
Mathematika 59 (2013) 23–30 University College London

doi:10.1112/S0025579312001039

ON A STRONG VERSION OF THE KEPLER
CONJECTURE

KÁROLY BEZDEK

Abstract. We raise and investigate the following problem which one can regard
as a very close relative of the densest sphere packing problem. If the Euclidean 3-
space is partitioned into convex cells each containing a unit ball, how should the
shapes of the cells be designed to minimize the average surface area of the cells?
In particular, we prove that the average surface area in question is always at least
24
√

3
= 13.8564 . . . .

§1. Introduction. The central problem that we raise in this paper can be
phrased informally as follows: if the Euclidean 3-space is partitioned into convex
cells each containing a unit ball, how should the shapes of the cells be designed
to minimize the average surface area of the cells? In order to state our problem
in more precise terms we proceed as follows. Let T be a tiling of the three-
dimensional Euclidean space E3 into convex polyhedra Pi , i = 1, 2, . . . , each
containing a unit ball—say, Pi containing the closed three-dimensional ball Bi
centered at the point oi having radius 1 for i = 1, 2, . . . . Also, we assume that
there is a finite upper bound for the diameters of the convex cells in T , i.e.,
sup{diam(Pi ) | i = 1, 2, . . . }<∞, where diam(·) denotes the diameter of the
corresponding set. In short, we say that T is a normal tiling of E3 with the
underlying packing P of the unit balls Bi , i = 1, 2, . . . . Then we define the
(lower) average surface area s(T ) of the cells in T as follows:

s(T ) := lim inf
L→∞

∑
{i |Bi⊂CL }

sarea(Pi ∩ CL)

card{i | Bi ⊂ CL}
,

where CL denotes the cube centered at the origin o with edges parallel to the
coordinate axes of E3 and having edge length L , and sarea(·) and card(·) denote
the surface area and cardinality of the corresponding sets. (We note that it is
rather straightforward to show that s(T ) is independent of the choice of the
coordinate system of E3.)

There is very natural way to generate a large family of normal tilings. Let
P R be an arbitrary packing of unit balls in E3 with the property that each closed
ball of radius R in E3 contains the center of at least one unit ball in P R . Recall
that the Voronoi cell of a unit ball in P R is the set of points that are not farther
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24 K. BEZDEK

away from the center of the given ball than from any other ball’s center. It is
well known that the Voronoi cells in question form a tiling of E3 (for more
details, see [16]). Furthermore, the Voronoi tiling obtained in this way will
be a normal one because each Voronoi cell is contained in the closed ball of
radius R concentric with the unit ball of the given Voronoi cell and therefore
the diameter of each Voronoi cell is at most 2R. Also, we recall here the strong
dodecahedral conjecture of [3]: the surface area of every (bounded) Voronoi
cell in a packing of unit balls is at least that of a regular dodecahedron of
inradius 1, i.e., it is at least 16.6508 . . . . After a sequence of partial results
obtained in [1, 3, 5] (proving the lower bounds 16.1433 . . . , 16.1445 . . . , and
16.1977 . . . ), Hales [8] has recently announced a computer-assisted proof of the
strong dodecahedral conjecture.

In the second half of this paper, by adjusting Kertész’s volume estimation
technique [14] to our problem on estimating surface area and making the
necessary modifications, we give a proof of the following inequality.

THEOREM 1.1. Let T be an arbitrary normal tiling of E3. Then the average
surface area of the cells in T is always at least 24

√
3
, i.e.,

s(T )>
24
√

3
= 13.8564 . . . .

