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A FAMILY OF M*-GROUPS 

COY L. MAY 

1. Introduction. A compact bordered Klein surface of (algebraic) genus 
g ^ lis said to have maximal symmetry [5] if its automorphism group is of 
order 12(g — 1), the largest possible. An M*-group acts as the 
automorphism group of a bordered surface with maximal symmetry. 
M*-groups were first studied in [6], and additional results about these 
groups are in [5, 7, 8]. 

Here we construct a new, interesting family of M*-groups. Each group 
G in the family is an extension of a cyclic group by the automorphism 
group of a torus T with holes that has maximal symmetry. Furthermore, G 
acts on a bordered Klein surface X that is a fully wound covering [7] of T, 
that is, an especially nice covering in which X has the same number of 
boundary components as T. The construction we use for the new family 
of M*-groups is a standard one that employs group automorphisms to 
define extensions of groups. We obtain a complete presentation for each 
new group. Because there is a correspondence between bordered Klein 
surfaces with maximal symmetry and regular triangulations [5], our 
construction also produces a new family of regular maps. 

The new family of M*-groups contains infinitely many groups, and we 
use these groups to establish two notable results. We show that for any 
positive integer n, there is a positive integer k such that there are at least n 
non-isomorphic M*-groups of order k. Perhaps this result could have been 
anticipated, since Cohen has established the corresponding result for 
Hurwitz groups, the groups that act on Riemann surfaces with the 
maximum possible number of automorphisms [1]. Also, M*-groups are 
generally more abundant than Hurwitz groups [8]. 

We also settle another related question. For each value of the positive 
integer g, there are several different topological types of bordered surfaces 
of genus g; each distinct topological type is called a species of the genus. 
Some genera have more than one species with maximal symmetry 
[8, Theorem 8]. Thus there is the natural problem of determining whether 
there is a bound (independent of the genus g) for the number of species 
within a single genus that can have maximal symmetry [8, Problem 6]. 
There is no such bound; we prove that for any positive integer n, there is a 
positive integer g such that there are at least n distinct species of bordered 
Klein surfaces of genus g that have maximal symmetry. 
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2. M*-groups. We assume that all surfaces are compact and of genus 
g ^ 2 . 

A finite group G is called an M*-group [6, 7] if it is generated by three 
distinct non-trivial elements x, w, and z which satisfy the relations 

(2.1) u2 = x2 = (ux)2 = (uz)2 = (xz)3 = 1. 

The order of z is called an index of G. The fundamental result about 
M*-groups is the following. 

THEOREM A [6, 5], A finite group G is an M*-group with index q if and 
only if G is the automorphism group of a bordered Klein surface X with 
maximal symmetry and k boundary components, where 

o(G) = 2qk. 

In this situation we will frequently say that G acts on X with index q. The 
index of G determines the number of boundary components of X but not 
the orientability of the surface. The dihedral group (u, z) is the subgroup 
of G that fixes one of the boundary components of X, with z acting as a 
rotation of the boundary component and u as a reflection. For more on the 
action of G on X, see [5, pp. 267, 280-282] and [7, p. 24]. 

If the M*-group G has index g = 5, then the relations (2.1) and zq = 1 
imply G is finite. G is then a quotient of the well-known group that 
Coxeter and Moser denote [3, q\\ see [2, pp. 35-37] and [8, p. 376]. This 
fact was used to classify the M*-groups with index q = 5 and the surfaces 
on which they act [8, Section 3 and Theorem 8]. 

Let 2 ^ n ^ 5. Also in [8, Section 3] is the construction of a family of 
M*-groups that are quotients of [3, n]. The largest group in the family is 
the group Hn with generators w, x, and z and defining relations 

(2.2) u2 = x2 = (ux)2 = (uz)2 = (xz)3 = 1, xzn = znx. 

