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Higher Stanley–Reisner rings and toric residues

Lev A. Borisov

Abstract

We give a purely algebraic proof of the hypersurface case of the Toric Residue Mirror
Conjecture recently proposed by Batyrev and Materov.

1. Introduction

The Toric Residue Mirror Conjecture (TRMC) has been formulated by Batyrev and Materov
[BM02a]. It is in many ways analogous to the by now classical calculations of (virtual) numbers
of rational curves in Calabi–Yau hypersurfaces in toric varieties. In that context the generating
function of the numbers of rational curves on a Calabi–Yau hypersurface is calculated in terms of
the periods of the mirror family. Extensive references can be found in [BM02a].

Instead of using Kontsevich’s moduli spaces of stable curves on the ambient toric manifold in
order to define virtual numbers of curves on the hypersurface, the paper of Batyrev and Materov
uses a less sophisticated toric version of moduli spaces. The resulting generating function is then
conjectured to be related to the toric residue of the mirror family. It is important to emphasize that,
while the original mirror conjecture uses the GKZ hypergeometric functions [GZK89], the TRMC is
formulated in terms of some rational functions of several variables. This, perhaps, is the strongest
indication of the relative degree of difficulty of the two conjectures. On the other hand, neither
conjecture follows from the other. Similar to the usual mirror symmetry, the TRMC can be extended
to the case of Calabi–Yau complete intersections defined by nef partitions (see [BM02b]).

In the present paper we give a simple algebraic proof of the hypersurface case of the TRMC. We
build on the work done in [BM02a] while at the same time we try to simplify it. We do not attempt to
use the most geometric version of the moduli spaces of rational curves of given cohomology class on
the toric variety, but are willing to use a bigger space while adjusting the virtual fundamental class
on it. This allows us to use essentially a single cohomology space in which to do all the calculations.
In fact, since we are mostly interested in cohomology classes, the moduli spaces we are working with
do not have a direct geometric meaning. However we feel that they greatly simplify the exposition
and allow for a more conceptual understanding of the TRMC.

This paper is organized as follows. In § 2 we introduce higher Stanley–Reisner rings Ak of a
toric variety, which is the main tool of this paper. They are closely related to the cohomology
of the moduli spaces considered in [BM02a] but are much easier to deal with. In § 3 we mimic
the construction of [BM02a] to define Morrison–Plesser classes in Ak which are analogs of virtual
fundamental classes on moduli spaces of Kontsevich’s stable curves. Section 4 contains an explicit
combinatorial calculation of the generating function of Morrison–Plesser classes for a Hessian. This
is the most delicate calculation of the entire paper. Sections 2, 3 and 4 are self-contained and can be
read by anyone with just a minimum background in toric geometry. By using somewhat technical
results about secondary polytopes, we prove our version of the TRMC in § 5. Finally, in § 6 we draw

Received 23 September 2003, accepted in final form 6 November 2003, published online 1 December 2004.
2000 Mathematics Subject Classification 14M25 (primary), 14J32 (secondary).
Keywords: toric variety, mirror symmetry, reflexive polytope.

The author was partially supported by NSF grant DMS-0140172.
This journal is c© Foundation Compositio Mathematica 2005.

https://doi.org/10.1112/S0010437X04000831 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X04000831


L. A. Borisov

the connection between our definitions and that of [BM02a], thus establishing the hypersurface case
of the TRMC.

This is not the first solution of the TRMC. In fact, the first proof of it belongs to András
Szenes and Michèle Vergne [SV03]. Although this paper is the result of a completely independent
project, the author was informed of that work by Victor Batyrev when it was still in preparation.
András Szenes then assured the author that the two approaches differed sufficiently to warrant the
completion of this project. I thank both of them for their interest and encouragement.

2. Higher Stanley–Reisner rings

In this section we describe higher Stanley–Reisner rings Ak of a toric variety PΣ for any positive
integer k. The ring A0 is isomorphic to the cohomology ring of PΣ, and for any k the ring Ak admits
a presentation inspired by the Stanley–Reisner description of A0. This is the reason behind our
terminology.

Let Σ be a complete simplicial fan in a lattice M ∼= Zd and let vi, i = 1, . . . , n, be the minimum
generators of its one-dimensional cones. Let PΣ be the corresponding toric variety. Its cohomology
is given by the Stanley–Reisner relations:

H∗(PΣ, C) ∼= C[D1, . . . ,Dn]/I,

where the ideal I is generated by linear relations
∑n

i=1(λ · vi)Di for all λ ∈ N = M∗ and monomial
relations

∏n
i=1 Dri

i over all {ri} such that no cone of Σ contains all vi for which ri > 0. This is a
slight reformulation of the usual description, which the reader can easily verify to be equivalent.

Definition 2.1. For every nonnegative k we denote by Ak the quotient of the polynomial ring
C[D1, . . . ,Dn] by linear relations

∑n
i=1(λ · vi)Di, λ ∈ N , and monomial relations

∏n
i=1 Dri

i over all
{ri} such that no cone of Σ contains all vi for which ri > k.

