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The present study investigated the effects of mixed high-carbohydrate (CHO) meals (breakfast and lunch) with different glycaemic indices (GI) on substrate

metabolism during rest throughout the postprandial periods and during subsequent exercise. Nine recreationally active males completed two trials, high

glycaemic index (HGI) and low glycaemic index (LGI), separated by 7 d in a randomised crossover design. In each trial, participants consumed breakfast

and lunch, both of which were followed by a 3 h resting postprandial period. Following this, participants completed a 60min run at 70% of _VO2max. The

plasma glucose and serum insulin concentrations following both meals were significantly higher in the HGI trial than in the LGI trial (P,0·05). Serum

insulin concentrations remained higher throughout the postprandial period following lunch in the HGI trial compared with the LGI trial (P,0·05). The

total amount of fat oxidised was higher during the 3 h rest following lunch in the LGI trial than in the HGI trial (P,0·01) and subsequently CHO oxidation

was lower (P,0·005). No significant differences in substrate utilisation were observed throughout the subsequent run. At 45 and 60min, plasma glucose

concentrations were higher in the LGI trial v. the HGI trial (P,0·05). The results of the present study provide further support that the GI concept can be

successfully applied to mixed meals. The results also suggest that meals composed of LGI CHO may be more beneficial for maintaining a favourable meta-

bolic milieu during the postprandial periods. Furthermore, during subsequent exercise, plasma glucose concentrations were better maintained following the

LGI CHO meals.
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The ingestion of carbohydrate (CHO) before exercise is beneficial

as it increases both muscle and liver glycogen stores (Nilsson &

Hultman, 1973). Nevertheless, a high CHO intake also alters

the metabolic responses and substrate utilisation during exercise

(Coyle et al. 1997). A number of studies have observed a

depression in the rate of fat oxidation following CHO ingestion

due to hyperinsulinaemia in the postprandial period (Horowitz

et al. 1997; Wee et al. 1999; Wu et al. 2003). However, altering

the type of CHO consumed has been shown to have an effect on

the magnitude of hyperinsulinaemia and therefore depression of

fat oxidation (Wee et al. 1999; Wu et al. 2003).

It has repeatedly been shown that consumption of low glycae-

mic index (LGI) CHO results in lower insulinaemic and glycae-

mic responses during rest in the postprandial period than does

consumption of high glycaemic index (HGI) CHO. Several

studies have therefore manipulated the glycaemic index (GI) of

pre-exercise feedings and have reported a higher rate of fat oxi-

dation and a better maintenance of plasma glucose concentrations

during subsequent exercise after ingesting a single LGI CHO

food compared with a single HGI CHO food (Thomas et al.

1991, 1994; Febbraio & Stewart, 1996; Sparks et al. 1998;

Wee et al. 1999).

The metabolic responses to single foods with a HGI or LGI are

clear; however, it is not common practice to eat single foods at

meal times in daily life. Research into the metabolic responses

to mixed meals containing foods with different GI values is

fairly limited despite its obvious applicability to real life. It has

previously been reported that the GI concept lacks clinical utility

because the differences in GI between foods are lost once these

foods are consumed in a mixed meal (Coulston et al. 1987). A

study carried out by DeMarco et al. (1999) compared the post-

prandial glycaemic, insulinaemic and physiological responses to

pre-exercise mixed meals composed of either HGI or LGI

CHO. No differences in the glycaemic responses were reported

between the meals; however, the total energy, fat and protein con-

tent of the two test meals were not matched. The addition of fat to

a CHO meal enhances insulin secretion but also decreases the

plasma glucose response (Collier et al. 1984). Similarly, adding

protein to a CHO meal increases the insulin secretion without

augmenting glucose concentrations (Pi-Sunyer, 2002). Therefore,

to compare mixed meals accurately, it is important that the non-

CHO sources in the meals are matched.

A recent study from our laboratory investigated the effect of

consuming mixed breakfasts containing either HGI or LGI

CHO on substrate utilisation during exercise performed 3 h

later. Both breakfasts were matched in terms of energy and nutri-

ents. In agreement with studies carried out on single foods,

the HGI meal resulted in a significantly greater glycaemic and
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insulinaemic response during the postprandial period. It was also

reported that the calculated amount of fat oxidation was signifi-

cantly higher during exercise commencing 3 h after consuming

the LGI mixed meal compared with when the HGI mixed meal

was consumed (Wu et al. 2003).