The order and index of Hn are given in a table [8, p. 377]. Let an be the 
order of zn. For any m that divides an, let Hnm be the group with 
generators u, x, and z and defining relations (2.2) and znm = 1. Then Hnm 

is an M*-quotient of Hn, and 

°(Hn,m) = m ' °(Hn)/an 

[8, p. 378]. It is easy to see that HnX = [3, n]. 
These groups are interesting in part because they act on surfaces with 

maximal symmetry that are in families of fully wound coverings. A fully 
wound covering [7] is a full covering f:X—> y of the bordered Klein surface 
Y such that X has the same number of boundary components as Y; if the 
degree of the covering is d, each component of dX is wrapped around its 
image d times. Now for each value of n, the groups Hnm act on surfaces in 
a family of fully wound coverings; each surface on which a group H acts 
is a fully wound covering of a surface on which the smallest group HnX 

acts [8, p. 378]. 
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3. Tori with holes. Our original goal was to obtain a similar 
construction for an M*-group G with index 6, that is, a construction that 
would produce larger M*-groups having G as a quotient with the 
corresponding surfaces in a family of fully wound coverings. The group 
defined by the relations (2.1) and z6 = 1 is not finite [2, p. 37]. Our 
starting point then was the following easy result. 

PROPOSITION 1. Let G be an M*-group. G has index 6 if and only if G acts 
on a torus with holes that has maximal symmetry. 

Proof. Let G act on X, a bordered surface with genus g, topological 
genus /?, and k boundary components. Then 

o(G) = 12(g - 1) = 2qK 

and g = 2p + k — 1 if X is orientable and g = p + k — 1 if ^ is 
non-orientable [5, p. 266]. 

First suppose that X is a torus with holes. Then immediately g = k + 1 
and q = 6. Note that simply o(G) = 12k. 

Now suppose q = 6 so that g = k -f 1. If X were non-orientable, then 
g = p + k — 1 and/? = 2, so that X would be a Klein bottle with holes. 
But no such surface has maximal symmetry [5, p. 270]. Hence X is 
orientable so that 

g = 2/? + A : - l = A : + l 

and the topological genus p = 1. 

The tori with holes that have maximal symmetry have been classified. 

THEOREM B [5]. There is a torus with k holes with maximal symmetry if 
and only if k has the form n or 3n for some integer n. 

Our next step was to obtain for each M*-group with index q = 6 a 
complete presentation containing the relations (2.1). We felt that it was 
important that the extra relations be intimately connected to the geometry 
of the surface. These presentations help illuminate the later theoretical 
development, and we shall indicate briefly how they were obtained. 

Let G be an M*-group with index 6, and suppose G acts on the torus X 
with holes. Embed X in a torus X* without boundary, so that every 
automorphism of X extends to an automorphism of X* [5, Theorem D]. 
Then X* = CI A, where A is the lattice subgroup of C generated by {1, to} 
and co = em/ . Let Q be the set of centers of the discs adjoined to X to 
make X*, and let Q = / _ 1 ( g ) , where f:C -> CI A = X* is the natural 
quotient map. For more details, see [5, pp. 269, 270]. 

First assume that the bordered surface X has n holes. Then 12 is the 
lattice generated by {IIn, uln} [5, p. 270]. Certain automorphisms of C 
naturally induce automorphisms of the bordered surface X. Let z be the 
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automorphism of X induced by rotation 60° clockwise about the origin 
and u that induced by reflection across the x-axis. Also, translation by 
\/n and translation by cû/n induce automorphisms a and b, respectively. 
Then 

L = (u, z> ^ D6 

is the subgroup of G that fixes the boundary component centered about 
/ (0) , and the translations a and b generate a subgroup K = Cn X Cn. 
Since 

L n K = {1} and o(G) = \2n2, 

G = (u, z, a, b). 
Now let x = az3. Geometrically x is the half-turn that interchanges the 

boundary components centered about / (0 ) and f(\/n). It is routine to 
verify that the relations (2.1) hold and to find other relations among the 
generators. For example, b = zaz~ . It turns out that the following is a 
complete presentation for G. 

u2 = x2 = z6 = (ux)2 = (uzf = (xz)3 = 1, 
(3.1) -

an = 1, x = az . 
This follows easily from the construction of Section 5, and no details will 
be given here. Obviously the generator a is not needed, but we shall use it 
to remind us of the geometry. 

Now suppose that the bordered surface X has 3n holes. In this case the 
lattice 12 is generated by {\/n, (1 + <o)/3«} [5, p. 270], As before, let z and 
u be the automorphisms of X induced by rotation 60° clockwise about the 
origin and reflection across the jc-axis. Let a and d be the automorphisms 
induced by translation by (1 + co)/3n and translation by \/n, respectively. 
Then G is generated by w, z, a, and d. 