We will now show that Ak is isomorphic to the cohomology of some complete toric variety of
dimension nk + d, defined by a fan Σk in the lattice M ⊕ Znk, as follows. Let {ei,j , 1 � i � n, 1 �
j � k} be a basis in Znk. For each i we introduce ei,0 = −

∑k
j=1 ei,j. We then consider elements

vi,j = vi ⊕ ei,j , 1 � i � n, 0 � j � k.

The cones of the fan Σk are generated by collections of elements vi,j such that the indices i that
occur (k + 1) times correspond to the generators vi of a cone of Σ.

Proposition 2.2. The above described Σk is a complete simplicial fan. The cohomology ring of
the corresponding toric variety PΣk

is isomorphic to Ak.

Proof. First of all, we need to see that Σk is a fan, i.e. the intersection of two cones C1 and C2 in it
is again a cone in Σk. It is sufficient to show that if the Ci correspond to the subsets of indices I and
J of {1, . . . , n}×{0, . . . , k} then C1∩C2 is equal to the cone C spanned by vi,j for (i, j) ∈ I ∩J . For
each i = 1, . . . , n we denote by Ii, Ji and (I ∩ J)i the ith components of I, J and I ∩ J respectively.

It is clear that C ⊆ C1 ∩C2. To show the converse, suppose that w = v⊕
⊕n

i=1 wi is in C1 ∩C2.
We have

w =
n∑

i=1

( ∑
j∈Ii

αi,j

)
vi ⊕

n⊕
i=1

∑
j∈Ii

αi,jei,j =
n∑

i=1

( ∑
j∈Ji

βi,j

)
vi ⊕

n⊕
i=1

∑
j∈Ji

βi,jei,j,

where all α and β are nonnegative. For each i we have αi,j = βi,j + γi for some numbers γi

independent of j. We observe that if γi > 0 then αi,j > 0 for all j, so |Ii| = k+1. Similarly, if γi < 0
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then |Ji| = k + 1. We have

0 =
n∑

i=1

γivi.

By splitting this into sums with positive and negative γi we get∑
i, |Ii|=k+1, γi>0

γivi =
∑

i, |Ji|=k+1, γi<0

(−γi)vi.

By the definition of cones in Σk, the set of vi with |Ii| = k+1 forms a cone in Σ, and similarly for J .
Both sides of the above identity lie in the intersection of the corresponding cones. As a result, γi = 0
unless |Ii| = |Ji| = k + 1. This implies that αi,j = βi,j unless |Ii| = |Ji| = k + 1. Consequently, if
(i, j) �∈ J then |Ji| < k + 1 so αi,j = βi,j = 0. Hence only nonzero αi,j come from (i, j) ∈ I ∩ J .
This shows that Σk is indeed a fan.

To show that Σ is complete, consider any w = v ⊕
⊕n

i=1 wi. Each wi sits in the unique cone of
the standard fan for Pk so it can be written in a unique way as a nonnegative linear combination
of k vectors ei,j . If we subtract the corresponding linear combinations of vi,j we are left with an
element v′ of MR. We can write it as a positive linear combination v′ =

∑
vi∈σ γivi for some cone

σ ∈ Σ. Therefore,

v′ ⊕ 0 =
∑
vi∈σ

k∑
j=0

1
k + 1

γivi,j .

It is easy to see that the resulting linear combination for w will have positive coefficients for the set
of indices I such that |Ii| = k + 1 if and only if vi ∈ σ. Thus w lies in a cone of Σk.

To calculate the cohomology of PΣk
we use the Stanley–Reisner presentation of it as a quotient

of a polynomial ring in n(k + 1) variables Di,j by linear and polynomial relations. We have linear
relations Di,j1 = Di,j2 for all i, j1 and j2, which come from the linear functions on each copy of Zk.

We can map Di to (k + 1)Di,0 and note that linear relations coming from M give
n∑

i=1

(λ · vi)Di = 0.

The description of the cones of Σk then shows that the monomial relations are exactly the ones in
the definition of Ak.

Remark 2.3. For any l > 0 the ring Ak can be naturally mapped to Ak+l by multiplying by
∏n

i=1 Dl
i.

Indeed, multiplication by
∏n

i=1 Dl
i maps monomial relations for Ak into monomial relations for Ak+l

so it maps the ideal of relations for Ak into that for Ak+l. This map is a C[D1, . . . ,Dn]-module map.
In what follows we will be working in the direct limit of Ak under these maps.

By Proposition 2.2, the component of degree nk + d in the graded ring Ak is one-dimensional.
Moreover we have evaluation maps

∫
PΣk

: Ak → C coming from the intersection on PΣk
. We observe

that these evaluations are not quite compatible with the maps of Remark 2.3.

Proposition 2.4. For any element a ∈ Ak and any l > 0 there holds∫
PΣk

a =
(k + 1)nk

(k + l + 1)n(k+l+1)

∫
PΣk+l

a

n∏
i=1

Dl
i.

Proof. Since the top-degree components of Ak are one-dimensional, the above statement is true up
to multiplication by a constant. Consequently, it is enough to show that∫

PΣ

a = (k + 1)−nk

∫
PΣk

a

n∏
i=1

Dk
i (2.1)
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for one nonzero element a of A0. Pick a maximum cone σ ∈ Σ and let V (σ) be the normalized volume
of the simplex generated by vi ∈ σ, which is defined as the absolute value of the determinant of vi

expanded in a basis of the lattice. Then∫
PΣ

∏
vi∈σ

Di = V (σ)−1.

