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Abstract
We calculate asymptotic estimates for the conjugacy growth function of finitely generated class 2 nilpotent groups
whose derived subgroups are infinite cyclic, including the so-called higher Heisenberg groups. We prove that these
asymptotics are stable when passing to commensurable groups, by understanding their twisted conjugacy growth.
We also use these estimates to prove that, in certain cases, the conjugacy growth series cannot be a holonomic
function.

1. Introduction

The conjugacy growth function, cG,S(n), of a group G with respect to a finite generating set S counts the
number of conjugacy classes that intersect the n-ball in the Cayley graph, just as the standard growth
function counts the number of elements contained in the n-ball. The study of conjugacy growth was
originally motivated by counting geodesics on Riemannian manifolds, for example in work of Margulis
[26], and since then has received significant attention in its own right, for example [6, 7, 24].

It is conjectured by Guba and Sapir [22] that for ‘ordinary’ groups, exponential standard growth
implies exponential conjugacy growth. This has been verified in the case of hyperbolic, soluble and linear
groups amongst others. On the other hand, Osin [28] has constructed groups of exponential standard
growth where every non-identity element is conjugate, and so the conjecture emphatically fails in these
cases. Furthermore, Osin and Hull [24] have shown that conjugacy growth fails to be a commensurability
invariant in general. It is worth noting however that these counter-examples are not finitely presented.

In contrast, this paper investigates the polynomial end of the growth spectrum, namely virtually nilpo-
tent groups (as suggested by a question of Guba and Sapir [22]). We generalise work of Babenko [2] to
derive estimates for the conjugacy growth of a class of virtually nilpotent groups whose standard growth
was studied by Stoll [33] and which contains the so-called higher Heisenberg groups. Some of this work
appears in the author’s PhD thesis [15].

Section 2 introduces the necessary notions and proves some basic results. Section 3 summarises
Stoll’s classification of class 2 nilpotent groups with infinite cyclic derived subgroup, in which it is
shown that such groups can be constructed from finitely many copies of the first Heisenberg group (the
free nilpotent group of class 2 on two generators). The number of copies is called the Heisenberg rank of
the group. We also derive an explicit description of the automorphisms of such groups. In Section 4, we
investigate the conjugacy growth of this class of groups. We prove the following theorem, which follows
Theorem 4.1 of [2], but for a more general class of groups, and a more restricted range of metrics. Our
proof uses more elementary arguments.
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Theorem 4.5. Let G be a finitely generated class 2 nilpotent group with infinite cyclic derived subgroup,
with Heisenberg rank r. Then there exists s ∈N such that

cG(n) ∼
⎧⎨
⎩

ns+2 log n r = 1

ns+2r r > 1.

In Section 5, we prove the following necessary and sufficient condition for conjugacy growth to be
preserved in finite extensions, which depends on understanding the twisted conjugacy growth, cφ

H , of
Definition 5.5.

Proposition 5.6. Let H be any finitely generated group. Then cφ

H(n) � cH(n) for every finite-order
automorphism φ ∈ Aut(H) if and only if every finite extension G of H satisfies cG(n) ∼ cH(n).

This allows us to use the description of automorphisms to demonstrate that passing to a finite index
supergroup does not alter the conjugacy growth function (up to the usual equivalence).

Theorem 5.3. Suppose that H is a class 2 nilpotent group with infinite cyclic derived subgroup. If
a group G contains H as a finite index subgroup, then G and H have equivalent conjugacy growth
functions.

This result naturally suggests the question of quasi-isometric invariance.

Question 5.8. In which classes of finitely generated groups is conjugacy growth a quasi-isometry
invariant?

As noted above, there are certainly groups which do not have this property. On the other hand, it
is not hard to see that conjugacy growth is a quasi-isometry invariant of virtually abelian groups (see
Proposition 2.12). We conjecture that this behaviour extends to virtually nilpotent groups in general.
More specifically, we make the following conjecture, in the spirit of Theorem 5.3.

Conjecture 5.10. The conjugacy growth function of a finitely generated nilpotent group depends only
on the structure of its lower central series.