Let x = az be the half-turn that interchanges the boundary 
components about/(0) a n d / ( (1 + <o)/3w). Then a complete presentation 
for G is the following. 

u2 = x2 = z6 = (ux)2 = (uz)2 = (xz)3 = 1, 
( 3 - 2 ) * . i 

a3n = dn = \,x = az3, d = zaz~la. 
Again this is an easy consequence of the construction of Section 5. 

Note that in each case the translations generate an abelian normal 
subgroup K such that the quotient group G/K = D6. 

After obtaining the presentations (3.1) and (3.2), our next step was to 
change the relation z6 = 1 to xz6 = z6x in each presentation. The resulting 
groups were then studied for several values of n. It was quite helpful to 
have available a computer program that systematically enumerates the 
cosets of a subgroup of a group defined by generators and relations. Both 
the data collected for small n and the following observation were 
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important in discovering the general construction. Suppose G* is a larger 
group obtained by changing the relation z = 1 to xz = z x in a 
presentation of the form (3.1) or (3.2). Then M = (z6) is normal in G*, 
and G*/M is the automorphism group of a torus with holes. Thus 
G* also has D6 as a quotient, that is, G* has a normal subgroup K such 
that G*/K = D6. 

4. The general construction. Here we present the construction needed to 
build the new family of M*-groups. The construction forms larger groups 
from 2-generator groups that admit an action of the dihedral group 
D6 = C2 X S3, the smallest M*-group. Of course many interesting and 
complicated groups have presentations with only two generators. The 
construction consists of the repeated application of a standard technique 
described in [2, p. 5]. Throughout this section let K = (a, b\R) be a group 
with generators a and b and defining relations R. 

LEMMA 1. Let K = (a, b\R), and let g and f be automorphisms of K such 
that 

f = g6 = (fsf = i. 
If for some c ^ Z(K), the center of K, 

g(c) = c and / ( c ) = c _ 1 , 

then there is a group G of order 12 • o(K) with generators a, b, u, z and 
relations R involving a and b together with 

u2 = (uzf = 1, z6 = c, 

zaz~] = g(a), zbz~l = g(b\ 

uau = f(a), ubu = f(b). 

Proof First adjoin to AT a new element z that transforms the elements of 
K according to the automorphism g. Identify z with c, which is in the 
center of K and is fixed by g. Then the order of the new group K is 
6 • o(K)7 and K has generators a, b, and z and relations R involving a and 
b together with 

(4.1) z6 = c, zaz~x = g(a), zbz~x = g(b). 

Next extend the automorphism/to K' in the natural way, that is, define 
/ ' : # ' -> K by f\a) = f(a\f'(b) = /(/>), and f\z) = z~\ It is easy to 
see tha t / r is an automorphism of K' of order two. Now adjoin to K a new 
element u of order two that transforms the elements of K according to / ' . 
The order of the larger group G is 2 • o(K') = 12 • o(K), and G 
has generators a, b, z, and u and relations R, (4.1), u2 = 1, uzu = z~\ 
uau = f{a)y and ubu = f(b). 

By construction, K is normal in G and G/^T = Z>6. 
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Now we consider a rather special action on the group K = (a, b\R) 
(motivated by the groups of Section 3). The action does have an 
interesting range of applications. As usual, let [a, b] = a~ b~~ ab denote 
the commutator of a and b. 

Let c = [a, b]. Suppose c e Z(K), and 

g(a) = b9 g(b) = a~xb, 
(4-2) 

f(a) = ac, f{b) = ab~xc 

define automorphisms of K. Then it is routine to check that 

g(c) = c,f(c) = c~\ and f = g6 = {fgf = 1. 

Applying Lemma 1 yields our general construction. 

THEOREM 1. Let K = {a, b\R) and c = [a, b\. Suppose c G Z(K) and the 
functions g and f defined by (4.2) are automorphisms of K. Then there is a 
group G of order 12 • o(K) with generators u, x9 and z and defining 
relations: 

(4.3) u2 = x2 = (ux)2 = (uz)2 = (xz)3 = 1, xz6 = z6*, 

and the relations R involving a = xz and b = zaz . Furthermore G is an 
M*-group. 

