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HAMILTONIAN CUBIC GRAPHS AND CENTRALIZERS 
OF INVOLUTIONS 

LÂSZLÔ BABAI, PÉTER FRANKL, JÂNOS KOLLÂR AND GERT SABIDUSSI 

1. Introduction. In 1948, R. Frucht [5] proved that, given a finite group G} 

there are infinitely many connected cubic graphs X such that the automorphism 
group Aut X is isomorphic to G. In a letter, Professor Frucht has proposed the 
problem, whether in addition X can be required to be hamiltonian. One of the 
aims of the present note is to answer this question affirmatively. 

THEOREM 1.1. Given a finite group G there are infinitely many finite hamil­

tonian cubic graphs Y such that Aut Y = G. 

In fact, we prove the following: 

THEOREM 1.2. Given a finite cubic graph X having no component isomorphic 

to i£4, there exists a hamiltonian cubic graph Y such that Aut Y ~ Aut X and 

17(7)1 = 6|7(X)|. 

This implies 1.1 by the theorem of Frucht [5] mentioned above. 
One might ask the question, analogous to 1.1, for endomorphism monoids 

rather than automorphism groups. It is, however, not true that any finite 
monoid would be isomorphic to the endomorphism monoid of a cubic graph 
[1]. Nevertheless, we mention a positive result, analogous to 1.2, without 
proof: 

THEOREM 1.3. There exists a full embedding of the category of finite cubic 
graphs into the category of finite hamiltonian cubic graphs. 

The proof goes via a more involved construction than the one given in this 
note, but the underlying idea is the same. 

It turns out that the same construction yields an answer to quite different 
kinds of problems. Papers by G. Birkhoff and others [2, 6, 8, 7, 4] have shown 
that various classes of algebraic structures (2-unary algebras, commutative 
semigroups, integral domains, distributive lattices, etc.) permit a prescribed 
automorphism group. This is not the case for the class of groups, e.g., the 
automorphism group of a group must not be a cyclic group of odd order (cf. 
[11] and [9]). From the point of view of universal algebra, the structures next 
to groups are groups endowed with additional constants (0-ary operations). 
The automorphism group of such an algebra is the stabilizer of the constants 
in the original automorphism group. 

Received April 6, 1977 and in revised form June 19, 1978. This paper is dedicated to Professor 
Roberto Frucht on his 73rd birthday. 

458 

https://doi.org/10.4153/CJM-1979-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-051-8


HAMILTONIAN CUBIC GRAPHS 459 

Problem. Given a group G, does there exist a group H and a finite number of 
members of H, ah..., ak say, such that the stabilizer of {ah..., ak} in Aut H 
is isomorphic to G? 

We give an affirmative answer to this question for finite G (Theorem 1.4) 
but the problem remains open for infinite groups. 

THEOREM 1.4. Given a finite group G there are infinitely many finite groups H 
such that 

(Aut H)a,e,y = (Aut H)atS ^ G 

for some a, /3, 7, ô £ H,where\a\ = |/3| = I7I = 2, \ô\ = 4. 

(The subscript indicates stabilizer subgroup; |f| denotes the order of f G G.) 

It is easy to see that this problem is related to the centralizers of small 
subsets of a group. This lead us to the following problem: which groups are 
isomorphic to the centralizer of some small set of involutions in a (finite) 
simple group? The question seems quite natural in view of the importance of 
the centralizer of an involution in a finite simple group (Brauer-Fowler, [3]). 
Theorem 1.5 shows that any finite group occurs as the centralizer of three 
involutions in an infinity of finite simple groups. We do not know the answer for 
two involutions, nor for, infinite simple groups 

THEOREM 1.5. Given a finite group G there is an n0 such that for each n ^ n0, 
An contains three involutions a, (3, y for which 

C8n(a,P,y) = CAn(a,0,y)2ÉG. 

Sn and An denote the symmetric and alternating groups, respectively. 

2. Preliminaries. First, let us fix some conventions. By a graph we mean 
an undirected graph (except if otherwise stated), without loops and multiple 
edges. V(X) and E(X) denote the set of vertices and edges of the graph X, 
respectively. A k-valent graph has vertices of degree k only; a 3-valent graph 
will be called cubic. A 3-edge-coloring of a graph X is a partition of E{X) into 
3 classes such that adjacent edges belong to different classes. For the rest of 
graph terminology the reader is referred to any textbook on graph theory. 