A closely related measure of conjugacy growth is the formal power series whose coefficients are
the values of the conjugacy growth function. Ciobanu, Hermiller, Holt and Rees [9] and Antolín and
Ciobanu [1] confirmed a conjecture of Rivin [31], that the conjugacy growth series of a hyperbolic
group is a rational function if and only if the group is virtually cyclic (or finite). Continuing in a similar
vein, the author proved the rationality of the series for all virtually abelian groups [14], and Gekhtman
and Yang proved transcendence for relatively hyperbolic groups and certain acylindrically hyperbolic
groups [19]. All of the above results apply to any choice of finite generating set and lead to the following
conjecture.

Conjecture 1.1 (Conjecture 7.2 of [8]). The conjugacy growth series of any finitely presented group
that is not virtually abelian is transcendental.

This is further supported by generating set specific calculations for, amongst others, the soluble
Baumslag–Solitar groups [8], certain wreath products [27] and graph products [10]. The asymptotic
estimates derived in this paper have implications for some conjugacy growth series (see Corollary 5.4),
providing further evidence for this conjecture.
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2. Preliminaries

We begin with the basic definitions and results. In this paper,Nwill denote the non-negative integers and
N+ the positive integers. We occasionally use the notation f (n) =O (g(n)) to indicate that there exists
a constant C ≥ 1 with f (n) ≤ Cg(n) for large enough n, and the notation f (n) = o (g(n)) to indicate that
limn→∞

f (n)
g(n)

= 0.

2.1. Growth and conjugacy growth

Definition 2.1. Let G be a finitely generated group, and S a choice of finite generating set. We write
{S ∪ S−1}∗ to denote the language of all words over the alphabet consisting of the elements of S and their
inverses (i.e. the free monoid on S ∪ S−1).

(1) The word length of g ∈ G with respect to S is

|g|S = min{|w| | w ∈ {S ∪ S−1}∗, w =G g}.
(2) The (cumulative) standard growth function of G with respect to S is

βG,S(n) = #{g ∈ G | |g|S ≤ n}.

Definition 2.2. Let G be a finitely generated group and S be a choice of finite generating set. Denote by
CG the set of conjugacy classes of G.

(1) For κ ∈ CG, define the length of κ with respect to S as:

|κ|S = min{|g|S | g ∈ κ}.
(2) The (cumulative) conjugacy growth function of G with respect to S is

cG,S(n) = #{κ ∈ CG | |κ|S ≤ n}
Geometrically, the standard growth function counts the elements in the ball of radius n in the Cayley

graph of G with respect to S, and the conjugacy growth function counts the number of distinct conjugacy
classes intersecting the same ball. One could also study the ‘strict’ standard and conjugacy growth
functions, by considering the sphere instead of the ball, but for most purposes their qualitative behaviour
is the same.

We will use the usual notion of equivalence of growth functions.

Definition 2.3. Let f , g : N→N be two functions. We write f � g if there exists λ > 1 such that

f (n) ≤ λg(λn) + λ

for all n ∈N. If f � g and g � f , then we write f ∼ g and say that the functions are equivalent. Note that
this defines an equivalence relation. We write f ≺ g if f � g but it is not the case that f ∼ g.

It is a classical result that the equivalence class of the standard growth function of a finitely generated
group does not depend on the choice of generating set. It is less well known that the same is true of the
conjugacy growth function.

Proposition 2.4. Let S and T be two finite generating sets for a group G. Then

(1) βG,S ∼ βG,T , and
(2) cG,S ∼ cG,T .
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Proof. The proof of the first part is standard, see for example [25]. The second statement is proved
similarly.

Another key fact that we will use is that standard growth is a quasi-isometry invariant.

Proposition 2.5. Let G and H be quasi-isometric groups. Then βG ∼ βH .

This is not the case for conjugacy growth.

Theorem 7.2 of [24]. There exists a finitely generated group G and a finite index subgroup H ≤ G such
that H has two conjugacy classes, while G is of exponential conjugacy growth.

We can study the growth of a subset of G with respect to the same metric. This is referred to as
relative growth. Formally, we have the following definition.

Definition 2.6. The relative growth function of a subset U of a group G with respect to a finite generating
set S is the following function:

βU(n) = #{g ∈ U | |g|S ≤ n}.
In the following lemma, we see that the relative growth of a finite index subgroup is equivalent to

that of its cosets.

Lemma 2.7. Let H be a finite index subgroup of G and consider the coset tH for some t ∈ G. Then the
relative growth of tH is equivalent to the growth of G.

