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BEST POLYNOMIAL APPROXIMATION 
WITH LINEAR CONSTRAINTS 

K. PAN AND E. B. SAFF 

ABSTRACT. Let A be a (k + 1) x (k + 1) nonzero matrix. For polynomials p e Tn, 
setp := (p(0),p'(0), ...,/?(Â:)(0)) and B„(A) := {/? G 2>„ : Ap = 0}. Let E C C 
be a compact set that does not separate the plane and / be a function continuous on 
E and analytic in the interior of E. Set En(A,f) := inf{\\f — P\\E : p £ Bn(A)} and 
En(f) '•= m f { | | / — P\\E '• P £ &n}- Our g°al is to study approximation to f on £ by 
polynomials from Bn(A). We obtain necessary and sufficient conditions on the matrix 
A for the convergence En(A,f) —> 0 to take place. These results depend on whether 
zero lies inside, on the boundary or outside E and yield generalizations of theorems 
of Clunie, Hasson and Saff for approximation by polynomials that omit a power of z. 
Let p*nA G Bn(A) be such that En{A,f) = \\f — P*HA\\E- We also study the asymptotic 
behavior of the zeros of p*n A and the asymptotic relation between En(f) and En(A,f). 

1. Introduction and notation. Let E be a compact set in the complex plane C 
containing infinitely many points and let || • || denote the uniform norm on E. For a 
function/, if the derivatives/(i)(0), / = Q,. . . , fc, exist, define: 

/ : = ( / ( 0 ) , / ( 0 ) , . . . , / w ( 0 ) ) r . 

Let A := (a^)] • 0 ^ 0 be a given (k + 1) x (k + 1) matrix with complex constant entries. 
With % denoting the collection of all algebraic polynomials of degree at most n, we set 

anA(f) := inf{||/?|| : p G % mdAp = Af}, n > k. 

We also define 
Bn(A) := {pe%:Ap = 0}, 

C(£) :={ /" : / continuous on £}, 

#(£) := {/" G C(£) : / analytic in the interior of £}, 

^ ( A , / ) : = i n f { | [ / - / 7 | | :/7 G ^ ( A ) } 7 

En(f):=inf{\\f-p\\:pe<Pn}, 

%M := {P e fi„(A) : |[/ - p | | = En(A,f)}. 
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Throughout we let/?*^ := p*nA(f) denote an arbitrary but fixed element of %(f), and we 
let /?* := p*n(f) denote the unique polynomial in % satisfying \\f — p*n(f)|| = En(f). As 
we shall show, the behavior of En(A,f) depends on whether zero lies inside £, on the 
boundary of E or outside E. Our results generalize theorems of Clunie, Hasson and Saff 
[CHS] for approximation by polynomials that omit a single power of z. One important 
aspect of our investigation is the relation between En(f) and En(A,f). We also study the 
asymptotic behavior of the zeros of p*n A. 

It is natural to consider the more general problem of approximation from the set 
BniA^q) := {p G % • Ap = a}. If a ^ 0, then one can replace the function f(z) by 
the new function g(z) m-=f(z) — T!ï^o(wi/i\)zl, where w := (vt>o,. • •, w^)r is a solution of 
Ax = a (the existence of w is assumed; otherwise Bn{A,a) = 0). Then for each n > k, 
the polynomial/?* Ag) + Ef^w// / !)^ is a best approximation t o / from Bn(A, a). Thus, 
without loss of generality, we only need consider approximation from Bn(A). 

2. Asymptotic behavior of En(A,f). For k a fixed nonnegative integer and/ G A(E), 
we shall examine the asymptotic behavior of En(A,f) as n —> oo. We begin with some 
basic lemmas. 

LEMMA 2.1. Iff G C(E) andn > k, then 

(2.1) CtnAiPn) ~ En(f) < En(A,f) < CCnA(p*n) + En(f). 

PROOF. Note that 

(2.2) En(AJ)=\\f-p:j > \\p* -p*nJ - \\f-p*H\\. 

Since A(p* — p* ) = A/7*, we have \\p*n — p„^\\ > an^\(p*) and so the lower estimate in 
(2.1) follows from (2.2)"." 