A permutation group H, acting on the set Q, is said to act semiregularly if 
the stabilizer Hx of any point x G 12 consists of the identity only. An involution 
is a group element of order 2 (in most cases, a permutation of order 2). 
CG(x, y, . . .) denotes the centralizer of x, y, . . . G G in the group G. 

By a matching on a set S we mean any fixed-point-free involution, acting on S. 
For X a graph put 

R(X) = {(v, e): v G V(X), e 6 E(X), v and e are incident}. 

By a crossing rule in a 4-valent graph X we mean a matching/ on R(X) such 
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that f(v, e) = (V, e') implies v = v'. A dosed walk v0 — e± — vi — . . . 
— ek — vk = v0 (vt G V(X), et Ç E(X)) in a 4-valent graph X is said to 
respect the crossing rulef, iif(vi} et) ^ (vt, ei+i) for any i(mod k). 

The crossing r u l e / is invariant, if for any (v, e) G R(X) and a G Aut X, 
f (z/, e) = (v,ef) implies f(av,ae) = (ay, ae'). 

LEMMA 2.1. Z ^ X be a connected 4-valent graph and f a crossing rule in X. 
Then X has a closed eulerian trail which respects f. 

Proof. This is a consequence of a result of Kotzig [10], Theorem 1. For a 

given vertex v the crossing rule/ can be localized to a matching/» on Ev (the 

set of edges of X incident with v) by setting f(v, e) = (v,fve) for each e G Ev. 

fv partitions Ev into two blocks {e,fve} of size 2 (the "forbidden transitions" in 

Kotzig's terminology), and the result follows. 

Remark 2.2. The usual algorithms for finding an eulerian trail can be easily 

modified to yield directly a trail respecting / . 

COROLLARY 2.3. Let X be a connected 4-valent graph. Replace each vertex vof X 

by a 4-circuit and attach the edges, incident to v, to the vertices of this 4-circuit in an 

arbitrary order. Then the resulting cubic graph Y is hamiltonian. 

Proof. The vertex-set of Y may be identified with R(X) in a natural way. 
Define a crossing rule/ by/(z;, e) = (v, ef) if and only if (v, e) and (v, e') (as ver­
tices of Y) are opposite vertices of the 4-circuit in Y which corresponds to v. 
Now, we apply Lemma 2.1 to find a closed eulerian trail v0 — ex — V\ — . . . — 
em — vm = Vo in X, respecting/. Then clearly 

(flo, ei), Oi, ei), (vu e2)y . . . , (»w_i, em), (vm, em), (vm, d) = (v0, ex) 

is a hamiltonian cycle of F. 

3. The proof of theorem 1.2. Let L(X) denote the line-graph of X. We 
shall need the following result of Whitney: 

LEMMA 3.1. (Whitney [12]). If X and Y are graphs every component of which 
has at least five vertices, then any isomorphism L{X) = L(Y) is induced by an 
isomorphism X = F. 

LEMMA 3.2. If X is a cubic graph, then L(X) is a 4-valent graph which admits 
an invariant crossing rule. 

Proof. Let ex, e2, e^ be the edges of X, incident with a vertex v. Any member 
of R(L(X)) has the form (ei, {ei, e2}). Define the crossing ru le /by 

/Oi , {eu e2}) = Oi, {eu ez}). 

Clearly, / is invariant under Aut X. We have to prove that it is invariant 
under Aut (L(X)). This is easily seen if X = KA (L(K4) is the octahedron 
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graph), and it follows from 3.1 if X is connected and has more than 4 vertices. 
Finally, it holds for any X since it holds for its connected components. 

LEMMA 3.3. Let X be a ^-valent graph, admitting an invariant crossing rulef. 
Define the graph Y = Mf(X) by setting V(Y) = R(X), and {(vu ei), (v2j e2)} d 
E(Y) if and only if (vu et) G R(X), i = 1, 2, and either 

e\ = e2, Vi 9^ v2j or 

ei ^ e2, vi = v2 and f(vu ei) ^ (v2, e2). 