To date, no studies have been carried out to investigate the

effects of two HGI or LGI mixed CHO meals on resting postpran-

dial metabolism and substrate utilisation during subsequent exer-

cise. Many individuals exercise in the afternoon after work and

will therefore consume breakfast and lunch before the exercise

session. Based on previous research already described, one

would expect consistently higher glycaemic and insulinaemic

responses to HGI mixed meals than to LGI mixed meals. It is

also hypothesised that the rate of fat oxidation would be higher

during exercise following two LGI meals compared with two

HGI meals. Therefore, the aim of the present study was to inves-

tigate the effects of changing the GI of the CHO within two

mixed meals (breakfast and lunch) on the postprandial metabolic

responses and substrate utilisation during rest and during a sub-

sequent 60min run at 70% of _VO2max.

Methods

Subjects

Nine male recreational athletes participated in the study. Their

mean age, height, weight and _VO2max were 23·7 (SD 2·1) years,

177·0 (SD 1·0) cm, 74·3 (SD 7·0) kg and 64·6 (SD 5·6) ml/kg per

min, respectively. None of the subjects recruited was consuming

any food supplements, medication or recreational drugs. Lough-

borough University Ethical Advisory Committee approved the

protocol and all subjects gave their written informed consent.

Preliminary testing

Following familiarisation with treadmill running and experimen-

tal procedures, subjects undertook two preliminary tests to

determine first the relationship between running speed and

oxygen uptake using a 16min incremental test and, second,

their _VO2max using an uphill incremental treadmill test to exhaus-

tion. All preliminary tests were conducted according to pro-

cedures described previously (Williams et al. 1990). Based on

the results of the two preliminary tests, the running speed equiv-

alent to 70% of each subject’s _VO2max was determined.

Experimental design

Each subject participated in two experimental trials separated by a

week. On each occasion, subjects were provided with two meals

(breakfast and lunch), which were both followed by 3 h rest. Fol-

lowing the 3 h postprandial period after lunch, subjects ran for

60min on a motorised treadmill at 70% _VO2max. The test meals

were composed mainly of either HGI or LGI CHO and the

order of the trials was randomised.

All trials were performed at the same time of day and under

similar experimental and environmental conditions. The same

treadmill was also used throughout the experiment (Techno-

gyme Run Race Treadmill 47 035; Technogym, Gambettoio,

Italy). For 24 h before the first trial, the subjects recorded their

diet and exercise routine so that it could be repeated before the

second trial to minimise differences in pre-testing intramuscular

substrate concentrations between experimental trials. Subjects

were advised to maintain their normal training schedule during

the study but to abstain from any vigorous exercise in the 24 h

period before the two experimental trials. During this period

they were also instructed to avoid alcohol, caffeine and smoking.

Protocol

On the day of the experiment each subject arrived in the labora-

tory at 08.00 hours following 12 h overnight fast. On arrival, sub-

jects completed the necessary health and consent forms and were

then asked to void before nude mass was obtained (Avery,

London, UK). After weighing, a cannula (Venflon 18G; Becton

Dickinson Ltd, Helsingborg, Sweden) was inserted into an antecu-

bital vein while the subject was lying on an examination couch.

Basal blood and gas samples were obtained once the subject

had sat for 10min. The first test meal was then served and the

subjects were asked to consume it within 30min. After finishing

this meal, the first 3 h postprandial period began. During this

time, subjects were asked to remain seated, avoiding any physical

activity. Immediately after the 3 h postprandial period, the second

meal was served. Again, subjects were asked to consume the meal

within 30min and then the second 3 h postprandial period began.

Following this, subjects were weighed and then changed into run-

ning attire. A short-range telemeter (Technogym) heart-rate moni-

tor was then attached to the subject to monitor heart rate. Heart

rate was monitored closely throughout the run and values

recorded during each 1min collection of expired air. Before com-

mencing the 60min run at 70% _VO2max, subjects completed a

5min warm-up at 60% _VO2max.

Ambient temperature and relative humidity were recorded at

30min intervals during the postprandial period and at 15min

intervals throughout the run using a hygrometer (Zeal, London,

UK). Temperature was maintained between 16 and 228C and

humidity was 50–60% in all trials.

Test meals

In each trial, two mixed meals consisting of HGI or LGI CHO

were provided for each subject and each meal provided approxi-

mately 2 g CHO/kg body mass (Table 1). The nutritional content

of each meal was calculated from information provided by the

manufacturer. Both diets consisted of 72% CHO, 11% fat and

17% protein. The GI of the total diets was calculated from the

weighted means of the GI values for the component foods (Wole-

ver & Jenkins, 1986). The GI values for the individual foods were

taken from the international table of glycaemic index and glycae-

mic load values: 2002 (Foster-Powell et al. 2002). The calculated

GI for the high and low breakfast was 76 and 44, respectively.