On the other hand,
∏

vi∈σ Di
∏n

i=1 Dk
i corresponds to

∏
vi∈σ

(k + 1)Di,0

n∏
i=1

k∏
j=1

(k + 1)Di,j .

We need to find the normalized volume of the cone σk in Σk generated by vi,0 for vi ∈ σ, and by vi,j

for 1 � i � n, 1 � j � k in M ⊕ Znk. We claim that it equals V (σ)(k + 1)d. Indeed, replacing vi,0

by
∑k

j=0 vi,j = (k + 1)vi ⊕ 0 does not change the volume. Then it is easy to calculate the volume of
the resulting cone. Then we have

∫
PΣk

∏
vi∈σ

Di

n∏
i=1

Dk
i = (k + 1)nk+dV (σk)−1 = (k + 1)nkV (σ)−1.

This shows (2.1).

We will adjust the top class evaluation so that it is compatible with the maps of Remark 2.3.

Definition 2.5. For each nonnegative k we define
∫
Ak

: Ak → C by
∫
Ak

= (k + 1)−nk
∫
PΣk

.
By Proposition 2.4, we have ∫

Ak

a =
∫

Ak+l

a

n∏
i=1

Dl
i (2.2)

for all k, l and all a ∈ Ak.

Definition 2.6. We denote by A the direct limit of Ak taken with respect to the maps of
Remark 2.3. The direct limit of

∫
Ak

gives a map
∫
A : A → C. In addition A inherits the

structure of the C[D1, . . . ,Dn]-module.

Remark 2.7. The arguments of this section do not depend on the fact that the same lattice Zk is
used for all i. In fact, for any nonnegative integers k1, . . . , kn one can define the fan Σ(k1,...,kn) in
the lattice

M ⊕
⊕

i

Zki

in terms of vi,j = vi ⊕ ei,j for 1 � i � n, 0 � j � ki. The cohomology ring A(k1,...,kn) of the corre-
sponding toric variety PΣ(k1,...,kn)

is given by the usual linear relations and the relations
∏

i D
ri
i = 0

if the set of vi for which ri > ki does not lie in a cone of Σ. Products of powers of Di define maps
between these rings, which are compatible with the top class evaluation, once it is adjusted by the
factor

∏n
i=1(ki + 1)ki . While introducing these rings has no effect on the limit A, we will use this

remark in § 6.

The following convention will be used in the later sections.

Definition 2.8. We define D0 = −
∑n

i=1 Di in each ring Ak.

164

https://doi.org/10.1112/S0010437X04000831 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000831


Higher Stanley–Reisner rings and toric residues

3. Morrison–Plesser classes

In what follows it will be convenient to extend the lattice M to a lattice M̄ := M ⊕ Z. We will
denote by vk the elements vk ⊕ 1 of M̄ . We will also consider v0 = 0 ⊕ 1 ∈ M̄ . In what follows we
will consider linear combinations of vk, which are encoded by elements β = (b0, b1, . . . , bn) ∈ Zn+1.
From this section on we assume that the toric variety PΣ is nef-Fano. This means that the vi lie on
the boundary of the convex polytope ∆ = conv({vi, i = 1, . . . , n}).

Definition 3.1. Let β ∈ Zn+1 be any lattice point which satisfies b0 � 0. We define the Morrison–
Plesser class as an element of A which is the image of the element in Ak,

Φβ = (D0)−b0

n∏
i=1

Dk−bi
i ,

for some sufficiently big k. Clearly, the result is independent of the choice of k.

The following key construction is motivated by [BM02a]. Let f = 1 +
∑n

i=1 ait
vi be a generic

formal Laurent polynomial in tM . Notice the change of sign in our notation as compared to that of
[BM02a]. We will also use the notation a0 = 1.

Denote by K the cone in M̄R spanned by vk. It can also be described as {c∆ ⊕ c, c � 0}.

Definition 3.2. Let p ∈ M̄ be a point in K. Then we define a formal Laurent series

Ψp :=
∑

β:
∑

i bivi=−p, b0�0

Φβ

n∏
i=1

abi
i

with values in A.

Remark 3.3. The above definition gives Ψp = 0 if p does not lie in the lattice generated by vi, i =
0, . . . , n.

Proposition 3.4. For every p ∈ K and every j ∈ {0, . . . , n} there holds

DjΨp = αjΨp+vj .

Proof. The equality has to be understood as that of a formal Laurent series in a1, . . . , an.
Every solution of

∑
i bivi = −p gives a solution∑

i

b̂ivi =
∑

i

(bi − δj
i )vi = −p− vj

and vice versa. For j > 0 the coefficients b0 in these two solutions are the same, and it is straight-
forward to see that the elements of A for the left- and right-hand sides of the above equation are
the same.

The situation is more complicated in the case of j = 0. The summation for Ψp+v0 involves
solutions with b̂0 = 0 which have no counterpart in the summation for Ψp. We will however see that
these elements are in fact zero in A. We will do the calculation in Ak for all k for which a given Φβ̂
makes sense.

