations and reflections.

6. Genericity results

The Nikodym distance δN (also known as the symmetric difference metric) between convex
bodies K and H in E

d is given by δN(K, H) = V ((K \ H) ∪ (H \ K)). It is known that
δN generates the same topology in the class of convex bodies as the Hausdorff distance δ [26,
pp. 58–59]. Furthermore, the inequality (see [9, p. 195])

|gK(x) − gH (x)| ≤ 2δN(K, H)

for all x ∈ E
d , shows that the operator K �→ gK is continuous provided that the class of

convex bodies is endowed with the Nikodym distance, and the distance between covariograms
is measured with respect to the maximum norm.
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The proof of the following lemma is given in [3].

Lemma 6. The class of totally nonsymmetric C2+ planar convex bodies is dense in the class of
all C2+ planar convex bodies, with respect to the Hausdorff metric.

Now we are ready to give the proof of the genericity statement given in Theorem 4(i). We
shall settle the cases in which d = 2 and d ≥ 3 independently of each other.

Sketch of the proof of Theorem 4 for d = 2. Let K ′ be the class of all planar convex bodies
which are not determined, up to translations and reflections, by the covariogram over every
neighborhood of bdDK . It can be proved (see [3] for details) that K ′ can be decomposed as a
countable union of closed sets. This implies that the complement U of K ′ is a countable inter-
section of open sets. Using Corollary 1(i), we get that U contains all C2+ totally nonsymmetric
planar convex bodies. Furthermore, applying Lemma 6, we see that U is dense in the class of
all convex bodies in E

2. This proves part (i). The proof of part (ii) follows from similar ideas
and Theorem 3(iii).

Sketch of the proof of Theorem 4(i) for d ≥ 3. As was mentioned in [16], it is sufficient to
prove the determination property for gP (x) in the case in which P is a simplicial polytope such
that P and −P are in general relative position. It is known (see [16, p. 86] and [27, Theorem 2.1])
that if a polytope H has the difference body DP (for P as above), then H = (1−λ)P +λ(−P)

for some λ ∈ [0, 1]. Thus, clearly for the determination of H , up to translations and reflections,
it is sufficient to retrieve the set {1 − λ, λ}. This set can be determined using the asymptotic
behaviour of gP near the facets of its support. See [3] for the details.

Given a convex body K ∈ Kd
0 and a vector x ∈ E

d , we introduce the body

K(x) := {y ∈ K : V1(K ∩ aff{y, y + x}) ≥ |x|},
which is the union of all those chords of K that are parallel to x and are not shorter than [o, x].
It can easily be shown that K ∩ (K + x) = K(x) ∩ (K(x) + x). Consequently,

gK(x)(x) = gK(x).

Let
K̄(x) := {y ∈ x⊥ : V1(K ∩ aff{y, y + x}) ≥ |x|}.

Clearly, K̄(x) is the orthogonal projection of K(x) onto x⊥. Therefore, by (2) we obtain

∂

∂t
gK(tu) = −Vd−1(K̄(tu)). (12)

Now let us consider the next proof.

Proof of Theorem 4 (counterexample). The counterexample constructed below is strongly
related to a counterexample from [16]. LetU1 andU2 be relatively open subsets of S

d−1 bounded
by (d − 2)-dimensional spheres and such that the sets ±U1 and ±U2 are mutually disjoint. Let
K be a C2+ convex body satisfying the conditions rK(u) = 1 for u ∈ S

d−1 \ (U1 ∪ U2) and
rK(u) < 1 for u ∈ (U1 ∪ U2). Then we introduce the body H defined by rH (u) := rK(−u)

for u ∈ (−U1)∪U1 and rH (u) := rK(u), otherwise; see Figure 7 for an illustration of the case
in which d = 2. It can be seen that DK = DH .

Let

A1 := {zK(u) : u ∈ S
d−1 \ (U1 ∪ (−U1))}, A2 := {zK(u) : u ∈ S

d−1 \ (U2 ∪ (−U2))}.
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K HS1

Figure 7: The bodies K and H satisfy GC(bdDK ∪ {o}) and are not
translations or reflections of each other.

Since bdK = A1 ∪ A2 and bdH = (−A1) ∪ A2, the bodies K and H satisfy LC. Thus, by
Theorem 3(i) and (ii), gK = gH in a neighborhood of the boundary of their support.

By standard compactness arguments, there exists an α > 0 such that, for every x ∈ E
d with

|x| < α and for every two-dimensional linear space L containing x, the endpoints of the two
chords of K ∩L which are translates of [o, x] either all belong to A1 or all belong to A2. Hence,
for every u, v ∈ S

d−1 with 〈v, u〉 = 0 and for |t | < α, we have

{rK̄(tu)(v), rK̄(tu)(−v)} = {rH̄ (tu)(v), rH̄ (tu)(−v)}. (13)

We recall that the volume of a convex body K in E
d with o ∈ K can be written as

V (K) = 1

d

∫
Sd−1

rK(u)d du. (14)

Let u ∈ S
d−1 and t be such that 0 < t < α and gK(tu) > 0. Up to translations of K , we may

assume that o ∈ K̄(tu), and we have

∂

∂t
gK(tu) = −Vd−1(K̄(tu)) (by (12))

= − 1

d − 1

∫
Sd−1∩u⊥

rK̄(tu)(v)d−1 dv (by (14))

= − 1

2(d − 1)

∫
Sd−1∩u⊥

(rK̄(tu)(v)d−1 + rK̄(tu)(−v)d−1) dv

= ∂

∂t
gH (tu) (by (13)).

In view of the equalities, V (K) = gK(o) = gH (o) = V (H), the latter implying the coincidence
of gK and gH for x ∈ E

d in a neighborhood of o.
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Added in proof

The authors of this paper have recently confirmed the validity of Matheron’s conjecture for
general convex bodies in the plane. This result is proved in

Averkov, G. and Bianchi, G. (2007). Confirmation of Matheron’s conjecture on covariogram of planar
convex bodies. Preprint.
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