The graph Y is cubic, hamiltonian, has £\V(X)\ vertices, and satisfies 
Aut Y ^ Aut X. 

Proof. It is clear that Y is cubic and that it has 4|F(J*Q| vertices. It is 
hamiltonian by 2.3, our construction being a particular case of that of 2.3. 
Clearly, Aut X induces a subgroup A of Aut F. The fact that A actually 
coincides with Aut Y follows from the observation that all 4-circuits of Y 
correspond to vertices of X, and hence X can be uniquely reconstructed from Y. 

Now, 1.2 follows: Let X be as in 1.2. L e t / denote an invariant crossing rule 
in X' = L(X) (according to 3.2). Apply 3.3 to obtain Y = Mf(X'). X' is 
4-valent, Y is cubic and hamiltonian by 3.3. Aut Y ^ Aut X' ^ Aut X by 
3.3 and 3.1. Since 2\V(X')\ = 3|F(X)| , we obtain \V(Y)\ = %\V{X)\ by 3.3. 

4. The proof of theorems 1.4 and 1.5. 

LEMMA 4.1. If X is a cubic graph and Aut X acts semiregularly on E(X), then 
Aut (L(X)) acts semiregularly on V(L(X)); Aut (L(X)) ^ Aut X; and there 
exists a function g: R(L(X)) —» {1, 2, 3, 4} such that 

(i) g(e, I) = g(ae, al) for any e G V(L(X)), l G E(L(X)), 
a e Aut (L(X)); 

(ii) g(e, h) ?± g(e, l2) for any two edges h -^ l2 of L(X) having 
e G V(L(X)) in common. 

Proof. Aut Ki does not act semiregularly on E(K±), hence every component 
of X has more than 4 vertices. This implies, by 3.1, that Aut (L{X)) is in­
duced by Aut X. Now let T be a set of representatives of the orbits of 
A\it{L{X))onV(L{X)) = E(X).Fort Ç T assign the values 1, 2, 3, 4 to the 
pairs (/, /) (/ G E(L(X)), I and / incident) in an arbitrary order. Then, 
extend g to the other members of R(L(X)) by the rule g (at, al) = g(t, I) 
(t G T). This definition is unique by the semiregularity of Aut (L(X)), and 
clearly g satisfies (i) and {ii). 

LEMMA 4.2. Let X be a ^-valent graph and g a function g: R(X) —•> {1, 2, 3, 4) 
such that 
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(i) g(v, e) = g(av, ae) for any (v, e) G R(X), a G Aut X; 
(ii) g(v, ei) ^ g(v, e2) for any ex ^ e2 ( 0 , et) € R(X)). 

Let f denote the crossing rule on X satisfying g(J(v, e)) = g(v, e) mod 2 for any 
(v, e) Ç R{X). Then Y = Mf(X) has an invariant 3-edge-coloring, i.e., every 
color-class is invariant under Aut Y. Moreover, Aut Y = Aut X, and \V(Y)\ = 

Mv(x)\. 
Note that a crossing rule/ of the required kind exists and is unique. Mf(X) 

is defined in Lemma 3.3. 

Proof. By 3.3, Aut Y = Aut X, and every automorphism of Y is induced by 

an automorphism of X. We divide E(Y) into 3 classes: 

A = {{(vhe),(v2,e)}: vhv2eV(X), e = [vh v2} G E(X)} ; 

Bi={{(v,el),(v,e2)}: [g^e^ g(v, e2)} = {1, 2) or {3,4}}; 

B2= {{(v,ei), (»,e2)}: {g(w,ex),g(i;,cO} = {2,3} or {4,1}}. 

{4, Bh B2) is a 3-edge-coloring of F. ^ is obviously invariant under Aut X, 

and so are B\ and 5 2 by the invariance of g. 

Remark 4.3. We observe that B\ \J B2 is the disjoint union of 4-cycles which 
can be endowed with an orientation which is invariant under Aut Y. 

Indeed, each 4-cycle corresponds to the four edges incident with a vertex of 
X, and a cyclic order of these edges is induced by g. 