Suppose that Φβ̂ is not zero. It is proportional to the monomial

n∏
i=1

Dk−b̂i
i ,

so the definition of Ak implies that the set of vi for which b̂i < 0 lies in some cone σ ∈ Σ. Consider
the corresponding face in K, generated by all vi for which b̂i < 0. Consider its supporting hyperplane
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given by an element n of N̄ . We have n · vi � 0 for all 1 � i � n and n · vi = 0 if b̂i < 0. Since we
have

n∑
i=1

b̂ivi = −p− v0,

we conclude that n · (p + v0) � 0. However, by assumption, p ∈ K, so p + v0 is in the interior of
K and every supporting hyperplane is strictly positive on it.

Proposition 3.5. For every p ∈ K and every element n ∈ N̄ = M̄∗ there holds

n∑
i=0

ai(n · vi)Ψp+vi = 0.

Proof. By Proposition 3.4 we get
n∑

i=0

ai(n · vi)Ψp+vi =
n∑

i=0

(n · vi)DiΨp.

For n = λ ⊕ 0 the result follows from the linear relations that hold in each Ak, hence in A. For
n = 0 ⊕ 1 the result follows from the definition of D0. By linearity, the statement holds for all n.

We will be especially interested in Ψp of top degree.

Definition 3.6. Consider points p ∈ K given by p ⊕ d ∈ M̄ ∼= M ⊕ Z. For each such p we define
a formal Laurent series in ai by∫

A
Ψp :=

∑
β:
∑

i bivi=−p, b0�0

∫
A

Φβ

n∏
i=1

abi
i ,

where
∫
Ak

is the top class evaluation in A (see Definition 2.6).

4. Hessians

The goal of this section is to calculate the linear combinations of series
∫
A Ψp for linear combinations

of points p ∈ K that come from certain Hessians. We will now assume that we have a reflexive
polytope ∆ ⊂ M and let T be a triangulation of ∆ whose maximum simplices contain 0. The
vertices of T are {0} ∪ {vi, i = 1, . . . , n}. Points vi include all vertices of ∆ and perhaps some other
points vi ∈ ∂∆. The triangulation T induces a complete simplicial fan Σ in MR. As before, we
introduce M̄ ∼= M ⊕ Z, vi and K. The reflexivity assumption on ∆ implies that every lattice point
in the interior of K lies in v0 + K.

As before we fix a generic polynomial f = a0 +
∑n

i=1 aivi with a0 = 1. We recall the definitions
of Hessians Hf and H ′

f associated to these data (see [BM02a]). We will give a mostly self-contained
exposition, both for the benefit of the reader and to facilitate further arguments.

Definition 4.1. Fix a basis {n1, . . . ,nd+1} of the lattice N̄ = M̄∗. The Hessian Hf is the deter-
minant of the square matrix of size d + 1 whose (i, j)th entry is

n∑
l=0

(ni · vl)(nj · vl)alt
vl ,

where t is a dummy variable.

Remark 4.2. The Hessian Hf can be thought of as an element of C[K]. It is easy to see that Hf does
not depend on the choice of basis of N̄ . Indeed, any linear change in ni by a matrix R amounts to
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a linear change of rows and columns of the above matrix and gives an additional factor of (detR)2

to the Hessian.

Proposition 4.3 [CDS98]. There holds

Hf =
∑

J⊆{0,...,n}, |J |=d+1

V (J)2
(∏

i∈J

ai

)
t
∑

i∈J vi ,

where V (J) is the normalized (d+1)-dimensional volume of the simplex spanned by the vectors vi,
for i ∈ J .

Proof. It is clear that all the terms of the determinant involve at most (d + 1) different ait
vi .

Consequently, it is enough to find out what happens when all ai are zero except for i ∈ J, |J | = d+1.
If the elements vi, i ∈ J , are linearly dependent, there is an element n1 ∈ N̄ that vanishes on

all of them. By completing it to a basis, we see that the Hessian is the determinant of a matrix with
a zero first row (and zero first column). Consequently, these collections J do not contribute to the
Hessian.

If the elements vi, i ∈ J , are linearly independent, consider the dual basis of N̄Q. The matrix
will then be simply the diagonal matrix with (i, i)th entry ait

vi . The dual basis will typically not
be a basis of N̄ . However, a basis of N̄ is obtained by a linear transformation of determinant V (J)
from the dual basis to vi, i ∈ J . The argument of Remark 4.2 then completes the proof.

As a consequence of the above proposition, Hf is supported in the interior of K. Indeed, the
terms from the boundary correspond to J with V (J) = 0. Since ∆ is reflexive, Hf is divisible by
tv0 in C[K], which allows us to introduce H ′

f .

Definition 4.4.

H ′
f := Hf/tv0 =

∑
J⊆{0,...,n}, |J |=d+1

V (J)2
(∏

i∈J

ai

)
t
∑

i∈J vi−v0.

The main result of this section is the following calculation, which describes the value of
∫
A Ψ on

the Hessian. We denote by Vol(∆) the normalized volume of ∆.

Theorem 4.5. There holds∑
J⊆{0,...,n}, |J |=d+1

V (J)2
(∏

i∈J

ai

)∫
A

Ψ∑
i∈J vi−v0

= Vol(∆).

Proof. The definition of Ψ∑
j∈J vj−v0

involves summation over β̂ = (b̂0, . . . , b̂n) with b̂0 � 0 and

n∑
i=0

b̂ivi = −
∑
j∈J

vj + v0.