The GI value for the HGI lunch was 73 and the LGI lunch was 34.

Blood sample collection and analysis

All blood samples taken during the postprandial period were

obtained from the subject whilst seated. In addition to the basal

blood sample, further samples were taken at 15, 30, 60, 90, 120

and 180min after each meal and at 15min intervals during

exercise.

At each sampling point, 7ml blood was collected and 4ml

whole blood was immediately dispensed into an EDTA tube. Hb

concentration was determined using the cyanmethaemoglobin
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method (Boehringer Mannheim, Mannheim Germany; 2 £ 20ml)

and haematocrit values were determined in triplicate on samples

of whole blood by microcentrifugation (Hawksley Ltd, Lancing,

Sussex, UK). Changes in plasma volume were estimated from

changes in Hb concentrations and haematocrit values, as described

by Dill & Costill (1974). Blood lactate concentration was analysed

by a photometric method using a spectrophotometer (UVmini-

1240; Shimadzu Corp., Kyoto, Japan). Plasma samples were

obtained by centrifugation of the remaining whole blood for

10min at 4000 rpm and 4 8C. The aliquoted plasma was then

stored at 285 8C for later analysis of NEFA (ACS–ACOD

method, Wako NEFA C; Wako, Neuss, Germany), glucose

(GOD–PAP method; Randox Laboratories Ltd, Crumlin, Co.

Antrim, Northern Ireland) and glycerol (Randox Laboratories

Ltd) using an automatic photometric analyser (Cobas-Mira plus;

Roche, Basel, Switzerland). The remaining whole blood sample

was dispensed into a non-anticoagulant tube and left to clot for

45min. Serum samples were then obtained after centrifugation

at 4000 rpm for 10min at 4 8C. The aliquoted serum was stored

at 285 8C and later analysed for insulin (Coat-A-Count Insulin;

ICN Ltd, Eschwege, Germany) by RIA using a g counter (Cobra

5000; Packard Ltd, Boston, MA, USA). Pre-trial urine samples

were measured for osmolality using a cryoscopic osmometer

(Gonometer 030; Gonotec, Berlin, Germany) and adequate

hydration was assumed for osmolality values below

900mosmol/kg (Shirreffs & Maughan, 1998).

Expired gas sample collection and analysis

Samples of expired gas were collected using the Douglas bag

method. During rest, samples were collected pre-meal and at

15, 30, 60, 90, 120 and 180min throughout the postprandial

periods. Expired gas samples were also collected at 15min inter-

vals throughout the run. Running samples were collected for

1min and resting samples for 5min. Substrate oxidation rates

and energy expenditure were calculated from O2 consumption

and CO2 production values using stoichiometric equations

(Frayn, 1983). During each sample, ratings of perceived exertion

(Borg, 1973), perceived gut fullness and hunger were recorded on

a scale from 6 to 20. Total CHO and fat oxidation was estimated

from the area under the rate of oxidation v. time curve for each

subject.

Statistical analysis

ANOVA for repeated measures on two factors (experimental

treatment and time) was used to analyse differences in the phys-

iological and metabolic responses in both trials. If a significant

interaction was obtained, a Holm–Bonferroni stepwise post hoc

test was applied to determine the location of the variance. Differ-

ences were considered significant at P,0·05. All results are pre-

sented as means with their standard errors.

Results

Plasma glucose and serum insulin

Following ingestion of the HGI and LGI breakfasts, plasma glu-

cose concentrations increased and peaked at 15min during

the postprandial period (6·89 (SEM 0·31) and 5·10 (SEM 0·40)

mmol/l, respectively, P,0·01; Fig. 1). Thereafter, plasma glucose

concentrations decreased below fasting values by 30min in the

LGI trial and 60min in the HGI trial and continued to decrease

throughout the postprandial period. Following the ingestion of

the HGI and LGI lunch, plasma glucose concentrations again

peaked at 15min during the postprandial period (6·96 (SEM

0·39) and 5·42 (SEM 0·28) mmol/l, respectively, P,0·05). Follow-

ing this peak, a sharp decline in plasma glucose concentrations

was observed in both trials; however, during the 2 h before the

start of exercise, plasma glucose concentrations were equally

maintained at approximately 5mmol/l. During the first 30min

of exercise, there were no differences in plasma glucose concen-

trations between trials. At 45min, plasma glucose concentrations

were higher in the LGI trial than in the HGI trial (5·47 (SEM 0·13)

and 4·91 (SEM 0·18) mmol/l, respectively, P,0·01). At the end of

the 60min run, plasma glucose concentrations were still higher in

the LGI trial compared with the HGI trial (5·69 (SEM 0·09) and

4·92 (SEM 0·16) mmol/l, respectively, P,0·001).