Proof. Since tH is simply a translation of H, H and tH are quasi-isometric. Since G and H are also
quasi-isometric, Proposition 2.5 implies that βG ∼ βH ∼ βtH .

We will need the following result of Breuillard and Cornulier.

Lemma 2.8 (Lemma 3.1 (2) of [7]). Let H be a finite index subgroup of G. Then cH � cG.

The next Lemma shows that conjugacy growth behaves well with respect to direct products. Here,
and in the rest of the paper, we use the standard notation [g] to denote the conjugacy class of a group
element g.

Lemma 2.9. Let G and H be groups generated by finite sets S and T, respectively. Then cG×H,S∪T ∼
cG,S · cH,T .

Proof. First, note that for (g, h) ∈ G × H we have

[(g, h)] = {(g, h)(x,y) | (x, y) ∈ G × H} = {(gx, hy) | (x, y) ∈ G × H} = [g] × [h].

Now if |[(g, h)]|S∪T ≤ n then there exists (x, y) ∈ G × H with (x, y)(g, h)(x, y)−1 = u1u2 · · · ul for some
ui ∈ S ∪ T , l ≤ n. Rearranging, we find elements s1, . . . , sl1 ∈ S and t1, . . . , tl2 ∈ T , with l1 + l2 = l, so
that

(xgx−1, yhy−1) = s1 · · · sl1 t1 · · · tl2 .

Therefore, |xgx−1|S ≤ l1 ≤ n and |yhy−1|T ≤ l2 ≤ n, and so |[g]|S ≤ n and |[h]|T ≤ n. Thus, cG×H(n) ≤
cG(n) · cH(n).
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Conversely, suppose |[g]|S ≤ n and |[h]|S ≤ n. Then, there are elements γ ∈ G and δ ∈ H such that
|γ gγ −1|S ≤ n and |δhδ−1|T ≤ n, so |(γ gγ −1, δhδ−1)|S∪T ≤ 2n. But (γ gγ −1, δhδ−1) = (γ , δ)(g, h)(γ , δ)−1

and so |[(g, h)]|S∪T ≤ 2n. Thus, cG(n) · cH(n) ≤ cG×H(2n), giving the required result.

2.2. Nilpotent groups

We recall the definition of a nilpotent group in order to fix some notation. For elements g, h of
some group G, denote their commutator [g, h] = ghg−1h−1. For a pair of subgroups U, V of G, let
[U, V] = 〈[u, v] | u ∈ U, v ∈ V〉. For any group G, let G(0) = G and inductively define the i-fold com-
mutator subgroup G(i) = [G(i−1), G]. Recall that a group G is nilpotent of class c if and only if G(c) = {1}
and G(c−1) �= {1}. In particular, the nilpotent groups of class 1 are precisely the abelian groups. We write
Ab(G) = G/G(1) for the abelianisation of G.

Definition 2.10. Let G be a finitely generated group. Then, each quotient G(i)/G(i+1) is a finitely generated
abelian group. Denote the torsion-free rank of Gi/Gi+1 by ri ∈N, so that G(i)/G(i+1) ∼=Zri × T for some
finite abelian group T.

Theorem 2.11 (Bass-Guivarc’h [3]). Let G be a finitely generated nilpotent group. Then the standard
growth function βG(n) is equivalent to the polynomial nd where

d =
c−1∑
i=0

(i + 1)ri.

Gromov [21] famously proved the converse that any group of polynomial (standard) growth is
virtually nilpotent.

The asymptotic behaviour of conjugacy growth in virtually abelian groups is well understood, as we
see in the following Proposition.

Proposition 2.12. The (cumulative) standard and conjugacy growth functions of a virtually abelian
group G are equivalent.

Proof. Let H be an abelian subgroup of G of finite index. Since H is nilpotent, Theorem 2.11 gives d ∈
N with βH(n) ∼ nd, and hence βG(n) ∼ nd by Proposition 2.5. Thus, cG(n) � nd (since conjugacy growth
is clearly bounded above by standard growth). On the other hand, Lemma 2.8 gives cG(n) � cH(n) ∼
βH(n) ∼ nd (since a conjugacy class in an abelian group is simply an element). Therefore, cG(n) ∼ nd ∼
βG(n).