We introduce bi = b̂i + χ(i∈J) − δ0
i . Here χ(i∈J) is 1 if i ∈ J and is zero otherwise, and δ is the

Kronecker symbol. Then we have the sum over β = (b0, . . . , bn) with
n∑

i=0

bivi = 0

and the additional assumption b0 − χ(0∈J) + 1 � 0. This means that the summation takes place
over all β with b0 � 0, but for b0 = 0 one only uses J that contain 0.

We will analyze the contribution of β from the following three cases: b0 < 0; b0 = 0, β �= 0; and
β = 0. We will establish the claim of Theorem 4.5 by showing that the only nonzero contribution
comes from β = 0 and equals Vol(∆).
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Case b0 < 0. The contribution is given by
∫

Ak

∑
J⊆{0,...,n}, |J |=d+1

V (J)2
∏
i∈J

ai

∏
i∈J

D−b̂0
0

n∏
i=1

(Dk−b̂i
i ab̂i

i )

=
∫

Ak

D−b0−1
0

n∏
i=1

(Dk−bi
i abi

i )
∑

J⊆{0,...,n}, |J |=d+1

V (J)2
∏
i∈J

Di.

The proof of Proposition 4.3 shows that
∑

J⊆{0,...,n}, |J |=d+1 V (J)2
∏

i∈J Di is the determinant of
the square matrix of size (d + 1) whose (i, j)th entry is

n∑
l=0

(ni · vl)(nj · vl)Dl.

Here {ni} is an arbitrary basis of N̄ so we can pick n1 to have n ·vl = 1 for all l. Then the first row
of the matrix consists of elements that are zero in Ak, so the determinant is zero. As a consequence,
elements with b0 < 0 do not contribute to the overall sum.

Case b0 = 0, β �= 0. This is the most difficult part of the calculation. We again would like to show
that the contribution is zero. We recall that we have a summation over the subsets J that contain 0.
We abuse notation and use the same letter for the corresponding subset of {1, . . . , n}. We need to
show that ∫

Ak

n∏
i=1

Dk−bi
i

∑
J⊆{1,...,n}, |J |=d

V (J)2
∏
i∈J

Di = 0, (4.1)

where V (J) now denotes the normalized volume of the d vectors vi, i ∈ J , in the lattice M .

We immediately observe that (4.1) holds unless the set of vi such that bi < 0 lies in a cone in Σ.
Indeed, otherwise we have

∏n
i=1 Dk−bi

i = 0 in Ak. We will denote by σ the cone spanned by vi

with bi < 0. We denote by θ the minimum face of the reflexive polytope ∆ that contains all vi with
bi < 0. Since we have

n∑
i=1

bivi = 0,

all nonzero bi correspond to elements vi ∈ θ. Indeed, there is an element n in N̄ which vanishes
on vi for vi ∈ θ and is positive on all other vi. When applied to both sides of the above equation
we see that

∑
vi �∈θ bi(n · vi) = 0. This shows that all terms bi(n · vi) are zero, since all terms are

nonnegative.

The second observation is that
∏n

i=1 Dk−bi
i

∏
i∈J Di is zero in Ak unless all vi for i ∈ J lie in a

codimension-one face θ1 ⊂ ∆ that contains θ. Indeed, the set of exponents that are bigger than k
contains all vi ∈ σ and all vi �∈ θ, i ∈ J . To be nonzero in Ak implies that all these elements lie
in a cone of Σ. Hence the minimum face θ2 in ∆ that contains these elements has codimension at
least one. Since this minimum face contains θ, in fact all elements vi, i ∈ J , lie in θ2. Then any
codimension-one face θ1 ⊇ θ2 works. In fact, for nonzero V (J) the face θ1 is uniquely determined.
As a result, we can split the summation over all J into sub-summations over θ1. Then (4.1) would
follow from ∫

Ak

n∏
i=1

Dk−bi
i

∑
J⊆vert(θ1), |J |=d

V (J)2
∏
i∈J

Di = 0, (4.2)

where vert(θ1) is the set of indices i for which vi ∈ θ1.
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For any basis {λ1, . . . , λd} of N , consider a square matrix B with entries

Bij =
∑
vl∈θ1

(λi · vl)(λj · vl)Dl.

Similarly to the proof of Proposition 4.3, we can see that∑
J⊆vert(θ1), |J |=d

V (J)2
∏
i∈J

Di = Det(B).

Since we are only trying to show that this determinant is zero, we could use a basis of NQ instead
of N . We will pick a special basis as follows. The element λ1 will be equal to 1 on all vi ∈ θ1. The
elements λ2, . . . , λr where r = dim(θ1) − dim(θ) + 1 will be zero on θ ⊆ θ1. It is easy to see that
these elements could be completed to a basis if θ is nonempty, which is guaranteed by β �= 0.

The first row of the matrix B consists of B1,j =
∑

vl∈θ1
(λj · vl)Dl. These elements equal

−
∑

vl �∈θ1
(λj · vl)Dl due to linear relations in Ak. We are going to replace the first row of B by

the above elements of C[D] and call the resulting matrix B′. We then calculate the determinant of
B′ as an element in C[D]. We claim that all monomials in Di that appear in the resulting expression
do not have vi that lie in any face of ∆ that contains θ. Consequently, the above arguments show
that their contribution to the left-hand side of (4.2) is zero.