In both trials, serum insulin concentrations peaked at 15min

during the postprandial period following breakfast (HGI: 926·7

(SEM 141·1) and LGI: 644·0 (SEM 73·2) pmol/l, P,0·05; Fig. 2).

Table 1. Characteristics of the test meals (for a 70 kg person)

Meal Description Macronutrient content

HGI breakfast 62 g Corn Flakes* þ 257 ml skimmed milk, 80 g white bread þ

10 g Flora* þ 20 g jam, 155 ml Lucozade Original*

3066 kj (730 kcal), 139 g CHO, 9·9 g fat, 20 g protein

LGI breakfast 86 g muesli þ 257 ml skimmed milk, 67 g apple, 103 g tinned

peaches, 128 g yoghurt, 257 ml apple juice

3074 kj (732 kcal), 139 g CHO, 9 g fat, 23 g protein

HGI lunch 158 g white bread, 154 g turkey breast, 50 g cheese,

40 g lettuce, 180 g banana, 200 ml Lucozade Original*

4519 kj (1076 kcal), 148 g CHO, 24 g fat, 63 g protein

LGI lunch 154 g whole-wheat pasta, 150 g turkey breast, 50 g cheese,

40 g lettuce, 185 g pasta sauce, 150 g pear, 150 ml apple juice

4515 kj (1075 kcal), 149 g CHO, 25 g fat, 60 g protein

HGI total 7585 kj (1806 kcal), 287 g CHO, 33·9 g fat, 83 g protein

(72 % CHO, 11 % fat, 17 % protein)

GI ¼ 70†

LGI total 7589 kj (1807 kcal), 288 g CHO, 34 g fat, 83 g protein

(72 % CHO, 11 % fat, 17 % protein)

GI ¼ 35†

HGI, high glycaemic index; LGI, low glycaemic index; CHO, carbohydrate; GI, glycaemic index.

* Corn Flakes, Kellogg’s (UK) Ltd, Manchester, UK; Flora,?; Lucozade Original drink, GlaxoSmithKline (UK).

† Calculated by the method described by Wolever & Jenkins (1986) with GI values taken from Foster-Powell et al. (2002).
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Fig. 2. Serum insulin concentrations (pmol.l21,) in the high glycaemic index (HGI; —X—) and low glycaemic index (LGI; – –W– –) carbohydrate trials. Fasting

value (FAST), values obtained during the postprandial period 15, 30, 60, 90, 120 and 180 min after meal 1 (breakfast; 15M1, 30M1, 60M1, 90M1, 120M1 and

180M1, respectively) and meal 2 (lunch; 15M2, 30M2, 60M2, 90M2, 120M2 and 180M2, respectively) and values obtained at 15, 30 45 and 60 min during sub-

sequent exercise (run; 15R, 30R, 45R and 60R, respectively). Values are means with their standard errors shown by vertical bars. Mean values were significantly

higher in HGI trial v. LGI trial: *P,0·05.

Fig. 1. Plasma glucose concentrations (mmol/l) in the high glycaemic index (HGI; —X—) and low glycaemic index (LGI; – –W– –) carbohydrate trials. Fasting

value (FAST), values obtained during the postprandial period 15, 30, 60, 90, 120 and 180 min after meal 1 (breakfast; 15M1, 30M1, 60M1, 90M1, 120 M1 and

180M1, respectively) and meal 2 (lunch; 15M2, 30M2, 60M2, 90M2, 120M2 and 180M2, respectively) and values obtained at 15, 30 45 and 60 min during sub-

sequent exercise (run; 15R, 30R, 45R and 60R, respectively). Values are means with their standard errors shown by vertical bars. Mean values were significantly

higher in HGI trial v. LGI trial: *P,0·05; mean values were significantly higher in LGI trial v. HGI trial: ††P,0·01.
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Serum insulin concentrations then declined throughout the post-

prandial period but were higher in the HGI trial than in the LGI

trial at 120min (P,0·05). Following the ingestion of lunch,

serum insulin concentrations again peaked at 15min during the

postprandial period. Once again, the peak was greater in the

HGI trial than in the LGI trial (873·5 (SEM 75·4) and 502·0

(SEM 65·9) pmol/l, respectively, P.0·05). Throughout the rest

of the postprandial period following lunch, serum insulin concen-

trations decreased but remained higher in the HGI trial than in the

LGI trial (P,0·05). No differences were observed between trials

once exercise commenced.