As an immediate corollary, we see that conjugacy growth is a quasi-isometry invariant within the
class of virtually abelian groups.

2.3. Generating functions

We will also be interested in the formal power series associated with the standard and conjugacy growth
functions. We write Q[[z]] for the ring of formal power series over a variable z with coefficients in Q,
and Q[z] for the ring of polynomials over z with rational coefficients.

Definition 2.13. Let G be a group with a finite generating set S. Then the standard growth series is

BG,S(z) =
∞∑

n=0

βG,S(n)zn ∈Q[[z]].
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Similarly, the conjugacy growth series is

CG,S(z) =
∞∑

n=0

cG,S(n)zn ∈Q[[z]].

Here, z is a complex variable.

When referring to growth functions and series, we will often suppress the subscripts when the groups
and/or generating sets are clear from context.

Definition 2.14. A series �(z) ∈Q[[z]] is said to be

(1) rational if it is an element of the field of fractions of Q[z], denoted Q(z) – in other words, there
are polynomials p, q ∈Q[z] such that � = p

q
;

(2) algebraic if it is algebraic overQ[z] – in other words, it is the root of some polynomial expression
with coefficient from the ring of polynomials Q[z];

(3) transcendental if it is not algebraic;
(4) holonomic if it is the solution to a linear finite-order differential equation with coefficients from

the ring of polynomials Q[z]; therefore, the non-holonomic series form a proper subset of the
transcendental series.

We will refer to this classification as the algebraic complexity of �(z).
Generating functions are a well-studied topic. Duchin has written a very readable introduction [12] to

generating functions and growth in groups. For a more rigorous treatment, we use [20] or [32]. There are
some slightly subtle connections between the algebraic complexity of a power series and the asymptotics
of the coefficients. For example, we will use the following result of Stoll.

Proposition 2.15 (Proposition 3.3 of [33]). Let �(z) =∑
n≥0 γ (n)zn ∈Q[[z]], and suppose that

limn→∞
γ (n)
nd = a. Then if a is an irrational (resp. transcendental) number then �(z) is irrational (resp.

transcendental) as a series.

The next result relates to generating functions whose coefficients are in the polynomial range.

Theorem 2.16. Let γ : N→N be strictly between polynomials, that is nd ≺ γ (n) ≺ nd+1 for some d ∈N.
Then the series

∑
n≥0 γ (n)zn is not holonomic.

To prove this, we will need another definition.

Definition 2.17. A function f : N→C is called eventually quasi-polynomial if there exist some posi-
tive integer period N, threshold T ≥ 0, and polynomials f0, f1, . . . , fN−1 so that for all n ≥ T , f (n) = fi(n)
whenever n ≡ i mod N.

The following is an immediate consequence of Proposition 4.4.1 of [32].

Proposition 2.18. Let γ : N→N be in the polynomial range, that is, γ (n) ≤ Cnd for some C > 1, d ∈N.
Then,

∑
n≥0 γ (n)zn is rational if and only if γ (n) is eventually quasi-polynomial.

Corollary 2.19. Suppose γ : N→N is non-decreasing and in the polynomial range as above. If∑
n≥0 γ (n)zn is rational then γ ∼ nd for some d ∈N.
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Proof. Proposition 2.18 implies that γ is eventually quasi-polynomial, say with polynomials
γ0, . . . , γN as in the definition. The degree of each γi is at least the degree of γi−1 (since large enough n
would otherwise violate the non-decreasing assumption). But since these polynomials cycle, the degree
of γ0 must be at least the degree of γN . So they all have the same degree, say d ∈N. Thus, γ cycles
between finitely many polynomials, all equivalent to nd, and so γ (n) ∼ nd.

We also need the following two results (see [18]).

Lemma 2.20 (Pólya-Carlson). If �(z) is a power series with integer coefficients that converges on the
open unit disc, then �(z) is either rational or admits the unit circle as a natural boundary.

Lemma 2.21. Holonomic functions necessarily have only finitely many singularities.

Proof of Theorem 2.16. By the Cauchy–Hadamard theorem, the series
∑

γ (n)zn converges inside the
unit disc, and so Lemma 2.20 applies. Thus, if the series were holonomic, and hence had only finitely
many singularities, it would be rational. But by Corollary 2.19, this contradicts the hypothesis. Thus,
the series cannot be holonomic.