Now let q G % be such that Aq = Ap* and ||<?|| = aw*(p^). Then we have 

En(A,f) <\\f-p*n+ q\\ < En(f) + IÎH = En(f) + a ^ ) . 

LEMMA 2.2. Iff G C(£), tf^rc 

lim En{A,f) = 0 
n—•oo 

if and only if 
lim £„(/) = 0 and lim a„^(p*) = 0. 

PROOF. If En(A,f) —> 0, then clearly £„(/) —> 0 as n —• oo. From the lower estimate 
in Lemma 2.1 we then deduce that l i n v ^ anA(p*) = 0. 

The sufficiency of the conditions follows immediately from the upper estimate in 
Lemma 2.1. • 

Multiplying the inequalities in (2.1) by a~\(p„) we immediately get 
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LEMMA 2.3. Letf G C(E). Suppose a„^(/?*) ^ Ofor all n large and 

(2.3) \im[anA(p*n)r
lEn(f) = 0. 

n—+oo 

Then 

(2.4) En(AJ) = otnM asn^w. 

Here we use the notation an = bn to mean an/bn —> 1 as n —> oo. 
To give conditions under which (2.3) is satisfied we need some further notation. We 

denote by K the unbounded component of C \ E and by g^ fo oo) the Green function with 
pole at infinity for K. We say that K is regular if for each point zo ^ ^ , the boundary of 
K, we have 

lim gK(z, oo) = 0, ze K. 

The following result is known as the Bernstein-Walsh lemma. 

LEMMA 2.4 ([W, §4.6]). Let E be a compact set whose complement K is connected 
and regular. If the polynomial p G % satisfies the inequality \p(z)\ < Lforz on E, then 

\p(z)\ < Lexp(ngK(z, oo)), z G K. 

We can now establish 

THEOREM 2.5. Suppose E is a compact set whose complement C \ E is connected 
and regular. Assume thatf(z) is analytic on E and 0 G E. If Af ^ 0, then the asymptotic 
formula (2.4) holds. 

PROOF. It is well-known (cf. [W, §4.7]) that since/ is analytic on E, 

(2.5) limsup^yVX 1 
n—+00 

and {/?̂ }o° converges uniformly t o / on some open set containing E. The latter property 
implies that 
(2.6) \imp^\0)=f\0)J 7 = 0, . . . , / : . 

Next, define 

k 

E 
We claim that 

(2.7) 6nA '= sup max 
lo</<* 

Y,aijP®(Q)[\\p\\< land/> e %}. 

(2.8) l i m s u p / ^ < l . 

In fact, if we define for each S > 1, the level curve 

^ :={z:gK(z,oo) = \og6}, 

https://doi.org/10.4153/CJM-1992-077-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-077-5


1292 K. PAN AND E. B. SAFF 

then 0 is surrounded by Ts since 0 G E. Now by the Cauchy integral formula, we have 
for all p G %, 

P(j\0)=i£-. L^dz, 7 = 0 , 1 , . . . a n d * > l . 

So for/? G <Pn with ||/?|| < 1, we obtain from Lemma 2.4 that 

A J e n ^ W - = 0 1 
w ' ~ 2TT dist(0, r^)/+1 ' y ' 

According to the definition of (3nA in (2.7), we therefore get 

l i m s u p / ^ < <5, 

and by letting 5 —> 1+ we have verified the claim (2.8). 

Since A/ ^ 0, there is an /Q, 0 £ *o < £> such that 

(2.9) £ ^ / 0 ) ( 0 ) ^ o . 
7=0 

For n>k, let gn G % satisfy \\qn\\ - anA(p^n) and Aq^ = A/?*. Then from (2.6) and (2.9) 
it follows that, for n large, \\qn\\ ^0 and so 

±-n — n 

7=0 
Iknll </?M-

Thus, for /Î large, 

(2.io) «->;) < /?M{ |E«w^(0)|}" 
7=0 

Furthermore, from (2.6) we have, for n large 

(2.11) j:a^\0)\>\\j:ak/i\0) 
j=o <j=o 

and so from (2.8), (2.10) and (2.11) we get 

(2.12) l i m s u p K - ^ ) ] ' / " ^ . 
n—>oo 

Combining (2.5) and (2.12) yields 

lim an
{
A(p*n)En(f) = 0, 

n—>oo 

and so the theorem follows from Lemma 2.3. 
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3. Approximation with linear constraints. It is well-known that, by Mergelyan's 
theorem, En(f) —> 0 as n —> oo for a l l / G &(E) if and only if the compact set E does 
not separate the plane; that is, C \ E is connected. In this section, we shall study the 
conditions on the matrix A that imply En(A,f) —» 0 as n —> oo. 