Proof. By the lemma there is a group G of order 12 • o(K) with 
generators a, b, u, z and relations R involving a and b together with 

u2 = (uz)2 = 1, z6 = c = [a, b], 

(4.4) zaz~x = b, zbz~x = a~xby 

uau = ac, ubu = ab~ c. 

Let x = az3. Then G is generated by u, x, and z, since a = xz~3 and 
b = zaz~x. We first check that the relations (4.3) hold. Note that 

z az — zbz = a b. 

Conjugating by z, we have 

z3az~3 = za~xbz~x - b~xa~xb = c~xa~x 

since c = [a, b]. But c = z and c commutes with a. Thus 

x = az az = 1. 

From z az~ — aT b, we have 

az az = bz = zaz or xz~~ x = zxz. 

Thus (xz)3 = 1. Next 

uxu = uaz u = (ac)z = az = x and (ux) = 1. 
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Since z6 e Z(K)y obviously xz6 = z6x. Hence the generators w, x, and z 
satisfy the relations (4.3) and the relations R involving a and b. 

The relations (4.3) include the relations (2.1), and w, x, and z are distinct 
and non-trivial by the construction of G. Therefore G is an M*-group. 

We still must show that the relations (4.4) can be obtained from (4.3). 
Consider the abstract group with generators u, x, and z and relations R 
and (4.3). Obviously u, z, a, and b form another set of generators. From 

T T 1 

(xz) = 1, we have (zx) = xz and 

zbz~x = z2xz~5 = z2(zx)2z~4 = (z3x)z(xz~3)z~x = a~Xb. 

Next 

uau = uxz~ u = xz = az . 

Now 
u - 4 - 1 4 

ubu = uzxz u = z xz . 
Also 

ab~]z6 = xz~3(zxz~4)~]z6 = xzxz5 = z~]xz4 

since (xz) = 1. Therefore ubu = ab~ z . 
Finally from x = (az )2 = 1, we have 

z6a = z3a~]z~3. 

Also 

z az = zbz = a b, 

so that 

z3az~3 = za~xbz~x = b~]a~]b = (b~xab)~\ 

Hence 

b~xab = z3a~Xz~3 = z6a. 

Obviously a commutes with z , since xz6 = z6x. Thus 

c = [a, b] = a~ b~~ ab = z , 

and we have obtained the relations (4.4). Therefore the relations (4.3) and 
R are an abstract definition for G. 

We mention the important special case in which the group K is abelian. 
Then the commutator c = 1, of course. 

(#, b\R, [a, b] = 1) be an abelian group, and 

a~xb, 

ab~x 

COROLLARY. Let K = 

suppose 

g(a) = b, g(b) 
(4.5) 

f(a) = a, fib) 
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define automorphisms of K. Then there is a group G of order 12 • o(K) with 
generators u, x, and z and defining relations 

(4.6) u2 = x2 = z6 = (ux)2 = (uz)2 = (xz)3 = 1 
T 1 

and the relations R involving a = xz and b = zaz 

5. Applications. Here we apply Theorem 1 to several groups with two 
generators to obtain an interesting family of M*-groups. We first 
construct the groups with presentations (3.1) and (3.2) and then form 
some larger groups having these as quotients. 

Application 1. Let K = Cn X Cn. Then K has presentation 

an = bn = 1, ab = ba. 

The functions g and / defined by (4.5) are clearly automorphisms of K. 
Then there is a group G of order \2n with generators u, x, and z and 
defining relations (4.6) and 

an = bn = 1, a = xz~\ b = zaz~\ 

Obviously G has the simpler presentation consisting of (4.6), an = 1, and 
a = xz~ . Thus we have the presentation (3.1) of the automorphism group 
of a torus with n2 holes with maximal symmetry. Henceforth let Qn denote 
the group with presentation (3.1). 

Application 2. Let K = C3tJ X Cn. To apply Theorem 1 we need a 
presentation for K in which the two generators have the same order. The 
simplest one is 

a3" = (baf = l,ab = ba. 