Most likely the lower bound in Theorem 1.1 can be improved further;
however, any such improvement would require additional new ideas. In
particular, recall that in the face-centered cubic lattice packing of unit balls
in E3, when each ball is touched by 12 others, the Voronoi cells of the unit
balls are regular rhombic dodecahedra of inradius 1 and surface area 12

√
2 (for

more details on the geometry involved, see [7]). Thus, the following question
immediately arises: prove or disprove that if T is an arbitrary normal tiling of
E3, then

s(T )> 12
√

2= 16.9705 . . . . (1)

Let us mention that an affirmative answer to (1) for the family of Voronoi
tilings of unit ball packings would imply the Kepler conjecture. As is well
known, the Kepler conjecture has been proved by Hales in a sequence of
celebrated papers [9–13] concluding that the density of any unit ball packing
in E3 is at most π/

√
18. Indeed, if s(T )> 12

√
2 were true for the Voronoi

tilings T of unit ball packings P in E3, then based on the obvious inequalities∑
{i |Bi⊂CL }

vol(Pi ∩ CL)6 vol(CL) and
1
3

sarea(Pi ∩ CL)6 vol(Pi ∩ CL)

(where vol(·) denotes the volume of the corresponding set), we would get that
the (upper) density

δ(P) := lim sup
L→∞

(4π/3) card{i | Bi ⊂ CL}

vol(CL)
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of the packing P must satisfy the inequality

δ(P) 6 lim sup
L→∞

(4π/3) card{i | Bi ⊂ CL}∑
{i |Bi⊂CL }

vol(Pi ∩ CL)

6 lim sup
L→∞

4π card{i | Bi ⊂ CL}∑
{i |Bi⊂CL }

sarea(Pi ∩ CL)
=

4π
s(T ) 6

π
√

18
.

Thus, one could regard the affirmative version of (1), stated for the Voronoi
tilings of unit ball packings, as a strong version of the Kepler conjecture.

As an additional observation we mention that an affirmative answer to (1)
would also imply the rhombic dodecahedral conjecture of [4]. According to
that conjecture the surface area of any three-dimensional parallelohedron of
inradius at least 1 (i.e., the surface area of any convex polyhedron containing
a unit ball and having a family of translates tiling E3) is at least as large as
12
√

2= 16.9705 . . . .
Last, but not least, it is very tempting to further relax the conditions in our

original problem by replacing convex cells with cells that are measurable and
have measurable boundaries and ask the following more general question: if
the Euclidean 3-space is partitioned into cells each containing a unit ball, how
should the shapes of the cells be designed to minimize the average surface area
of the cells? One can regard this question as a foam problem, in particular, as a
relative of Kelvin’s foam problem (on partitioning E3 into unit volume cells with
minimum average surface area) since foams are simply tilings of space that try to
minimize surface area. Although foams have been well studied (see the relevant
sections of Morgan’s highly elegant book [15]), it is far from clear what would
be a good candidate for the proper minimizer in the foam question just raised.
As a final observation, we mention that Brakke (personal communication), by
properly modifying the Williams foam, has just obtained a partition of the
Euclidean 3-space into congruent cells each containing a unit ball and having
surface area 16.95753< 12

√
2= 16.9705 . . . .

§2. Proof of Theorem 1.1. We begin this section by proving the following
“compact” version of Theorem 1.1. It is also a surface area analogue of the
volume estimating theorem in [14].

THEOREM 2.1. If the cube C is partitioned into the convex cells
Q1,Q2, . . . , Qn each containing a unit ball in E3, then the sum of the surface
areas of the n convex cells is at least 24

√
3
n, i.e.,

n∑
i=1

sarea(Qi )>
24
√

3
n.