We finish our discussion of generating functions by noting the following results from the literature.

Theorem 2.22 ([4]). Let G be a finitely generated virtually abelian group. Then the standard growth
series of G is rational, with respect to any choice of finite generating set.

Theorem 2.23 ([14]). Let G be a finitely generated virtually abelian group. Then the conjugacy growth
series of G is rational, with respect to any choice of finite generating set.

2.4. GCD sums

To count conjugacy classes, we will need various facts about greatest common divisors of tuples of
integers, starting with the following lemma of Fernández and Fernández.

Lemma 2.24 (Section 3 of [17]). For n ≥ 1, let X(n)
1 , X(n)

2 , . . . be a sequence of independent random
variables, uniformly distributed in {1, 2, . . . , n}. Then the expected value of the greatest common divisor
of the first s of these random variables behaves as follows:

E
(
gcd

(
X(n)

1 , X(n)
2 , . . . , X(n)

s

))=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ζ (2)
log n + C +O

(
log n√

n

)
s = 2

ζ (s − 1)

ζ (s)
+O

(
log n

n

)
s ≥ 3

where C ≥ 0 is a constant.

For our purposes, we will phrase this in terms of the sum of the greatest common divisors of tuples
of integers whose absolute values are at most n.

Definition 2.25. We define two different n-balls in the free abelian group Zs.

(1) Let B(s)
� (n) = {(x1, . . . , xs) ∈Zs | |xi| ≤ n for each 1 ≤ i ≤ s}. That is, the n-ball inZs with respect

to the ‘cubical’ generating set:

{(ε1, . . . , εs) | εi ∈ {0, 1, −1}}.
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(2) Let B(s)
�1

(n) = {(x1, . . . , xs) ∈Zs |∑ |xi| ≤ n}. That is, the n-ball in Zs with respect to the
generating set consisting of standard basis vectors.

We will omit the superscript s when it is clear which dimension we are working with.

Then, Lemma 2.24 can be reinterpreted as follows.

Corollary 2.26. Let x = (x1, . . . , xs) ∈Zs. Then,

∑
x∈B(2)

� (n)

gcd (x) = R2

ζ (2)
n2 log n +O(n2)

where R2 ∈Q, and

∑
x∈B(s)

�(n)

gcd (x) = Rs

ζ (s − 1)

ζ (s)
ns +O(ns−1 log n)

where Rs ∈Q depends on the dimension s.

Proof. The sum of the values of a function over some fixed finite domain is equal to the expected
value of the function over the domain, multiplied by the cardinality of the domain. The standard growth
function of Zs is equivalent to Dns (by Theorem 2.11), where D ∈R depends on the choice of generating
set, but is always rational since otherwise Proposition 2.15 would imply that the standard growth series
was irrational, contradicting Theorem 2.22.

We will also need the following generalisation of Corollary 2.26, showing that offsetting x by a
constant does not affect the asymptotics of the GCD sum.

Corollary 2.27. Fix an element a = (a1, . . . , as) ∈Zs. Then,

∑
x∈B(2)

� (n)

gcd (x + a) = R2

ζ (2)
n2 log n +O(n2)

and
∑

x∈B(s)
�(n)

gcd (x + a) = Rs

ζ (s − 1)

ζ (s)
ns +O(ns−1 log n)

where R2, Rs ∈Q are the same as in Corollary 2.26.

Proof. Let amax = max (|a1|, . . . , |as|). Then, we have

B(s)
� (min (n − amax, 0)) ⊆ {x + a | x ∈ B(s)

� (n)} ⊆ B(s)
� (n + amax)

for all n and thus ∑
x∈B(s)

�( min(n−amax,0))

gcd (x) ≤
∑

x∈B(s)
�(n)

gcd (x + a) ≤
∑

x∈B(s)
�(n+amax)

gcd (x).

Applying Corollary 2.26 gives the result, since adding a constant to n does not alter the asymptotic
expressions on the right-hand sides.
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3. A family of class 2 nilpotent groups

In this section, we discuss the nilpotent groups of class 2 whose derived subgroup is infinite cyclic. This
includes the following family.