Plasma NEFA and glycerol

Plasma NEFA concentrations were reduced following the con-

sumption of both the HGI and LGI breakfasts and remained

reduced throughout both postprandial periods (Fig. 3). Through-

out the exercise period, plasma NEFA increased gradually in

both trials; however, no differences between the trials were

seen. Plasma glycerol concentrations showed a similar response

to that of plasma NEFA. Once again, there were no significant

differences between the trials (Fig. 4).

Blood lactate

Following ingestion of breakfast, blood lactate concentrations

were significantly higher in the LGI trial compared with the

HGI trial for the first 90min of the postprandial period

(P,0·01; Fig. 5). No differences were observed between trials

following lunch or throughout the 60min run.

Estimated carbohydrate and fat oxidation rates

There were no differences in the estimated total amount of

CHO or fat oxidised throughout the postprandial period follow-

ing breakfast. In contrast, following lunch, the calculated total

amount of CHO oxidised was higher in the HGI trial than in

the LGI trial (HGI: 71·7 (SEM 3·4) and LGI: 58·9 (SEM 3·3)

g/3 h, P,0·005; Fig. 6) and the estimated total amount of

fat oxidised was higher in the LGI than in the HGI trial

(LGI: 12·5 (SEM 1·1) and HGI: 9·0 (SEM 1·1) g/3 h, P,0·01;

Fig. 7).

During the exercise period, there were no differences in the

total amount of CHO oxidised (HGI: 215·7 (SEM 8·0) and LGI:

214·4 (SEM 12·6) g/h) or total amount of fat oxidised (HGI:

11·5 (SEM 2·3) and LGI: 10·9 (SEM 2·5) g/h).

Heart rate and rate of perceived exertion

There were no significant differences between heart rate and rate

of perceived exertion between the trials.

Hydration status and plasma volume

There were no significant differences in urine osmolality at the

start of each trial (592 (SEM 118) and 631 (SEM 113) mosmol/

kg in the HGI and LGI trials, respectively). Using a cut-off

point of 900 mosmol/kg, none of the values suggested that any

of the participants began the trials in a dehydrated state. There

were no significant differences in plasma volume between trials.

Fig. 3. Plasma NEFA concentrations (mmol/l) in the high glycaemic index (—X—) and low glycaemic index (– –W– –) carbohydrate trials. Fasting value (FAST),

values obtained during the postprandial period 15, 30, 60, 90, 120 and 180 min after meal 1 (breakfast; 15M1, 30M1, 60M1, 90M1, 120M1 and 180M1, respect-

ively) and meal 2 (lunch; 15M2, 30M2, 60M2, 90M2, 120M2 and 180M2, respectively) and values obtained at 15, 30 45 and 60 min during subsequent exercise

(run; 15R, 30R, 45R and 60R, respectively). Values are means with their standard errors shown by vertical bars.
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Fig. 4. Plasma glycerol concentrations (mmol/l) in the high glycaemic index (—X—) and low glycaemic index (– –W– –) carbohydrate trials. Fasting value (FAST),

values obtained during the postprandial period 15, 30, 60, 90, 120 and 180 min after meal 1 (breakfast; 15M1, 30M1, 60M1, 90M1, 120M1 and 180M1, respect-

ively) and meal 2 (lunch; 15M2, 30M2, 60M2, 90M2, 120M2 and 180M2, respectively) and values obtained at 15, 30 45 and 60 min during subsequent exercise

(run; 15R, 30R, 45R and 60R, respectively). Values are means with their standard errors shown by vertical bars.

Fig. 5. Blood lactate concentrations (mmol/l) in the high glycaemic index (HGI; —X—) and low glycaemic index (LGI; – –W– –) carbohydrate trials. Fasting value

(FAST), values obtained during the postprandial period 15, 30, 60, 90, 120 and 180 min after meal 1 (breakfast; 15M1, 30M1, 60M1, 90M1, 120M1 and 180M1,

respectively) and meal 2 (lunch; 15M2, 30M2, 60M2, 90M2, 120M2 and 180M2, respectively) and values obtained at 15, 30 45 and 60 min during subsequent

exercise (run; 15R, 30R, 45R and 60R, respectively). Values are means with their standard errors shown by vertical bars. Mean values were significantly higher in

LGI trial v. HGI trial: ††P,0·01.
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Fig. 6. Estimated rate of carbohydrate (CHO) oxidation (g/min) in the high glycaemic index (—X—) and low glycaemic index (– –W– –) CHO trials. Fasting value

(FAST), values obtained during the postprandial period 15, 30, 60, 90, 120 and 180 min after meal 1 (breakfast; 15M1, 30M1, 60M1, 90M1, 120M1 and 180M1,

respectively) and meal 2 (lunch; 15M2, 30M2, 60M2, 90M2, 120M2 and 180M2, respectively) and values obtained at 15, 30 45 and 60 min during subsequent

exercise (run; 15R, 30R, 45R and 60R, respectively). Values are means with their standard errors shown by vertical bars.