Let Q = {1, . . . , n) and ir a permutation of 12. The permutation graph Pv is 
a directed graph having 12 as its vertex set and E(PT) = {(x, irx): x G 12, 
irx 9e x} as its set of edges. (PT is undirected if and only if IT2 = id.) 

PROPOSITION 4.4. For 7ri, . . . , irk G Sn we have 

Csnfa,... ,irk) = H ï A u t (Pri). 

Proof. The proof is straightforward. 

PROPOSITION 4.5. For k ^ 6 there exists a graph Z satisfying (a) \ V(Z)\ = k; 
(b) |Aut Z\ — 1; (c) Z is 3-edge-colorable such that each color-class consists of 
an even number of edges. 

Proof. Consider the (k — 2)-path 1, 2, . . . , k — 1. Join the point k to 
point 3; and for k even, join k additionally to point 2. Let Z be the graph so 
obtained. Obviously, (a) and (b) hold. The number of edges of Z is always 
even. Finding an appropriate 3-edge-coloring is an easy exercise. 

Now we turn to the proof of 1.5. Let G be a given finite group and X0 a 
connected cubic graph such that Aut X0 = G and Aut X0 acts semiregularly 
both on the vertices and on the edges of X0 (Frucht [5]). Let X = L(X0) . So, 
Aut X is isomorphic to G and it acts semiregularly both on the vertices and on 
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the edges of X by Whitney's Lemma 3.1. Use 4.1 to obtain g\ R(X) -> 
{1, 2, 3, 4) satisfying 4.2 (i) and (it). Then, apply 4.2 to obtain the cubic 
graph F. Let A, B C denote the invariant edge-color-classes obtained by 4.2. 

Let n0 = 4| V(X)\ + 6 and n ^ »0. Furthermore, let jfe = » - 4| V(X)\. We 
have jfe ^ 6, hence Proposition 4.5 applies. Let Z be the graph obtained and 
A', Bf, C its edge-color-classes according to 4.5 (c). 

The disjoint union of F and Z has n vertices. We may assume V(Y) U 
F(Z) = {1, . . . , w}. Aut ( F U Z ) consists of even permutations only, since Z is 
fixed under the action of Aut ( F U Z ) , the action of Aut F is semiregular and 
the number of its orbits is even (actually, it is divisible by 4, cf. 4.2). Moreover, 
the edge-sets AU A', BKJ B', CV C are invariant under Aut ( F U Z ) . 
These sets form a 3-edge-coloring of F U Z , hence they are permutation 
graphs Pa, Pp, Py resp., with a, /3, y involutions. By the above, applying 
Proposition 4.4, we have 

Csn(a,(î,y) = Aut ( F U Z ) ^An. 

Moreover, a, fi, y Ç An since each color-class contains an even number of edges. 
(This is so by 4.5 (c) and since 4 divides | V( Y) |. ) 

Hence, observing that Aut ( F U Z) ^ Aut Y^G, the proof of Theorem 
1.5 is complete. 

For 1.4, let n = 4:\V(X)\ (by Frucht [5] there are infinitely many ways to 
choose X0 and hence X). We shall assume that |F (X) | is even. (A repeated 
application of our procedure, starting with Y instead of X0, surely yields even 
|F(X)| .) We repeat the above arguments, in a simpler version, omitting Z. 
Now the color-classes A, B = Bu C = B2 (in the notation of the proof of 
Lemma 4.2) correspond to the involutions a, /?, y G An. Let ô be a permutation 
of order 4, keeping the 4-circuits of Y invariant, and increasing g(v, e) by 
1 (mod 4) at each vertex (v, e) Ç V(Y). Clearly, P8 is a directed graph, 
whose symmetrisation has Bi U B2 as edges (cf. Remark 4.3). Moreover, 
Aut P8 è Aut F, whence 

C8n(a, 8) = Aut (Pa) r\ Aut (Pa) = Aut F. 

ô belongs to An since 8|w (| F(X) | being even). 
Set H = An. As n ^ 6, Aut H can be identified with Sn (centralizer corre­

sponding to stabilizer). We have 

(Aut H)ate,y = CSn(a, 0, y) = Aut F = CSn{*, à) = (Aut H)a>0. 

The proof of Theorem 1.4 is complete. 
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