THEOREM 3.1. Letf G ME) and assume C \ E is connected and 0 ^ E. Then 

(3.1) lim En(A J) = 0. 
n—>oo 

PROOF. Since 0 ^ £, the function/(z)z~(*+1) G .#(£)• Using Mergelyan's theorem, 
we have that for any e > 0 there is a/?„_£_i G (Pn-k-\ s u c n t n a t 

ll/Xz)z-(*+1)-A,-*-i(z)|| < £ , for «large. 

Hence 

mz)-*+lPn-k-l(z)\\ = \\zk+l{f(z)z-{k+l)-Pn-k^(z))\\ < | | ^ + 1 | k . 

But zk+lpn-k-\ £ Bn(A); thus (3.1) follows. • 

The case when zero lies interior to E is also easy to handle. 

THEOREM 3.2. Assume 0 G E°, the interior ofE, and C\E is connected. Iff G ft(E), 
then 

lim En{A,f) = 0 if and only if Af = 0. 
/i—>oo — 

PROOF. First assume that l i m ^ o o ^ A , / ) = 0 and 0 G E°. Then l i m ^ ^ / Z ^ O ) = 
f^\0)J = 0 , . . . , k. Also note that Ap* = Q and so letting n - ^ o o w e get Af = 0. 

Next assume that Af = 0 and set 

, , ^ ( P : ( 0 ( Q ) - / ( 0 ( Q ) ) ,. 
vw(z) := 2^ M z-

i=0 l ' 

Since Af = 0, we have Avn = A(p* —f)= Ap*. Thus 
—n — 

* lr>*(0(0)-f(0(0)l 
(3.2) ^ ( p : ) < H v n l l < E ^ . / {)l\\z% n>k. 

Now, by Mergelyan's theorem, lim^oo En(f) = 0 and since 0 G E°, we have 
lim^oo/?*^^) =/0)(0),y = 0 , . . . , it. Hence with (3.2) we get 

lim aM(/?*) = 0 
n—>oo 

and the theorem follows from Lemma 2.2. • 

It remains to consider the more interesting case when 0 G d £, the boundary of E. 
It can be seen from the results of Nersesyan [N] that the essential condition needed for 
convergence is that the constraint Ap = 0 does not imply that p(0) = 0. Here we provide 
a simple direct proof that utilizes the following result of [CHS, p. 68] stated in a slightly 
more general form. 
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LEMMA 3.3. Let 0 E dE. For any e > 0 and positive integer m there is a polynomial 
qo(z) such that 

\z-Z2m+lqo(z)2m\\<t. 

Now we can state 

THEOREM 3.4. Assume C\E is connected and 0 G dE. Then the following conditions 
are equivalent: 

(i) lining En(A,f) = 0 for all f G *(£); 
f//J J5jt(A)\^,o 7̂  ft where &k$ := z2\-i and%$ := {0}; that is, there exists a polynomial 

p e Bk(A) such thatp(0) •£ 0; 
(Hi) A has 0 as an eigenvalue (i.e. detA = 0) am/ /za.s an associated eigenvector with 

first component equal to 1. 

PROOF. First observe that (ii) & (iii) is trivial. 
We now show that (iii) => (i). For the linear system Ax = 0, where * := (*o, • • •, xk)

T, 
assertion (iii) states that there is a solution with first component not equal to zero. So it is 
easy to see that there is a submatrix Ai} //;i j , , . . . ^ , , whose determinant is nonzero, where 
/ : = £ + ! — rank(A), and A/, ^î^,...^,, denotes the submatrix obtained by deleting the 
11th,..., //th rows and l s t j i th , . . . ,y'/_ith columns from A. (We remark that / < k since 
A ^ 0.) Without loss of generality we can assume 

det 

/ «0,1 «0,2 • • • «0J:+1-/ \ 

«1,1 «1,2 ••• « U + l - / 
jo. 