Fig. 7. Estimated rate of fat oxidation (g/min) in the high glycaemic index (—X—) and low glycaemic index (– –W– –) carbohydrate trials. Fasting value (FAST),

values obtained during the postprandial period 15, 30, 60, 90, 120 and 180 min after meal 1 (breakfast; 15M1, 30M1, 60M1, 90M1, 120M1 and 180M1, respect-

ively) and meal 2 (lunch; 15M2, 30M2, 60M2, 90M2, 120M2 and 180M2, respectively) and values obtained at 15, 30 45 and 60 min during subsequent exercise

(run; 15R, 30R, 45R and 60R, respectively). Values are means with their standard errors shown by vertical bars.
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Gut fullness and hunger scales

Ratings of perceived hunger were significantly lower during the

postprandial period following the LGI lunch compared with the

HGI lunch (P,0·05). There were no significant differences in

gut fullness between trials (Table 2).

Discussion

The main aim of the present study was to investigate the meta-

bolic responses to HGI and LGI mixed meals. The metabolic

responses to single foods with different GI are now well under-

stood; however, data are deficient on the responses to mixed

meals with nutrient compositions that are clearly within prevail-

ing norms (Ludwig & Jenkins, 2004). During the postprandial

periods following both of the meals, plasma glucose concen-

trations and serum insulin concentrations were significantly

higher in the HGI trial than in the LGI trial. The validity of the

GI values of mixed meals has been questioned in several studies

(Coulston et al. 1984; Hollenbeck et al. 1988). The results from

the present study show that significant differences in hyperglycae-

mia and hyperinsulinaemia can repeatedly be achieved by chan-

ging the GI of the CHO in a mixed meal. This therefore offers

support for calculation of the GI values for mixed meals

suggested by Wolever & Jenkins (1986).

The postprandial metabolic responses to CHO-dense HGI foods

like those described earlier have been used to provide a possible

explanation as to why low-fat diets have not lived up to their

potential to inhibit weight gain when consumed ad libitum

(Brand-Miller et al. 2002). Postprandial hyperglycaemia and

hyperinsulinaemia promote postprandial CHO oxidation at the

expense of fat oxidation, thus altering fuel partitioning that may

be conducive to body fat gain. LGI diets have therefore been pro-

moted as an effective weight control method as they minimise

postprandial insulin secretion, therefore promoting fat oxidation.

In the present study, the amount of fat oxidised during the post-

prandial period following lunch was significantly higher in the

LGI trial v. the HGI trial. This is in contrast to previous studies

investigating pre-exercise feeding and GI that reported no differ-

ences in substrate oxidation at rest during the postprandial period

following a single LGI food or meal (Wee et al. 1999; Wu et al.

2003). It is important to highlight, however, that previous studies

in this area have only investigated the metabolic responses to a

single meal or one portion of a single food and the differences

in the present study were apparent only after the second meal.

It is not possible to speculate on the chronic effects of a LGI

diet from these data; however, the results of the present study pro-

vide evidence that changes in fuel partitioning and substrate oxi-

dation can occur even over a single day when consuming LGI

CHO instead of HGI CHO.

LGI foods are also reported to be beneficial for weight loss

because their consumption has been reported to result in a pro-

longed feeling of satiety and therefore reduced hunger and food

intake (Ludwig et al. 1999; Warren et al. 2003). In the present

study, ratings of gut fullness and hunger were recorded at regular

intervals following breakfast and lunch in both trials. Hunger rat-

ings were significantly lower in the LGI trial than in the HGI trial

despite the meals being matched for energy and nutrient content.

Interestingly, blood lactate concentrations were significantly

elevated following ingestion of the LGI breakfast whereas the

increase was minimal following the HGI breakfast. Several studies

have reported that CHO that have high fructose concentrations

result in higher blood lactate concentrations (Koivisto et al. 1981;

Moore et al. 2000). Once fructose enters the cell, it is rapidly con-

verted to fructose-1-phosphate. The high concentrations of fruc-

tose-1-phosphate inhibit the degradation of glycogen and

facilitate the production of lactate (Henry et al. 1991). About two-

thirds of fructose is converted to glucose and the rest of the metab-

olised fructose is released from the liver as lactate (Henry et al.