Proof. Let E(Qi ) denote the family of the edges of the convex polyhedron
Qi and let

ecurv(Qi ) :=
∑

e∈E(Qi )

L(e) tan
αe

2
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be the so-called edge curvature of Qi , where L(e) denotes the length of the
edge e ∈ E(Qi ) and αe is the angle between the outer normal vectors of the
two faces of Qi meeting along the edge e, 1 6 i 6 n. It is well known that the
Brunn–Minkowski inequality implies the following inequality (for more details,
we refer the interested reader to [7, p. 287]):

sarea2(Qi )> 3vol(Qi )ecurv(Qi ). (2)

Also, it will be more proper for us to use the inner dihedral angles βe := π − αe
and the relevant formula

ecurv(Qi )=
∑

e∈E(Qi )

L(e) cot
βe

2
. (3)

By assumption, Qi contains a unit ball, therefore

vol(Qi )> 1
3 sarea(Qi ). (4)

Hence, (2)–(4) straightforwardly imply that

sarea(Qi )>
∑

e∈E(Qi )

L(e) cot
βe

2
(5)

holds for all 1 6 i 6 n.
Now, let s ⊂ C be a closed line segment along which exactly k members of

the family {Q1,Q2, . . . ,Qn}meet having inner dihedral angles β1, β2, . . . , βk .
There are the following three possibilities:

(a) s is on an edge of the cube C;
(b) s is in the relative interior either of a face of C or of a face of a convex cell

in the family {Q1,Q2, . . . , Qn};
(c) s is in the interior of C and not in the relative interior of any face of any

convex cell in the family {Q1,Q2, . . . , Qn}.

In each of the above cases we can make the following easy observations:

(a) β1 + β2 + · · · + βk = π/2 with k > 1;
(b) β1 + β2 + · · · + βk = π with k > 2;
(c) β1 + β2 + · · · + βk = 2π with k > 3.

As y = cot x is convex and decreasing over the interval 0< x 6 π/2, the
following inequalities must hold:

(a) cot β1/2+ cot β2/2+ · · · + cot βk/2 > k cot π/4k > k;
(b) cot β1/2+ cot β2/2+ · · · + cot βk/2 > k cot π/2k > k;
(c) cot β1/2+ cot β2/2+ · · · + cot βk/2 > k cot π/k > 1

√
3
k.

In short, the following inequality holds in all three cases:

cot
β1

2
+ cot

β2

2
+ · · · + cot

βk

2
>

1
√

3
k. (6)
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Thus, by adding together the inequalities (5) for all 1 6 i 6 n and using (6)
we get that

n∑
i=1

sarea(Qi )>
1
√

3

n∑
i=1

∑
e∈E(Qi )

L(e). (7)

Finally, recall the elegant theorem of Besicovitch and Eggleston [2] claiming
that the total edge length of any convex polyhedron containing a unit ball in E3

is always at least as large as the total edge length of a cube circumscribed by a
unit ball. This implies that ∑

e∈E(Qi )

L(e)> 24 (8)

holds for all 1 6 i 6 n. Hence, (7) and (8) complete the proof of Theorem 2.1. 2

We now take a closer look of the given normal tiling T defined in details in
the Introduction to this paper and, using the above proof of Theorem 2.1, we give
a proof of Theorem 1.1.

By assumption D := sup{diam(Pi ) | i = 1, 2, . . . }<∞. Thus, clearly each
closed ball of radius D in E3 contains at least one of the convex polyhedra
Pi , i = 1, 2, . . . (forming the tiling T of E3). Now, let CL N , N = 1, 2, . . . ,
be an arbitrary sequence of cubes centered at the origin o with edges parallel
to the coordinate axes of E3 and having edge length L N , N = 1, 2, . . . with
limN→∞ Ln =∞. It follows that

0< lim inf
N→∞

(4π/3)card{i |Bi ⊂CL N }

vol(CL N )
6 lim sup

N→∞

(4π/3)card{i |Bi ⊂CL N }

vol(CL N )
< 1.