\«£- / , l ak~l2 ••• «&-U+1- / / 

Hence there exist constants btj and ct such that for n > k 

k 

I 
j=k-l+2 

Bn(A)=\pe%:p(i\0) = ciP(0)+ £ bijpV\0), i= l,...,k+l - l\. 

For any 0 < e < 1 , choose a polynomial po, using Mergelyan's theorem, such that 
11/ — Poll < £- Assuming/?o G îP„ with n > k, set 

^ • : = ^ ( 0 ) - c a ( 0 ) - £ fti^CO), i = l , . . . , * + 1 - / 
j=k-l+2 

and J := maxi</<^+i_/{|t//|}. Also define 

£ ifd<t 
1 ^ e/ûf otherwise. 

Let m be a fixed positive integer with 2m + 2 > /:. From Lemma 3.3, we know that there 
exists a polynomial go such that 

| |z-2
2 m +Vz)2 m | |<El. 
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Then we have 

[z - z2m+lgo(z)2mY = zl - z2m+2
Pi(z) =: Q,(z), i = 1 , . . . ,k + 1 - /, 

where the/^'s are polynomials. Also note that e\ < 1 so that 

(3.3) HGi||<ei, i = l , . . . , * + l - / . 

Consider 

r(z):=po(z)- E djQj(z)/jl. 
7=1 

Then 

KO)=po(0), 

r{i\0)=p$(0)-dh i = l , . . . , * + l - Z , 

r«(0)=/7^(0) , i = * + 2 - / , . . . , * . 

Thus we have for / = 1,...,& + 1 — /: 

^ ( 0 ) = p®(0) - p$(P) + ciPo(p) + E M f t 0 ) 

= c/po(0)+ E *«V^(°) 
j=k-i+2 

= Qr(0) + E *«V^(0), 
y=*-/+2 

and so r(z) G #f(A) for some positive integer t. From (3.3) and the définition of e\, we 
have \\diQi;\\ < e, i = 1 , . . . , k + 1 — / , and so 

H k+\-i 

\\f-A\ = \\f-P0+ E djQj/jl 

k+l-l 

< r-Po||+ E H-Q///!| 

< £ + (k + 1 - /)£. 

Thus limn_KX) En(A,f) = 0. 
Finally, to show that (i) implies (iii), assume that (iii) is not true. Then/?(0) = 0 for all 

p e Bk(A) and hencep(0) = 0 for all/7 G Bn(A)9 n = 0, 1, 2 , . . . . Thus for/ = 1, E„(A,/) 
does not tend to zero, which contradicts (i). • 
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4. Distribution of zeros of p*n^. To state our results, we need to introduce some 
terminology from potential theory. We denote the logarithmic capacity (transfinite di­
ameter) of the set E by cap(£) (cf. [T]). If cap(£) > 0, let \iE be the unique positive unit 
measure with supp(/i£) C E that minimizes the energy integral 

I[^]:=JJE\og\z-t\-ld^t)dfi(z) 

over all unit measures supported on E. The extremal measure \iE is called the equilibrium 
distribution for E and 

U(iiE;z) := / l o g \z - t\~l dpE(t) 

is the conductor potential of E. The minimum energy I[fJ,E] is related to the capacity of 
E via 

cap(£) = exp(-/[/X£;]). 

The Green function giciz, oo) with pole at infinity for K, the unbounded component 
of C \ E, is given by (cf. [T, p. 82]) 

(4.1) gK(z, oo) = -{log[cap(£)] + £/(/!*; z)}, 

and is positive and harmonic in K \ {oo}. We define for each a > 1, the closed region 

Ea := £ U ( ^ eK:0< gK(z, oo) < log a}, 

which has boundary 
r f f : = { z G ^ : gK(z, oo) = log a}. 

Note that if we define Ka := C \ Ea, then 

gKa(z, oo) = ^ ( z , oo) - logo-

and from (4.1) it is easy to see that 

(4.2) cap(Ea) = C3.p(E)a. 

