
Complex Planetary Systems
Proceedings IAU Symposium No. 310, 2014
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Abstract. A method of analyses of dynamical system is applied to the planetary restricted
three-body problem (RTBP). It is well known, that equations of motion of restricted 3-body
problem in rotating rectangular frame may be reduced to the second order differential equation
with periodic coefficients (Hills equation). Here Hills equation in cylindrical coordinate frame
is derived. It gives the possibility to estimate width and position of the unstable zones. The
dependence of the position of unstable zones on orbital eccentricity of the test particle is derived.
Some followings of this simple linear model are noted.
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1. Introduction
The three-body problem is a continuous source of study, since the discovery of its

non-integrability due to Poincare (1892). However, some problems are still unresolved
(Celletti et al.(2002)). In this paper, we consider the planar circular restricted three-
body problem, when mass m revolves around M (M is much more than m) in a circular
orbit and the third body is considered with negligible mass m0. We assume that all
bodies move on the same plane. The equations of planar restricted Hill’s problem in
rectangular frame may be reduced to a Hill equation for normal distance from variation
orbit x see Szebehely(1967). In our view, cylindrical system has some advantages over
other ones, because the variation of one of the coordinates - central distance R - is always
restricted and may be considered as a small parameter at the problem.

The main equations for the planar circular 3-body problem in cylindrical frame are:
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R − R
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where the perturbation function U corresponding to the heliocentric frame of reference
is :

U =
Gm

D
+

GM

R
− Gm R cos(δ λ)

r2 = U(R, λ, t) (3)
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where M - mass of the primary; m - mass of the perturbing body; R, r - distance from
the mass center test particle and perturbing body accordingly(the vector r between the
bodies of masses M and m being expressed as a function of t); G - constant of gravity,
δλ - angle between perturbed and perturbing bodys(differential longitude of perturbed
body),ω, ωs - mean motions perturbed and perturbing body accordingly, and:

D =
√

R2 + r2 − 2R r cos( δ λ ) (4)

There are two small parameters in problem: x - radial shift from intermediate (in
variations) orbit and r/R - the ratio of mean distance of perturbing and perturbed body.
Let R(t)=R0+x(t), where R0 is constant. In this paper, simple way to linearization of
planar three body problem is considered. For study long-time evolution of orbits we
consider averaged equations. In many averaged systems the second equation above is
reduced to momentum L conservation. In this case we can rewrite first equation as:

d2

dt2
R − L2

R3 = −GM
R2 +

∂

∂R
U (5)

2. Simple linearization method
Due to we have two small parameters, we can subsequently expand last expression by

power x and R/r (or R/r and x) and restrict themselves by first order terms.
The principle part of expansion perturbation function may be written with using Leg-

endres polynomials Stiefel&Scheifele (1971). In case of the outer perturbing body it is
possible to expand perturbation function by power R/r

U =
GM
R

+
∞∑

p=2

Gm
r

(
R

r

)p

Pp( cos( δ λ ) )
(6)

After that, it is possible to transform this expansion into Fourier series. We obtain
Hill’s equation:

d2

dt2
x + ω2 x = f( t ) (7)

where f(t) and ω depends on time.
Now we can easy take into account the eccentricity of perturbed particle orbit and

show, that such generalization leads to very interesting results. At the elliptic osculating
orbit, after the entering osculating orbital elements a - semimajor axis, e - eccentricity,
for angular momentum L approximately:

L = R2 d

dt
λ =

√
GM a ( 1 − e2 ) (8)

R0 depend on time. The phase-averaged value of R0 approximately:

R0 =
1
2

π

∫ 2 π

0

a ( 1 − e2 )
1 + e cos(φ )

dφ = a
√

1 − e2 (9)
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After angular momentum substitution and linearization:
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2

R0
4 − 2

GM
R0
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a3
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8
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)
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GM
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Finally, for the probe particle elliptic motion case ω depends on eccentricity:

ω2 =
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a3
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1 − 3

8
e4

)
+
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r3 p ( p − 1 )

(
R

r
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Pp( cos( δ λ ) ) (11)

Then we can group terms with equal p δλ by using Laplace’s coefficients. The main
frequency may be expressed:

ω2 =
GM
a3

(
1 − 3

8
e4

)
+

( ∞∑
p=2

Gm bp cos( δ λ )
r3

)
(12)

where bp is easy to calculate numerically.
For investigation of stability, x may be negligible small. So, we can restrict only 1-st

order in expansion by power x. The Mathieu equation is a limit case of Hill’s equation
and it is more simply for studying. On the other side, because both equations (Hill and
Mathieu) are linear, the main area of instability of Mathieu equation must be present
in Hill’s equation solution. Consequently, and in this case exist the areas of instability,
complying with condition, see Landau&Liphshitz (1973):

ω

ωs
=

n
n − 2 + α

(13)

Thereby received that orbits near resonances (2n+1)/(2n−1) are unstable parametric.
This conclusion completely coincides with results of the studies of the declared problem
in the paper Hadjidemetriou(1982) by methods of matrix algebra. Directly, from view
of linear equations in elliptic case, we can explain one interesting feature - centres of

Figure 1. Position of exact resonance in dependence on the eccentricity for 3:1
commensurability with Jupiter.
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resonant zones are shifted out relative exact commensurability (resonance). In simple
case one perturbing body, centres of instable resonant zones moved away from exact
commensurabilities toward a source of perturbation (Fig. 1). So, exact commensurability
may be out of the relatively according instable zone!

There are few another interesting applications of the presented simple linear average
model. We note two of them. First, magnitude of eccentricity variations at resonance
related with variations of semimajor axis. When eccentricity increase, semimajor axis
decrease. As it is known (see Morbidelli (2002)), such behaviour is very common in
resonance celestial mechanical systems. This relation can be explained in simple averaged
linear model, but details are require special careful consideration and can be a subject
of separate paper. Second, it is possible overlapping of unstable zones at high order of
resonance.

3. Conclusions
It is known, that some different restricted three body problem modifications can be

described by linear equation with time-dependent coefficients. Here we give the additional
simplest method to obtain linear equation of motion. It is very suitable equation in
variation to study perturbed motion at resonance. Just in a very simple model we can
explain some very important characteristics of resonant motion. The main results of this
work may be formulated in such form:

1. There are not exist stable orbits with e=0 and i=0 in neighbourhood of mean motion
resonances (2n-1)/(2n+1).

2. Positions and width of unstable zones depends on eccentricity. The results can be
applied to a number of problems of Solar system dynamics. A number of minor planets
on high elliptic resonance orbits show the regular behaviour of their orbits. We suppose
that stability of these orbits can be provided due to large eccentricity.

In addition, some followings of this simple linear model are noted.
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Stiefel, E. L., & Scheifele, G. 1971 Linear and Regular Celestial Mechanics. Springer-Verlag

Berlin Heidelberg New York, 305.
Szebehely, V. 1967 Theory of Orbits. Acad.press New York and London.

https://doi.org/10.1017/S1743921314007789 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314007789