It is easy to see that the functions g and / defined by (4.5) are 
automorphisms of K. Then there is a group G of order 36n with 
generators w, x, and z and defining relations (4.6) and 

a3n = {baf = 1, a = xz"3 , b = zaz~\ 

But this is the presentation (3.2) (with ba = d), so that G acts on a torus 
with 3n2 holes that has maximal symmetry. Now let Pn be the group with 
presentation (3.2). 

Application 3. Let K be the group with generators a, b, and c and 
defining relations 

a
n = bn = 1, ab = bac, 

ac = ca, be = cb. 

Of course c = [a, b] and K is generated by a and b. K is a non-abelian 
group of order n3 (if n > 1). In fact, let 
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L = (a, c\an = cn = [a, c] = 1>. 

The function a defined by o(a) = ac~] and o(c) = c is an automorphism 
of order n. Adjoining to L a new element b of order n that transforms the 
elements of L according to a produces the group K. The relation cn = 1 is 
not needed in (5.1), since 

be = aba'1 and 1 = (aba~xf = (bc)n = bncn = cn. 

We need the following result about the group K. 

LEMMA 2. Let t = a~ b, and let k be a positive integer. Then 

/ = a-
kbkck(k-')n. 

Proof. Since ba~l = a~]bc, it is easy to see first that 

ba~k = a'kbck. 

Then a simple argument using induction yields the result. A detailed proof 
of a very similar result is in [4, p. 19]. 

In order to apply our construction, the functions g and/defined by (4.2) 
must be automorphisms of K, and g(b) = a~ b = t. Now 

tn = cn{n~\)/2^ 

so that if n is odd, tn = 1 (and in fact o(t) = n). However, if n is even, then 
f = cn/1 ^ 1, o(t) = 2/i, and g is not an automorphism of K. 

Therefore let n be odd. It is not difficult to see that g and / are 
automorphisms of K\ Lemma 2 is helpful. By Theorem 1 there is a group 
G of order \2n with generators w, x, and z and relations (4.3), (5.1), 
a = xz~ , and b = zaz~ . But (4.3) implies the relations (4.4), in partic­
ular, z = [a, b] = c. Then ac = ca and be = cb follow from xz = z x. 
Also an = 1 implies bn = 1. Therefore G has defining relations (4.3), 
a" = 1, and a = xz~3. 

Application 4. Let n be even, and let H be the group with generators a, b, 
and c and defining relations 

cT = bn = cn/1 = 1, ab = bac, 
(5.2) 

ac = ca, be = cb. 

Let K be the group with presentation (5.1), and let N be the subgroup of K 
generated by cn/1. Clearly N is normal in K, o(N) = 2, and K/N = H. 
Thus H is a group of order n3/2. H is non-abelian if n > 2. 

Any relation that holds in K also holds in H, and in addition, cn/1 = 1. 
Lemma 2 now shows that in H, (a~lb)n = 1. The functions g and/defined 
by (4.2) are automorphisms of H, and there is a larger group G of order 
6n with generators u, x, and z and relations (4.3), (5.2), a = x z - 3 , and 
b = zaz~ . Again the presentation may be simplified. First note that the 
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relation cn = 1 may be obtained from the others. Since a and b satisfy 
the defining relations (5.1) of the group K, we have (a~]b)n = cnl 

by Lemma 2. But (4.3) implies (4.4) so that zbz~] = cTxb and con­
sequently 

c«/2 = (a~
xb)n = (zbz~x)n = 1. 

As before, the relations ac = ca, be = cb, and bn = 1 are not needed. Thus 
G has defining relations (4.3), an = 1, and a = xz~ , and the final 
presentation with n even is the same as that with n odd. 

We combine these two applications to give our first main result. For a 
positive integer n, we define 

{ n if n is odd 
nil if n is even. 

THEOREM 2. Let n be a positive integer. Let Kn be the group with 
generators u, x, and z and defining relations 

u2 = x2 = (ux)2 - (uz)2 = (xz)3 = 1, xz6 = z6x, 

an = 1, a = xz 

Then the order of Kn is \2n sn, and Kn is an M*-group with index 6sn. 

Proof It follows immediately from Applications 3 and 4 that 

o(Kn) = I2n\ 

and the index of Kn is 

q = 6 • o(z6) = 6sn. 