In this section, we will examine the geometric rate of convergence of En(A,f) and 
the limiting distribution of the zeros of the polynomials p*nA. For a polynomial pn of 
precise degree n, we denote by i/n = v(pn) the discrete unit measure (defined on the 
Borel sets in C) having mass \jn at each zero of pn, with the obvious modification in 
this definition for the case when pn has multiple zeros. We say that vn converges in the 
weak-star topology to the measure /x as n —• oo and write i/n —> /i if 

lim / <f>dvn = / 0t//i, 

for every continuous function <j> on C having compact support. 
Before we state our main results, we need the following lemma of Blatt, Saff and 

Simkani. 
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LEMMA 4.1 ([BSS]). Let Ebea compact set with cap(F) > 0 and set E* := supp(/i^). 
Let A be an infinite subset of positive integers and {pn}neA be a sequence of monic 
polynomials of respective degrees precisely n. Then vn - v(pn) converges in the weak-
star topology to \±E as n —> oo, n G A, if conditions (i) and (ii) below are satisfied. 

(i) l imsup^^ \\pn\\
l
Ein < cap(E), n G A; 

(ii) lim^oo vn(E) - 0, n G A, for every closed set B contained in the union of the 
bounded (open) components ofC\E*. 

We first consider the case when 0 £ E°. 

THEOREM 4.2. Suppose C \ E is connected and regular, 0 G E° and cap(£) > 0. 
Assume f G -#(£), but f is not analytic on E andf does not vanish identically on any 
component ofE°. If Af - 0, then 

(i) \imsupn^00En
/n(A,f) = 1; 

(ii) i/(Pnji) • \iEasn —• oo, n G A, where À Ç N w a sequence that depends onf. 

PROOF. Clearly En(AJ) < \\f\\ and so 

UmsupEn'
n(A,f) < 1. 

n—•oo 

Since/ is not analytic on E, we also have lim s u p ^ ^ Ejn(f) = 1 (cf. [W, §4.7]). Hence 

1 = lim supEn'
n(f) < limsupEn'

n(A,f) < 1, 
n—>oo n—>oo 

which yields (i). 
Write p*n A(z) = a„Azn + • • • and for n > k choose 

TnAz) G Bn(A), TnA(z) = zn + --, 

such that 
\\TnA\\=mf{\\p\\:peBn(A)mdp = ? + •--}. 

Then, for n > k, 

(4.3) En-x(AJ)< \lf-p:A + a:ATnA\\ <En(A,f) + \a*niA\\\TnrA\\. 

Let T„(z) =£* + ••• denote the (unconstrained) Chebyshev polynomials for £; that is 

\\Tn\\ = inf{||p|| : p G 2>n and/7(z) = z" + • • •}. 

It is well-known (cf. [T]) that lin^-*» ||r„|| 1/n = cap(£). Note that 

||2^,|| :< | |y^^|| :< l l ^ * 1 ^^—*—!! ! :< H-^*-11|||!2-„_ik_11|, 

so we have 

(4.4) lim | |rM | | , /"= cap(£). 
n—•oo 
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From (4.3) it follows that 

(4.5) En-t(A,f)-En(A,f) < \a*A\\\T„A\\. 

Next observe from Theorem 3.2 that E„(A,f) —» 0 as n —> oo, and hence from (i) it 
follows that 
(4.6) limsup[£„_,(A,/) -En(A,f)Y/n = '• 

n—>oo 

From (4.4), (4.5) and (4.6), it is easy to see that there is a subsequence A Ç N such that 

liminf|a* i4 |1/n> l/cap(£), n G A. 