(9)
Note that clearly

card{i | Pi ∩ bdCL N 6= ∅}

card{i | Bi ⊂ CL N }
6
(vol(CL N+2D)− vol(CL N−2D))vol(CL N )

vol(CL N )(4π/3) card{i | Bi ⊂ CL N }
. (10)

Moreover,

lim
N→∞

vol(CL N+2D)− vol(CL N−2D)

vol(CL N )
= 0. (11)

Thus, (9)–(11) straightforwardly imply that

lim
N→∞

card{i | Pi ∩ bdCL N 6= ∅}

card{i | Bi ⊂ CL N }
= 0. (12)

Moreover, (5) yields that

sarea(Pi )> ecurv(Pi )=
∑

e∈E(Pi )

L(e) cot
βe

2
(13)

holds for all i = 1, 2, . . . . As a next step, using

sarea(Pi )= sarea(bd(Pi ∩ CL)\bdCL)+ δi (14)
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and

ecurv(Pi )>
∑

e∈E(bd(Pi∩CL )\bdCL )

L(e) cot
βe

2
(15)

(with bd(·) denoting the boundary of the corresponding set), we obtain the
following from (13):

sarea(bd(Pi ∩ CL)\bdCL)+ δi >
∑

e∈E(bd(Pi∩CL )\bdCL )

L(e) cot
βe

2
, (16)

where clearly 0 6 δi 6 sarea(Pi ). Hence, (16) combined with (6) yields the
following corollary.

COROLLARY 2.2.

f (L) :=
∑

{i |intPi∩CL 6=∅}

sarea(bd(Pi ∩ CL)\bdCL)+
∑

{i |Pi∩bdCL 6=∅}

δi

> g(L) :=
1
√

3

∑
{i |intPi∩CL 6=∅}

( ∑
e∈E(bd(Pi∩CL )\bdCL )

L(e)

)
.

Now it is easy to see that

f (L)=1(L)+
∑

{i |Bi⊂CL }

sarea(Pi ∩ CL), (17)

where
0 61(L)6 2

∑
{i |Pi∩bdCL 6=∅}

sarea(Pi ).

Moreover, (8) implies that

g(L)>−1(L)+
∑

{i |Bi⊂CL }

24
√

3
, (18)

where
0 61(L)6

∑
{i |Pi∩bdCL 6=∅}

∑
e∈E(Pi )

L(e).

LEMMA 2.3.

A := sup{sarea(Pi ) | i = 1, 2, . . .}<∞

and

E := sup
{ ∑

e∈E(Pi )

L(e) | i = 1, 2, . . .
}
<∞.

Proof. D = sup{diam(Pi ) | i = 1, 2, . . .}<∞, therefore, according to

Jung’s theorem [6], each Pi is contained in a closed ball of radius
√

3
8 D in E3.

Thus, A 6 3
2πD2 <∞.
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For a proof of the other claim recall that Pi contains the unit ball Bi centered
at oi . If the number of faces of Pi is fi , then Pi must have at least fi neighbors
(i.e., cells of T that have at least one point in common with Pi ), and, as each
neighbor is contained in the closed three-dimensional ball of radius 2D centered
at oi , the number of neighbors of Pi is at most (2D)3 − 1, and so fi 6 8D3

− 1.
(Here, we have used the fact that each neighbor contains a unit ball and therefore
its volume is larger than 4π/3.) Finally, Euler’s formula implies that the number
of edges of Pi is at most 3 fi − 6 6 24D3

− 9. Thus, E 6 24D4
− 9D <∞

(because the length of any edge of Pi is at most D). 2

Thus, Corollary 2.2, (17), (18), and Lemma 2.3 straightforwardly imply the
following inequality.

COROLLARY 2.4.

2A card{i | Pi ∩ bdCL 6= ∅} +
∑
{i |Bi⊂CL }

sarea(Pi ∩ CL)

card{i | Bi ⊂ CL}

>
−E card{i | Pi ∩ bdCL 6= ∅} +

∑
{i |Bi⊂CL }

24
√

3

card{i | Bi ⊂ CL}
.

Finally, Corollary 2.4 and (12) yield that

lim inf
N→∞

∑
{i |Bi⊂CL N }

sarea(Pi ∩ CL N )

card{i | Bi ⊂ CL N }
>

24
√

3
, (19)

completing the proof of Theorem 1.1.
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