Note that M = (z6> is normal in Kn and of course Kn/M = Qn. But in 
general there are some intermediate quotient groups. 

THEOREM 3. Let n be a positive integer, and let m divide sn. Let K be the 
group with generators u, x, and z and defining relations 

u2 = x2 = z6m = (ux)2 = (uz)2 = (xz)3 = 1, xz6 = z6x, 

a = 1, a = xz . 

Then the order of Knm is \2n m, and Knm is an M*-group with index 6m. 

Proof Fix the integer m. Let / be the subgroup of Ku generated by z6m. 
Then / is normal in Kn, and clearly K = Kn/J. Since 

o(J) = o(z )/m = sn/m9 

o(Knm) = \2n sn/(sn/m) = \2n m. 

With a presentation of the form (2.1), K is an M*-group with index 
q = o(z) = 6m. 
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For each n the groups Knm act on bordered surfaces with maximal 
symmetry that are in a family of fully wound coverings. Each surface is 
a fully wound covering of a torus with holes and is therefore orientable 
[8, p. 376]. Consider n = 16, for example. Let X8 be a surface with 
maximal symmetry on which the largest group K]6 8 = K]6 acts. Let Jm be 
the subgroup of Kl6 generated by z6m so that Kl6m = Kl6/Jm, and let Xm 

be the surface X%IJm. Then we have the following families of fully wound 
coverings and automorphism groups. 

^ 8 ""* ^ 4 "~* X2 —> Xx 

^16,8 ~* ^16,4 " ^ ^16,2 ~^ ^16,1 

Each surface Xm is an orientable surface with maximal symmetry that has 
256 = (16)2 holes. Xx is a torus with holes. 

We return to applications of Theorem 1. The next two produce 
generalizations of the groups Pn in the same way that Applications 3 and 4 
produce generalizations of Qn. We will be rather brief. 

Application 5. Let K be the group with generators a, b, and c and 
defining relations 

a3n = (baf = 1, ab = bac, 
(5.4) 

ac = ca, be = c6. 

AT is a non-abelian group of order 3n3 (if « > 1). 
Now let n be odd. Then the functions g and / defined by (4.2) are 

automorphisms of K. (If w is even, this is not the case.) Then there is 
a group G of order 36« with generators w, x, and z and relations 
(4.3), (5.4), a = xz~ , and Z> = z a z - . Just as in Application 3, the re­
lations ac = ca and be = cZ? are unnecessary. Hence G has defining 
relations (4.3), a3n = (ba)n = 1, a = x z - 3 , and b = zaz"x. 

Application 6. Let « be even, and / / be the group with generators a, b, 
and c and defining relations 

a3n = (baf = cn/1 = l,ab = bac, 

ac = ca, be = cb. 

Then H is a quotient group of the group with presentation (5.4). H has 
order 3n /2 and is non-abelian if n > 2. Applying the construction to H 
yields a larger group G of order 18« with generators w, x, and z and 
relations (4.3), (5.5), a = xz~ , and b = zaz~ . After some simplification, 
G has the same presentation as the group obtained in Application 5. 

Combining the last two applications yields the following. 

THEOREM 4. Let n be a positive integer. Let Ln be the group with 
generators u, x, and z and defining relations 
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u2 = x2 = (ux)2 = (uz)2 = (xz)3 = 1, xz6 = z6x, 

a3n = (ba)n = 1, a = xz"3 , b = zaz~\ 

Then the order of Ln is 36n sn, and Ln is an M*-group with index 6sn. 

The proof of the following is like the proof of Theorem 3. 

THEOREM 5. Let n be a positive integer, and let m divide sn. Let Ln m be the 
group with generators u, x, and z and defining relations 

u2 = x2 = z6m = (ux)2 = (uz)2 = (xz)3 = 1, xz6 = z6x, 

a3n = (ba)n = 1, a = xz"3 , b = zaz'K 

Then the order of Lnm is 36n m, and Lnm is an M*-group with index 6m. 

For each n the surfaces with maximal symmetry on which the groups 
Lnm act are again in a family of fully wound coverings. Each surface is a 
covering of a torus with 3n2 holes. 