Since the p*nA are uniformly bounded on E, the monic polynomials 
pn(z) := p*nA(z)l' a*nA, n ^ ^ ' satis^y condition (i) of Lemma 4.1. Finally the assumption 
that/ does not identically vanish in any component of E° together with Hurwitz's theo­
rem imply that condition (ii) of Lemma 4.1 also holds for the sequence {pn}neA- Hence 
i/(p*A) = v(pn) —> \iE, as n —> oo, n G A, by Lemma 4.1. • 

REMARK. As can be seen from the proof, conclusion (ii) of Theorem 4.2 holds for 
any sequence A Ç N such that 

Km [En^(AJ) - En(AJ)Y/n = I-
n—>oo 

THEOREM 4.3. Assume E is compact, 0 G ^ £ , cap(£) > 0, andK = C\E is connected 
and regular. Suppose f is analytic on E andf does not vanish identically on any component 
ofE\ Furthermore, assume Bk(A) \ 2\<0 ¥ 0 andAf ^ 0 . Then 

(i) lim sup^^ E]Jn(AJ) = 1; 
(ii) v(p*nA) —> HE, as n —> oo, n G A, where A Ç N is a sequence that depends onf. 

PROOF. From Lemma 2.1 we know that 

(4.7) anA(p*n) < En{f) + En(A,f) < 2En(A,f). 

Together with (2.6), (2.10) and (2.11), for n large we have (with the same z'o as in (2.9)) 

ll * (4.8) 2En(A,f) > anA(p*n) > - £ f l / 0 / ° \ 0 ) PnA' 

Thus (2.8) and (4.8) imply that 

lim sup £yn(A,/) > l i m s u p l / / ^ 1 > 1. 

Since 1 > Urn supn_^OQEJn(A^f), we see that (i) holds. 
The proof of (ii) is now the same as that of (ii) in Theorem 4.2. 

We next consider the case when 0 is outside E. 
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THEOREM 4.4. Suppose E is compact, K = C\Eis connected and regular, 0 ^ E and 
g/KO, oo) = log a(a > 1). Assume f(z) is analytic on Ea and does not vanish identically 
on any component ofE?a. IfAf ^ 0, then 

(i) lim s u p ^ ^ E{Jn(AJ) =l/a; 

(ii) v{p*n k) —> iiEal as n —> oo, n G A, where A Ç N is a sequence that depends onf. 

REMARK. If / e A(Ea), but / is not analytic on Ea, then (i) holds because 
\imsupn_^00 En'

n(f) = 1/cr. If/ is analytic on Ea, then l imsup^^Zv (/") < \jo\ 
however Theorem 4.4 asserts that (i) holds provided Af jt 0. 

PROOF OF THEOREM 4.4. We know that (cf. [W, §4.7 ]) since/ is analytic on Ea 

(4.9) lim sup # y "(/")< I/o-

and {pn}^o converges uniformly t o / on some open set containing Ea. Consequently, 

(4.10) l i m ^ ( 0 ) = / w ( 0 ) , ./ = 0 , . . . ,* . 
AI—>00 

Let S G (<T, oo). As in the proof of Theorem 2.5, for/? G !P„, we have 

^ ( 0 ) | < lL6n^Hr6) 

According to the definition of [3nA in (2.7) we get \imsupn_^OQf3n'^ < 8 and letting 

2TT dist(0, T6y
+l ' 

he definition of f3nJ\ in 
8 —+ a+ yields 
(4.11) lim s u p / ^ <a. 

n—>oo 

From (4.7), (2.10) and (4.10), we again deduce (4.8). Combining this with (4.11) we 
obtain 
(4.12) limsup£Vn(A,Z) > \/a. 

n—>oo 

Note that/(z)/z*+1 has a pole at z = 0 (since Af ji 0) and so 

\imsuPEl
n

/n(f(z)/zk+l) = l/a. 
n—>oo 

Hence for e > 0 there is a polynomial qn-k-\ £ &n-k-\ s u c n tnat> f° r w large, 

| ^ ) / z * + 1 - ? B - t - . ( z ) | | < [ ( l + 0/a]B -*- 1 , 

and so 
| l f ( z ) - / + V*- i (z ) l l < W\\{{\+e)lork-{. 