Definition 3.1. The (higher) Heisenberg groups are class 2 nilpotent groups, with a parameter r ∈N+,
given by the following presentation:

Hr =
〈

a1, b1, a2, b2, . . . , ar, br

∣∣∣∣∣∣∣
[ai, aj] = [ai, bj] = [bi, bj] = 1 ∀i �= j

[ai, bi] = [aj, bj] ∀i �= j

[[ai, bi], aj] = [[ai, bi], bj] = 1 ∀i, j

〉
.

The commutator subgroup H(1)
r is infinite cyclic, generated by the commutator c = [ai, bi]. These

groups play an important role in the story of standard growth, as they provide essentially the only known
examples of growth series behaviour which depends on the choice of generating set, as we will see in
Stoll’s result, Theorem 3.9. Furthermore, Duchin and Shapiro have shown [13] that the first Heisenberg
group (also known as the integer or discrete Heisenberg group) H1 has rational standard growth series
with respect to any choice of finite generating set.

3.1. Stoll’s classification

In [33], Stoll classifies all finitely generated class 2 nilpotent groups with infinite cyclic derived subgroup
in terms of the first Heisenberg group H1. We summarise this classification below.

Let G1 and G2 be groups with central subgroups Z1 and Z2, respectively. Suppose that there exists
an abelian group Z and homomorphisms ϕ1 : Z1 → Z and ϕ2 : Z2 → Z, and consider the product
homomorphism ϕ : Z1 × Z2 → Z defined by:

ϕ : (z1, z2) �→ ϕ1(z1)ϕ2(z2).

Furthermore, suppose that ϕ is surjective.

Definition 3.2. The group

G = G1 × G2

ker ϕ

is called the centrally amalgamated direct product of G1 and G2 with respect to ϕ. We will write central
product for brevity.

Example 3.3. Let G1
∼= G2

∼=Z2 be given by the presentations:

G1 = 〈x1, y1 | [x1, y1]〉, G2 = 〈x2, y2 | [x2, y2]〉,
and let Z = 〈z | z2〉. Define homomorphisms from the second direct factor of each Gi to Z as ϕi : 〈yi〉 → Z
given by ϕ : yi �→ z. Then the centrally amalgamated direct product, G, of G1 and G2 with respect to ϕ

is given by the presentation:

〈x1, x2, z | [x1, x2], [x1, z], [x2, z], z2〉 ∼=Z2 ×Z/2Z.

From now on, we will deal exclusively with the case where each Zi is infinite cyclic, generated by an
element zi, and similarly Z is infinite cyclic, generated by an element z. Hence, each ϕi is determined
by an integer di as follows ϕi : zi �→ zdi . Given pairs (G1, z1) and (G2, z2) such that each 〈zi〉 is an infinite
cyclic central subgroup of Gi, we will write (G1, z1) ⊗d (G2, z2) for the central product of G1 and G2,
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amalgamated over the subgroups 〈z1〉 and 〈z2〉 with ϕ1(z1) = z and ϕ1(z2) = zd. If d = 1, we simply write
(G1, z1) ⊗ (G2, z2).

Lemma 3.4 (Lemma 7.1 of [33]). Let G be a finitely generated 2-step nilpotent group with G(1) ∼=Z.
Then there exists a finitely generated infinite abelian group G0, and a tuple D = (δ1, . . . , δr−1) ∈ (N+)r−1,
with δi|δi+1 for each i, such that

G ∼= ( · · · ((((G0, z) ⊗ (H1, c1)) ⊗δ1 (H1, c2)) ⊗δ2 (H1, c3)) · · · ) ⊗δr−1 (H1, cr),

where each H1 = 〈ai, bi | [[ai, bi], ai], [[ai, bi], bi]〉 is a copy of the first Heisenberg group, ci denotes the
commutator [ai, bi], and z generates an infinite cyclic subgroup of G0.

Remark 3.5. Note that due to the amalgamation in G, c1 = z and for each i, we have ci = cδi−1
1 .

Definition 3.6. Let D = (δ1, . . . , δr−1) ∈ (N+)r−1, with δi|δi+1 for each i. Then we will write

HD = ( · · · (((H1, c1) ⊗δ1 (H1, c2)) ⊗δ2 (H1, c3)) · · · ) ⊗δr−1 (H1, cr).

Note that if I = (1, 1, . . . , 1) ∈ (N+)r−1, we can express the rth higher Heisenberg group as
Hr = HI . Since the abelian subgroup � := G0/〈z〉 is central, we have the following immediate corollary
of Lemma 3.4.