1991). In the present study, the LGI breakfast contained more fruc-

tose (25 g/70 kg man) than the HGI breakfast (11 g/70 kg man).

This may therefore explain the higher blood lactate concentrations

in the LGI trial during the postprandial period. Similar blood lactate

results were also reported by Wu et al. (2003), who used similar

breakfasts to those in the present study.

The second aim of the present study was to investigate the

effects of the GI of breakfast and lunch on substrate utilisation

during a subsequent 60min run at 70% _VO2max. A previous

study from our laboratory reported that the calculated rate of fat

oxidation was significantly higher during 60min exercise com-

mencing 3 h after consuming a LGI meal than the fat oxidation

following a HGI meal (Wu et al. 2003). In the present study,

two LGI meals were provided in the 6 h before the exercise

bout; however, the calculated rate of fat oxidation during exercise

was not different compared with when two HGI meals were pro-

vided. It is important to note that the exercise intensity in the pre-

sent study (70% _VO2max) was higher than in Wu et al.’s study

(65% _VO2max). The exercise intensity that elicits the maximal

rate of fat oxidation has recently been reported to be between

approximately 50% and 64% _VO2max (Achten et al. 2002).

Table 2. Ratings of gut fullness and hunger during the high glycaemic index (HGI) and low glycaemic index

(LGI) carbohydrate trials

(Values are means with their standard errors)

Postprandial period

Resting Breakfast Lunch

Exercise

period

Variable Trial Mean SEM Mean SEM Mean SEM Mean SEM

Gut fullness HGI 8 0 10 0 11 1 10 1

LGI 8 1 10 0 11 0 11 1

Hunger HGI 13 1 11 1 11 1 8 1

LGI 14 1 10 1 9* 1 8 0

Mean values were significantly different from those in the HGI trial: *P,0·05.
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Therefore, it is possible that the exercise intensity in the present

study was too high to highlight any differences in substrate

oxidation.

At 45min into the run and on completion of the 60min, plasma

glucose concentrations were significantly higher in the LGI trial

compared with the HGI trial. Other studies investigating the

effect of the GI of pre-exercise feedings have reported higher

plasma glucose concentrations towards the end of an exercise ses-

sion following a LGI meal (Thomas et al. 1991, 1994; DeMarco

et al. 1999). LGI CHO theoretically release glucose from the gut

at a slower rate and therefore for an extended period (DeMarco

et al. 1999). Hence, this would allow maintenance of blood glu-

cose for a longer period of time compared with HGI CHO.

The clinical relevance of the GI has been vigorously debated in

recent years (Ludwig, 2002) and some believe that the concept

may be too complicated to be practical. The results of the present

study show that the GI concept can be successfully applied to

mixedmeals that would be consumed in a real-life setting. Although

no differences in substrate oxidation were seen during exercise at

the end of the day, the results of the present study show that the

GI of the meals consumed at breakfast and lunch can alter substrate

oxidation during the postprandial periods whilst at rest.

References

Achten J, Gleeson M & Jeukendrup AE (2002) Determination of the exer-

cise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc

34, 92–97.

Borg GA (1973) Perceived exertion: a note on ‘history’ and methods. Med

Sci Sports 5, 90–93.

Brand-Miller JC, Holt SH, Pawlak DB & McMillan J (2002) Glycemic

index and obesity. Am J Clin Nutr 76, 281S–285S.

Collier G, McLean A & O’Dea K (1984) Effect of co-ingestion of fat on

the metabolic responses to slowly and rapidly absorbed carbohydrates.

Diabetologia 26, 50–54.

Coulston AM, Hollenbeck CB, Liu GC, Williams RA, Starich GH, Maz-

zaferri EL & Reaven GM (1984) Effect of source of dietary carbo-

hydrate on plasma glucose, insulin, and gastric inhibitory polypeptide

responses to test meals in subjects with noninsulin-dependent diabetes

mellitus. Am J Clin Nutr 40, 965–970.

CoulstonAM,HollenbeckCB, SwislockiAL&ReavenGM(1987) Effect of

source of dietary carbohydrate on plasma glucose and insulin responses to

mixed meals in subjects with NIDDM. Diabetes Care 10, 395–400.

Coyle EF, Jeukendrup AE, Wagenmakers AJ & Saris WH (1997) Fatty

acid oxidation is directly regulated by carbohydrate metabolism

during exercise. Am J Physiol 273, E268–E275.