To substantiate our claim, we expand the determinant of B′ along the first r rows. It is sufficient
to show that all the r×r minors of the first r rows of B′ have nonzero coefficients only by monomials

r∏
i=1

Dli

such that no proper face θ2 ⊇ θ contains all of the vli . Suppose such a monomial and such a θ2

exist. As in the proof of Proposition 4.3 we can replace the rows 2, . . . , r of B′ by keeping only the
linear combinations of the Dli . We call the resulting matrix B′′. The face θ2 cannot equal θ1, since
the first row of B′ has Dl with vl �∈ θ1. The intersection of θ1 and θ2 is a proper subface of θ1.
Consequently, there is a linear combination of λ2, . . . , λr which vanishes on θ1 ∩ θ2. By taking the
appropriate linear combination of the rows 2, . . . , r of B′′, we get a zero row, which means that
the monomial

∏r
i=1 Dli occurs with zero coefficient.

Case β = 0. This case is essentially covered in [BM02a] but we reproduce the argument here. The
contribution equals∫

Ak

n∏
i=1

Dk
i

∑
J⊆{1,...,n}, |J |=d

V (J)2
∏
i∈J

Di =
∫
PΣ

n∏
i=1

∑
J⊆{1,...,n}, |J |=d

V (J)2
∏
i∈J

Di

=
∑

σ∈Σ, dim σ=d

V (σ)2
∫
PΣ

∏
vi∈σ

Di =
∑

σ∈Σ, dim σ=d

V (σ) = Vol(∆).

Here V (σ) is the normalized volume of the corresponding simplex of the triangulation. This finishes
the proof of Theorem 4.5.

5. The Toric Residue Mirror Conjecture

As before, we are working with a reflexive polytope ∆, a subset {vi} of its boundary points and a
triangulation T of ∆ whose maximum simplices contain 0. We will combine together the results of
§§ 3 and 4 to establish Theorem 5.2, which is the main result of this paper. We refer to this theorem
as the TRMC. We will explain in § 6 that it implies the original conjecture of [BM02a].
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To explain the statement of Theorem 5.2 we need to introduce the notion of toric residues, as
described in [BM02a]. The cone K in the lattice M̄ ∼= M ⊕ Z is defined as the span of ∆ ⊕ 1.
We introduce vi = vi ⊕ 1 and v0 = 0 ⊕ 1. As before, we consider a generic Laurent polynomial
f = 1 +

∑n
i=1 ait

vi and set a0 = 1. Pick a basis n0, . . . ,nd of N̄ = M̄∗. The quotient of the graded
ring C[K] by the elements

Zj =
n∑

i=0

(nj · vi)ait
vi , i = 0, . . . , d,

is a graded Gorenstein Artin ring, and its degree-d component is one-dimensional. It is spanned by
the Hessian H ′

f considered in § 4. The toric residue is a map

Resf : C[K]d → C

uniquely defined by its vanishing on the degree-d component of the ideal 〈Z0, . . . , Zd〉C[K] and by
the normalization

Resf (H ′
f ) = Vol(∆).

For a given point p = p⊕d in K the value of Resf (tp) is a rational function in ai with denominator
equal to the principal determinant E = E(a1, . . . , an) (see [BM02a, Theorem 2.9]).

The principal determinant E is a Laurent polynomial in ai. We can think of its monomials as
being indexed by a lattice Zn with basis {ei}. The vertices of the Newton polytope of E (also called
the secondary polytope) are exactly characteristic functions

χT =
∑

i

∑
σ:vi∈σ∈T , dimσ=d

V (σ)ei,

which correspond to regular triangulations T of ∆ whose set of vertices is a subset of {0} ∪ {vi, i =
1, . . . , n}. The proofs of these statements are contained in [GKZ94]; see also [BM02a]. Here the
triangulation is called regular if there exists a convex piecewise linear function ∆ → R whose
domains of linearity are precisely the simplices of T .

From now on we will assume that the triangulation T is regular, which also means that the toric
variety PΣ is projective. The rational function Resf (tp) can be expanded in a Laurent series expan-
sion in the normal cone of the vertex χT of the Newton polytope of E (see [BM02a, Definition 4.5]).
This cone can be described as follows. Let h : M → Z be a convex function which is linear on the
cones of Σ and corresponds to an ample divisor on PΣ. We extend h to MR by linearity. Then for
any set of points yi ∈ MR and any positive numbers αi there holds

h

( ∑
i

αiyi

)
�

∑
i

αih(yi), (5.1)

with the equality achieved if and only if there is a cone σ ∈ Σ that contains all points yi. The set
of such convex functions will be called the ample cone of T and will be denoted by Cample

T .
The following proposition is well known, but we were unable to find a good reference in the

literature.

Proposition 5.1 (see also [BM02a, Remark 4.7]). The normal cone CT to the vertex χT in Zn can
be characterized by the condition

n∑
i=1

αiei ∈ CT ⇔
n∑

i=1

αivi = 0 and
n∑

i=1

αih(vi) � 0 for all h ∈ Cample
T .