The groups Qn, Pn, Kn, Knm, Ln and Lnm are of course quite intimately 
related. We give some of the most important relationships. 

Qn = Kn\ Pn = LnX Kn = Knjn Ln = Lns^ 

Km = Ln,m/(a") Ln„ = K3lhm/((ba)"). 

Only the last two require any checking, and they are not hard to establish. 
These relationships justify our considering the groups as part of one large 
family. 

6. Regular maps. There is an important correspondence between 
bordered Klein surfaces with maximal symmetry and regular maps. For 
the basic definitions on regular maps, see [5, pp. 278, 279] and [2, pp. 20, 
101-103]. We use "regular" in the strong sense of [5] and [11]. A map is 
said to be of type {r, q} if it is composed of r-gons, q meeting at each 
vertex. 

Suppose the M*-group G acts on the bordered surface X with index q. 
Then the surface X with maximal symmetry corresponds to a regular map 
^#of type {3, q} on the surface X* obtained from Xby attaching a disc to 
each boundary component. The map Jt is then a regular triangulation 
of X*. Further G is isomorphic to the automorphism group of the map^#, 
and the number of boundary components of X is equal to the number 
of vertices of Jt. For the details on this correspondence, see [5, pp. 
278-282]. 

Thus each M* -group constructed in Section 5 is the automorphism 
group of a regular map. In particular the groups Qn and Pn act on maps on 
a torus. These maps are of course well-known [2, pp. 107-109]. Qn is the 
automorphism group of the map {3, 6}n0, and Pn is the group of 
{3, 6}BiB. 
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However the other groups produce a new family of regular maps. These 
maps are themselves quite interesting. Each is a covering of a map 
on a torus. For the basic definitions and facts about map coverings, see 
[11, pp. 765-768]. The new maps are similar in some respects to families of 
maps obtained by Sherk [9, pp. 458-460]. Garbe has also obtained families 
of maps that are coverings of toroidal maps [3]; Garbe's maps are not of 
type {3, q} however. 

We simply state the consequences of Theorems 3 and 5 for regular 
maps. 

THEOREM 6. Let n be a positive integer, and let m divide sn. Then there is a 
regular map of type (3, 6m} on an orientable surface of topological genus 
n (m — l ) /2 4- 1. The map has automorphism group Knm and is an m-fold 
covering of the torodial map (3, 6}n0. 

THEOREM 7. Let n be a positive integer, and let m divide sn. Then there is a 
regular map of type {3, 6m} on an orientable surface of topological genus 
3n (m — l)/2 + 1. The map has automorphism group Ln m and is an m-fold 
covering of the torodial map (3, 6} . 

7. Surfaces with maximal symmetry. In [8] there is the classification of 
all species of bordered Klein surfaces with maximal symmetry of genus 
g ^ 40. The number is surprisingly high; there are 32 species in 18 
different genera. Although there are several genera in that range with 2 
species, there are none with 3. Thus there is the natural problem of 
determining whether there is a bound (independent of the genus g) for the 
number of species within a single genus that can have maximal 
symmetry. 

Here we use the groups K to show that there is no such bound, that is, 
that there are genera with an arbitrarily large number of species with 
maximal symmetry. The crucial observations are that it is easy to find 
groups of the same order and that the groups act on different species. 

The group K has order \2n m and index q = 6m and acts on a surface 
with maximal symmetry with k holes, where 

2qk = o(Knm). 

Thus k = n2. If it happens that Knm and Kn, m> have the same order but 
n ^ n\ then the two groups act on different species. 

A convenient way to find numerous groups of the same order is to let 
n = 2l where / ^ 1. Then sn = 2Z _ 1 . Let m divide sn, so m = 2J for some 

j , 0 g 7 ^ / - 1. Now 

Fix the integer / ^ 2. The number of different values of n (and m) for 
which o(K ) = 12 • 2! is just the number of solutions to the integer 
equation 

https://doi.org/10.4153/CJM-1986-054-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-054-8


A/*-GROUPS 1107 

2/ +j = t 

with i ^ 1 and 0 ^ 7 ' ^ / — 1. Let x be a real number, and let {x} be the 
integer for which {x} — 1 < x ^ {x}, that is, {x} is the smallest integer 
greater than or equal to x. The following requires only a simple argument 
using induction. 