Corollary 3.7. Let G be a finitely generated 2-step nilpotent group with [G, G] ∼=Z. Then there exists
a finitely generated abelian group � (possibly finite or trivial) and a tuple D = (δ1, . . . , δr−1) ∈ (N+)r−1,
with δi|δi+1 for each i, such that

G ∼= � × HD.

Definition 3.8. As in [33], the Heisenberg rank of G ∼= � × HD will refer to the number, r, of copies of
H1 appearing in the construction. Furthermore, we will write s for the torsion-free rank of the finitely
generated abelian factor �.

To emphasise the importance of this class of groups, we record the following, which is the main result
of [33].

Theorem 3.9. If G is a class 2 nilpotent group with infinite cyclic derived subgroup and Heisenberg rank
at least 2, then it possesses a generating set yielding rational standard growth series, and a generating
set yielding transcendental standard growth series.

We fix some notation that we will use throughout the paper.

Definition 3.10. Suppose that � × HD is torsion-free and choose a basis {z1, . . . , zs} for �. Then
the elements of � × HD are in bijection with words of the form zl1

1 · · · zls
s ai1

1 bj1
1 · · · air

r bjr
r ck where

l1, . . . , ls, i1, j1, . . . , ir, jr, k ∈Z. This is known as the Mal’cev normal form, or Mal’cev coordinates, and
a variation of it exists for all finitely generated nilpotent groups (see [11], or the basic commutators
of [23]). We will frequently represent elements of � × HD as αck where α is an element of the form
zl1

1 · · · zls
s ai1

1 bj1
1 · · · air

r bjr
r and c = c1 = [a1, b1].

For the remainder of the paper, we use the generating set {z1, . . . , zs, a1, . . . , br} for � × HD and
lengths of elements will be taken with respect to this generating set.
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Definition 3.11. For g ∈ � × HD, we write ḡ for the image of g in the abelianisation Ab(� × HD). With
this notation, we have

Ab(� × HD) = 〈z̄1, . . . , z̄s, ā1, b̄1, . . . , ār, b̄r〉 ∼=Z2r+s.

The preimage of x ∈ Ab(� × HD) under the abelianisation map is a coset of the commutator subgroup
〈c〉. We define the canonical lift of x to be the unique element of the preimage whose c-coordinate is zero
(when expressed in Mal’cev normal form) and denote it x∧. Therefore, if x = z̄l1

1 · · · z̄ls
s āi1

1 b̄j1
1 · · · āir

r b̄jr
r then

x∧ = zl1
1 · · · zls

s ai1
1 bj1

1 · · · air
r bjr

r ∈ � × HD.

We will also write elements of Ab(� × HD) as vectors in Z2r+s with respect to the basis
{z̄1, . . . , z̄s, ā1, b̄1, . . . , ār, b̄r} so that zl1

1 · · · zlr
r ai1

1 · · · bjr
r = (l1, . . . , ls, i1, . . . , jr).

3.2. Automorphisms of class 2 nilpotent groups

We will need to understand the automorphisms of our family of nilpotent groups. First, note the following
easy lemma.

Lemma 3.12. Let G be a group with a characteristic subgroup H. Then the natural homomorphism
G → G/H induces a homomorphism θ : Aut(G) → Aut(G/H).

Definition 3.13. Let �r denote the 2r × 2r block matrix consisting of blocks of the form

(
0 1

−1 0

)
on

the diagonal with zeroes elsewhere. Let �r,s be the (2r + s) × (2r + s) matrix with �r in the bottom right
corner and zeroes elsewhere.

For example,

�2,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

0 0 0 0 1

0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the skew-symmetric bilinear form �r,s is precisely that given by taking commutators of pairs
of elements of Ab (� × Hr) with respect to the basis {z̄1, . . . , z̄s, ā1, b̄1, . . . , ār, b̄r}, that is, [·, ·] : Z2r+s ×
Z2r+s →Z. Let αck1 , βck2 ∈ � × Hr. Then, αck1 = ᾱ and βck2 = β̄ are elements of Z2r+s and we have

[αck1 , βck2 ] = [α, β] = cᾱ�r,sβ̄
T
.