DeMarco HM, Sucher KP, Cisar CJ & Butterfield GE (1999) Pre-exercise

carbohydrate meals: application of glycemic index. Med Sci Sports

Exerc 31, 164–170.

Dill DB & Costill DL (1974) Calculation of percentage changes in

volumes of blood, plasma, and red cells in dehydration. J Appl Physiol

37, 247–248.

Febbraio MA & Stewart KL (1996) CHO feeding before prolonged exer-

cise: effect of glycemic index on muscle glycogenolysis and exercise

performance. J Appl Physiol 81, 1115–1120.

Foster-Powell K, Holt SH & Brand-Miller JC (2002) International table of

glycemic index and glycemic load values: 2002. Am J Clin Nutr 76,

5–56.

Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gas-

eous exchange. J Appl Physiol 55, 628–634.

Henry RR, Crapo PA & Thorburn AW (1991) Current issues in fructose

metabolism. Annu Rev Nutr 11, 21–39.

Hollenbeck CB, Coulston AM & Reaven GM (1988) Comparison of

plasma glucose and insulin responses to mixed meals of high-, inter-

mediate-, and low-glycemic potential. Diabetes Care 11, 323–329.

Horowitz JF, Mora-Rodriguez R, Byerley LO & Coyle EF (1997) Lipo-

lytic suppression following carbohydrate ingestion limits fat oxidation

during exercise. Am J Physiol 273, E768–E775.

Koivisto VA, Karonen SL & Nikkila EA (1981) Carbohydrate ingestion

before exercise: comparison of glucose, fructose, and sweet placebo.

J Appl Physiol 51, 783–787.

Ludwig DS (2002) The glycemic index: physiological mechanisms relat-

ing to obesity, diabetes, and cardiovascular disease. JAMA 287,

2414–2423.

Ludwig DS & Jenkins DJ (2004) Carbohydrates and the postprandial state:

have our cake and eat it too? Am J Clin Nutr 80, 797–798.

Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I & Roberts

SB (1999) High glycemic index foods, overeating, and obesity. Pedi-

atrics 103, E26.

Moore MC, Cherrington AD, Mann SL & Davis SN (2000) Acute

fructose administration decreases the glycemic response to an oral glu-

cose tolerance test in normal adults. J Clin Endocrinol Metab 85,

4515–4519.

Nilsson LH & Hultman E (1973) Liver glycogen in man – the effect of

total starvation or a carbohydrate-poor diet followed by carbohydrate

refeeding. Scand J Clin Lab Invest 32, 325–330.

Pi-Sunyer FX (2002) Glycemic index and disease. Am J Clin Nutr 76,

290S–298S.

Shirreffs SM & Maughan RJ (1998) Urine osmolality and conductivity as

indices of hydration status in athletes in the heat. Med Sci Sports Exerc

30, 1598–1602.

Sparks MJ, Selig SS & Febbraio MA (1998) Pre-exercise carbohydrate

ingestion: effect of the glycemic index on endurance exercise perform-

ance. Med Sci Sports Exerc 30, 844–849.

Thomas DE, Brotherhood JR & Brand JC (1991) Carbohydrate feeding

before exercise: effect of glycemic index. Int J Sports Med 12,

180–186.

Thomas DE, Brotherhood JR & Miller JB (1994) Plasma glucose levels

after prolonged strenuous exercise correlate inversely with glycemic

response to food consumed before exercise. Int J Sport Nutr 4,

361–373.

Warren JM, Henry CJ & Simonite V (2003) Low glycemic index break-

fasts and reduced food intake in preadolescent children. Pediatrics

112, e414.

Wee SL, Williams C, Gray S & Horabin J (1999) Influence of high and

low glycemic index meals on endurance running capacity. Med Sci

Sports Exerc 31, 393–399.

Williams C, Nute MG, Broadbank L & Vinall S (1990) Influence of fluid

intake on endurance running performance. A comparison between

water, glucose and fructose solutions. Eur J Appl Physiol Occup Phy-

siol 60, 112–119.

Wolever TM & Jenkins DJ (1986) The use of glycemic index in predicting

the blood glucose response to mixed meals. Am J Clin Nutr 43,

167–172.

Wu CL, Nicholas C, Williams C, Took A & Hardy L (2003) The influence

of high-carbohydrate meals with different glycaemic indices on sub-

strate utilisation during subsequent exercise. Br J Nutr 90, 1049–1056.

Glycaemic index of meals and metabolic responses 893

https://doi.org/10.1079/BJN
20051430  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN20051430