LEMMA 3. Let t be an even positive integer. Then there are {t/6} solutions 
to the integer equation 

2i 4- j = / 

with / â 1, 0 S 7 â / - 1. 

THEOREM 8. Le/ r fre a positive integer. Then there is a positive integer g 
such that there are at least r distinct species of bordered Klein surfaces of 
genus g that have maximal symmetry. 

Proof Let t = 6r and g = l! + 1. By Lemma 3 there are exactly r 
solutions to the equation 2/ + j = t with i § 1, 0 ^ j ^ / - 1. For 
each solution let n = 2Z, m = 27'. Then the order of the group Knm is 
12 • 2\ and it acts on an orientable surface with maximal symmetry of 
genus g, since 

U(g - 1) = o(KnJ. 

The surface has n boundary components. Now there are r different values 
of n (and m) for which 

o{KnJ = 12 • 2'. 

Thus there are at least r different species of genus g that have maximal 
symmetry. 

There still remains the related question of whether or not there are 
arbitrarily many non-isomorphic M*-groups of the same order, because 
many M*-groups act on more than one species with maximal symmetry. 
The simplest example is C2 X S3, the smallest M*-group, which acts on a 
sphere with three holes and a torus with one [5, p. 270]. Singerman has 
given an interesting example of an M*-group that acts on two different 
species with the same index [10]; in this case one of the species must be 
orientable and the other non-orientable. For more examples of one 
M*-group acting on two species, see [8]. 

On the other hand it is possible for distinct M*-groups to act on the 
same topological type of bordered surface. We use regular maps to present 
an example. There is a regular map of type {3, 7} with 78 vertices on 
a non-orientable surface; the automorphism group of the map is 
G = PSL(2, 13), the simple group of order 1092 [2, p. 140]. By the 
correspondence between surfaces with maximal symmetry and regular 
maps [5, Theorem 16, p. 280], G acts on a non-orientable surface X of 
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genus 92 with k = 78 boundary components. Let XQ be the orienting 
double of X. Then X0 is an orientable surface with maximal symmetry of 
genus 183 with 2k = 156 boundary components, topological genus 14, and 
automorphism group C2 X G. But there is a regular map of type {3, 7} on 
an orientable surface of topological genus 14 that has automor­
phism group JPGL(2, 13); the map also has 156 vertices [2, p. 139]. The 
associated bordered surface has the same topological type as X0. Thus 
C2 X PSL(2, 13) and PGL(2, 13) act on surfaces with maximal symmetry 
of the same species. It would be interesting to see a similar example in a 
lower genus. 

To establish the result about M*-groups that is a companion to 
Theorem 8, we show that the groups in the proof of that theorem are not 
isomorphic. 

LEMMA 4. Let n be an even positive integer such that (3, n) = I, let m 
divide sn, and let G = K be the group with presentation (5.3) with 
b = zaz~ . Then 

G" = (a, b9 z
6> and G" = <z6> = Cm. 

Proof. Since G is an M*-group, [G:G'] divides 4 and [G':G"\ divides 9 
[5, p. 278]. Let 

H = (a, by z6>. 

H is the quotient of the group with presentation (5.2) (with c = z6) by its 
subgroup (z6m>; see the proof of Theorem 3. Then H is normal in G, and 
G/H = C2 X S3. Since C2 X S3 has C2 X C2 as a quotient, so does G. 
Hence [G:Gf] = 4. Now i / c G ' and G/H = C3. But o(G) = \2n2m and 3 
does not divide n m. Therefore H = G". 

Let M = (z6). M is normal in H, and H/M is abelian. Thus H' c M. 
But 

z6 = c = [a, b] 

so z6 e H'. Therefore G" = H' = M. 

THEOREM 9. Le/ r be a positive integer. Then there is a positive integer N 
such that there are at least r non-isomorphic M*-groups of order N. 

Proof Let t = 6r and N = 12 • 2*. Then as in the proof of Theorem 8, 
there are r different values of n (and m) for which o(K ) = N. None of 
these groups could be isomorphic by Lemma 4. 

Finally, we would like to thank the referee for several helpful 
suggestions. 
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