Proof. The normal cone is generated by the differences χT1 −χT of the characteristic functions over
all regular triangulations T1 with the same set of vertices. For every T , if χT =

∑n
i=1 αiei, then up
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to a constant,
n∑

i=1

αivi =
∑

σ∈T , dimσ=d

V (σ)
∑
vi∈σ

vi

is the baricenter of ∆ and is therefore independent of the triangulation. Consequently, all differences
between various χT satisfy

∑n
i=1 αivi = 0.

For every triangulation T and every collection of values (h0, . . . , hn) ∈ Rn+1 there is a unique
piecewise linear function hT on ∆ which takes values hi on the vertices vi and v0 = 0 of T and is
linear on simplices of T . Moreover, for a general collection (hi) this function hT is convex for exactly
one configuration which corresponds to the ‘bottom’ of the convex hull of {vi⊕hi} ∈ MR⊕R. For such
T and hT the value hT (p) is the smallest among all possible values of hT 1 for all triangulations T 1.
The value of

∑
i αih(vi) for a characteristic function of T is easily seen to equal the integral of hT

over ∆. Consequently, it is the smallest of these values among all vertices of the Newton polytope
of E if and only if h is convex on T .

We are now ready to state our main result.

Theorem 5.2. Let T be a regular triangulation of a reflexive polytope ∆. For every p = p⊕ d ∈ K
which lies in the lattice spanned by v0, . . . ,vn, the formal Laurent series

∫
A Ψp is the expansion of

the rational function Resf (tp) at the vertex χT of the Newton polytope of E.

Remark 5.3. Theorem 5.2 implies that the series
∫
A Ψp is in fact convergent in some open set of

(a1, . . . , an) ∈ Cn.

Proof of Theorem 5.2. First of all, we can restrict our attention to the sublattice of M̄ spanned
by vi. All statements about the residues remain unchanged, except for a possible change in the
normalization by the index of the sublattice. This is quite different from only looking at the subring
of C[K] generated by tvi; the latter may fail to have a one-dimensional degree-d component of the
quotient by the ideal 〈Z1, . . . , Zd〉.

Let p = p ⊕ d be a point in K. We now state and prove a lemma, before returning to the proof
of the theorem.

Lemma 5.4. Let β ∈ Zn+1 satisfy
∑n

i=0 bivi = −p and b0 � 0. Then
∫
A Φβ is zero unless

n∑
i=1

bih(vi) + h(p) � 0,

for any h ∈ Cample
T .

Proof. We have
∑n

i=1 bivi + p = 0. We can rewrite this as∑
i,bi�0

bivi + p =
∑

i,bi<0

(−bi)vi.

If
∫
A Φβ �= 0, then all vi for which bi < 0 lie in a cone of Σ. We then use (5.1) to show that

n∑
i=1

bih(vi) + h(p) =
( ∑

i,bi�0

bih(vi) + h(p)
)
−

( ∑
i,bi<0

(−bi)h(vi)
)

=
( ∑

i,bi�0

bih(vi) + h(p)
)
− h

( ∑
i,bi�0

bivi + p

)
� 0.
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We return to the proof of Theorem 5.2. The above lemma implies that the formal Laurent series∫
A Ψp are in fact supported in a finite number of affine shifts of the cone CT . The same is true

for the Laurent expansions of Resf (tp). We denote the differences by Fp =
∫
A Ψp − Resf (tp) and

observe that Proposition 3.5, Theorem 4.5 and the definition of the toric residue imply that the
following hold:

a) for all p1 = p1 ⊕ (d − 1)
n∑

i=0

ai(n · vi)Fp1+vi = 0,

b)
∑

J⊆{0,...,n}, |J |=d+1 V (J)2(
∏

i∈J ai)F∑
i∈J vi−v0

= 0.

Since for generic {ai} the elements
∑n

i=0 ai(n · vi)tp1+vi and H ′
f generate C[K]deg=d, the

element tp can be written as their linear combination with coefficients being rational functions
in {ai}. Consequently, there is a polynomial G(a1, . . . , an) such that G(a1, . . . , an)Fp = 0. We remark
that multiplication of a formal Laurent series by a polynomial is well defined. We now use the
fact that F is supported in a finite number of affine shifts of CT . Let φ : Zn → R be a generic linear
function which is positive on CT − {0}. If Fp �= 0 then there is a term cαaα of Fp which has the
smallest value of h(α) among the terms with cα �= 0. The same can be said about G, and it is easy
to see that the product of these terms in FpG does not cancel.

We have thus shown that Fp = 0 for all p = p ⊕ d, which proves Theorem 5.2.

Corollary 5.5. Let P (x1, . . . , xn) ∈ Q[x1, . . . , xn] be a degree-d polynomial. Then the Laurent
expansion of the toric residue RP (a) = ResfP (a1t

v1 , . . . , antvn) at the vertex χT is equal to

∑
β:
∑

i bivi=0, b0�0

∫
Ak

P (D1, . . . ,Dn)D−b0
0

n∏
i=1

Dk−bi
i

n∏
i=1

abi
i ,

where k is to be taken sufficiently big for each β.

Proof. The statement follows from Proposition 3.4, Theorem 5.2 and the definition of
∫
A Ψ.