Note that z*+1<7„_£_i(z) G 6„(A) so we have 

lim sup £yn(A,/) < lim sup |^(z) - ^ ^ « - t - 1 (z)|| ' ̂  < (l+e)/a. 
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As e > 0 is arbitrary, we get \imsupn^00En'
n(A1f) < \j a. Together with (4.12) , this 

yields (i). 
Now we prove (ii). It suffices to check that the conditions in Lemma 4.1 are satisfied 

for pn(z) := p*nA(z)I'a*nA and E replaced by Ea. Since {/?*iA}^0 converges uniformly t o / 
on every closed set D C E%, the condition (ii) in Lemma 4.1 is satisfied for the sequence 

From (4.3) we have 

En^(AJ)-En(AJ)<\alA\\\TnAl 

Also from (i) and the fact that lim^oo Hl^H1/" = cap(£), we have for a suitable 
subsequence A 

(4.13) liminf \a*nA\x'n > J — , n G A C N. 
n^oo Cap(£)(7 

Note that by (i) for any p < a we have (cf. [W, §4.7]) 

WPnA-fhp-^0 ^ n ->00 , 

where || • \\E denotes the uniform norm on Ep. Thus the sequence {||/^,AIUPKSO *S 

bounded and using Lemma 2.4 we have 

limsup||/?*J^n <a/p. 
n—>oo 

Letting p —•* o~ we obtain 
(4.14) l imsup | | / 7^ | | y ;< l . 

n—>oo 

For the monic polynomials pn, by (4.13) and (4.14) we therefore have 

limsup ||pw||£ < cap(£)a = cap(iia), n G A. 
n—KX) 

This yields condition (i) in Lemma 4.1 and completes the proof. • 

5. Comparison of rates of convergence. In this section we will prove that when 
0 ^ E° there are " relatively few " functions/ G JZ(E) (in the sense of category) with 
rate of the convergence of En(f) faster than that of En(A,f). 

For the case when 0 G E° the following result is straightforward to establish (cf. the 
proof of Theorem 3.2). 

THEOREM 5.1. Let E be a compact set, C\E be connected, and 0 G E°. Iff G A(E) 
and Af - 0, then 

En(A,f) = 0(En(f)). 

In the proof of the main result of this section we follow an argument of Saff and Totik 
which utilizes the following. 
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LEMMA 5.2 ([ST, PROOF OF THEOREM 1]). For any integer n0 > k, there is an f G 
!\(E) such that ||/|| = 1 andp^if) = 0. In particular, Eno(f) = Eno(A,f) = 1. 

We can now state our main result. 

THEOREM 5.3. Let E be compact with K = C\E connected and 0 ^ E°.IfBk(A)\(Pk^ ^ 
0, then the set S of functions f G A(E) for which 

(5.1) l i m s u p ^ L < l 

is of the first category in the complete metric space !A(E). 

So that (5.1) is meaningful for a l l / G JZ(E) we set En(f)/En(A,f) = 0 whenever 
fetpn. 

PROOF. Let 

SmJ := (/ e ME) : - ^ - < 1 - 1/mforall/i > / ) . 

Then 

m=l /=! 

Assume to the contrary that 5 is not of the first category. Then for some m and / the set 
Smj is not nowhere dense in A(E). We claim that Smj is closed. In fact, if {fv}™\ Q Smj 
and/y converges t o / uniformly on £, then £„(/;) —• £«(/) and En(A,fv) —• En(A,f) as 
v —> oo for fixed w > /, and so En(f)/En{A,f) < 1 — 1 /m; that is, / G 5m,/. 

Since 5m,/ is closed and not nowhere dense in A(E), there is an/o G -#(£) and a <$o > 0 
such that the ^-neighborhood of/o in .#(£) is contained in Smj. Choose a polynomial 
/?o £ #degA)04) w i t n I I/o —Poll < <$o/2 (this can be done by Theorems 3.1 and 3.4) and 
set no := max{/, deg/?o}. If/(||/| | 7̂  0) is any function in A(E), then the function 

f(z):=po(z)+^6o\\f\\-lm 

belongs to the ^-neighborhood of/o. Hence 

< 1 - 1/m. EnpV*) 
£„0(A,/*) 

But note that since po G BdegPo(A) we have 

^(f^oll/T^A 
and 

Eno{A,f) = 6o\\f\\-lEn(A,f)/2. 

Thus we can conclude that for every function/ G A(E) \ Bno(A), 

En0(f) 

Eno(AJ) 

which is impossible by Lemma 5.2. 

< 1 - 1/m, 
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