6. Connection to the original version of the TRMC

In this section we will establish the connection between Theorem 5.2 and the Toric Residue Mirror
Conjecture of [BM02a]. We will also remark on the complete intersection case.

We are working in the notation of the previous section.

Proposition 6.1. Assume that vi generate M . Then Corollary 5.5 implies Conjecture 4.6 of
[BM02a].

Proof. First we observe that
∑n

i=0 bivi = 0 ∈ M̄ is equivalent to
∑n

i=1 bivi = 0 ∈ M and −b0 =
b1 + · · ·+ bn. The argument of Lemma 5.4 shows that the summation in Corollary 5.5 can be taken
over the effective classes β (see [BM02a]). We also observe that the change in sign of ai in our
notation accounts for the factor (−1)d of [BM02a, Conjecture 4.6] and introduces an extra factor
(−1)b1+···+bn = (−1)−b0 into each term.

As a result, it remains to connect
∫

Ak

P (D1, . . . ,Dn)(−D0)−b0

n∏
i=1

Dk−bi
i
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with ∫
Pβ

P (D1, . . . ,Dn)(D1 + · · · + Dn)b1+···+bn
∏
bj<0

D
−bj−1
j ,

where Pβ is defined in [BM02a, Proposition 3.2 and Definition 3.3].

Without loss of generality we can assume that b1, . . . , bn−r � 0 and bn−r+1, . . . , bn < 0. We
consider the variety PΣ(b1,...,bn−r,0,...,0)

of Remark 2.7. It is given by a fan Σβ in the lattice

M ⊕
n−r⊕
i=1

Zbi .

The vertices of the fan are vi,j = vi ⊕ ei,j for i � n − r, bi > 0, and just vi for i > n − r or
i � n− r, bi = 0. The cones are given by the condition that the indices i for which all vi,j are used
lie in a cone of Σ.

We claim that, up to a finite-index change of lattice, Pβ is isomorphic to the toric subvariety
P′

β in PΣ(b1,...,bn−r,0,...,0)
which corresponds to the cone generated by vi, i > n − r. This variety is

empty if vn−r+1, . . . , vn do not form a cone in Σ and is otherwise given by the image of the link of
σ = Span(vn−r+1, . . . , vn) in Σ(b1,...,bn−r ,0,...,0) modulo the lattice M1 = (Qvn−r+1 + · · · + Qvn) ∩M .
The lattice of P′

β is the quotient of the lattice M ⊕
⊕n−r

i=1 Zbi by M1.

We need to recall the definition of Pβ from [BM02a]. Consider the lattice

Z(β) :=
n−r⊕
i=1

Zi(β) ∼=
n−r⊕
i=1

Zbi+1

with the basis w
(i)
j . Our notation differs by a switch of i and j from that of [BM02a]. Consider the

sublattice in Z(β) defined by the condition

n−r∑
i=1

ci

( bi∑
i=0

w
(i)
j

)
= 0

for every solution of
∑n

i=1 civi = 0. Then the fan of Pβ lives in the dual L of this sublattice, which
can be thought of as the quotient of the lattice Z(β)∗ by elements

n−r∑
i=1

ciyi (6.1)

for
∑n

i=1 civi = 0 where yi =
∑bi

i=0 w
(i)∗
j . Notice that the images of the elements [1/(bi + 1)]vi,j ,

i � n − r, in MQ ⊕
⊕n−r

i=1 Qbi/(M1)Q satisfy the same relations (6.1) as the images of w
(i)
j in L.

Maximum-dimensional cones of the fan of Pβ are described in the proof of Proposition 3.2 of [BM02a]
and it is easy to see that they are in one-to-one correspondence with the cones of the fan of P′

β.
We also remark that the projection in that proof shows that, if vn−r+1, . . . , vn do not lie in a cone
of Σ, Pβ is empty.

Because varieties Pβ and P′
β are isomorphic up to a lattice change, their cohomology rings

are isomorphic with the isomorphism mapping Di,j to [1/(bi + 1)]D(i)
j which corresponds to the

element w
(i)∗
j . As a result, their Stanley–Reisner descriptions in terms of the polynomial ring

C[D1, . . . ,Dn] have exactly the same ideal, which includes Dn−r+1, . . . ,Dn. Now we only need to
make sure that the top class evaluations are the same, which again amounts to an index calculation
for some maximum-dimensional cone. The details are left to the reader.
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Remark 6.2. In general, it appears that Conjecture 4.6 of [BM02a] needs to be adjusted by the
index of the sublattice of M generated by vi inside the lattice M . For instance, P0 is in general not
isomorphic to PΣ but is rather a nonramified abelian cover of PΣ.

Remark 6.3. While higher Stanley–Reisner rings Ak are easier to define and work with, they lack
the direct geometric motivation of the toric moduli spaces Pβ of [BM02a]. It is also quite possible
that they are better thought of as Deligne–Mumford stacks (see [BCS03]).

Remark 6.4. It is reasonable to expect that the techniques of this paper are applicable to the
complete intersection case of the conjecture; see [BM02b].

Remark 6.5. It would be interesting to try to apply higher Stanley–Reisner rings to other open
problems in the area. For example, one can try to use them to bound the regularity of the subring
of C[K] generated by tvi . Surprisingly little is known about this toric case of the more general
Eisenbud–Goto conjecture [EG84].
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