Definition 3.14. Let M < GL2r+sZ be the group of matrices that either preserve or reverse the bilinear
form given by �r,s (i.e. the group of matrices M such that M�r,sMT = ε�r,s for ε ∈ {1, −1}). Note that if
s = 0, then M ∼= Sp(2r, Z) �Z/2Z.

Definition 3.15. Suppose that N = � × HD is torsion-free and let M ∈ M. Define a map φM : N → N
as follows. For each 1 ≤ i ≤ s, set φM(zi) = (z̄iM)

∧, that is, the canonical lift of the image of zi under
M. Similarly, set φM(ai) = (āiM)

∧ and φM(bi) = (
b̄iM

)∧ for each 1 ≤ i ≤ r. Then extend this map to an
endomorphism of N in the usual way by setting φM(x1 · · · xn) = φM(x1) · · · φM(xn) for any word x1 · · · xn

in the generators.

Lemma 3.16. The map φM is a well-defined automorphism of N.

https://doi.org/10.1017/S0017089522000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000428


Glasgow Mathematical Journal S159

Proof. First note that for any x ∈Z2r+s, we have x∧ = x. It is easily checked that the relators of N are
mapped to the identity and therefore φM defines an endomorphism of N . For example, for the relator
[zi, aj], we have [

(z̄iM)∧, (ājM)∧]= cz̄iM�r,s(ājM)T = cεz̄i�r,sāT
j = 1.

Furthermore, for any M, φM−1 is the inverse of φM, which is therefore an automorphism. It is sufficient
to check this on the generators, for example,

φM−1 ◦ φM(zi) =
(

(z̄iM)∧M−1
)∧ = (

z̄iMM−1
)∧ = z̄∧

i = zi.

Proposition 3.17. Suppose that N = � × HD is torsion-free. Then the natural homomorphism N →
N/N(1) induces (via Lemma 3.12) an epimorphism θ : Aut(N) → M.

Proof. We first show that the image of the induced homomorphism θ is contained in M. Let f ∈ Aut(N)
and write θ (f ) = M ∈ GL2r+s(Z). Since the commutator subgroup N(1) is characteristic, f restricts to an
automorphism of N(1) = 〈c〉 ∼=Z, so we have f : c �→ cε where ε ∈ {−1, 1}.

Then, for any αck1 , βck2 ∈ N, we have

f
(
[αck1 , βck2 ]

)= f ([α, β]) = [α, β]ε

and hence
[
f (α), f (β)

]= [α, β]ε. Therefore,

cᾱM�2r+sMT β̄T = cεᾱ�2r+sβ̄
T

for all ᾱ, β̄ ∈ Ab(N) and hence M�2r+sMT = ε�2r+s, that is, M ∈ M as claimed.
To see that M is contained in the image of Aut(N), we note that for each M ∈ M, θ (φM) = M.

Remark 3.18. Although we do not need it for the arguments that follow, we note that in the special
case of N = Hr, we can use a straightforward generalisation of an argument of Osipov [29] to extend
Proposition 3.17 to give the following short exact sequence, where Inn(Hr) =Z2r:

1 →Z2r → Aut(Hr) → Sp2r(Z) �Z/2Z→ 1

In Section 5, we will need a more explicit description of the automorphisms of N .

Proposition 3.19. Suppose N = � × HD is torsion-free and fix f ∈ Aut(N). Write θ (f ) = M ∈ M for
the image of f as above. Then there exists ε ∈ {1, −1} and a polynomial function γ : R2r+s →R

of degree 2, with γ (0, . . . , 0) = 0, restricting to a function Z2r+s →Z, such that for each element
zl1

1 · · · zls
s ai1

1 bj1
1 · · · air

r bjr
r ck ∈ N we have

f
(
zl1

1 · · · zls
s ai1

1 bj1
1 · · · air

r bjr
r ck
)=

(
zl1

1 · · · zls
s ai1

1 bj1
1 · · · air

r bjr
r M
)∧

cεk+γ (l1,...,ls ,i1,j1,...,ir ,jr )

= ((l1, . . . , ls, i1, j1, . . . , ir, jr)M)
∧cεk+γ (l1,...,ls ,i1,j1,...,ir ,jr ),

with ε and γ depending only on f.

Proof. Proposition 3.17 gives us a short exact sequence 1 → K → Aut(N)
θ−→ M → 1, for some

normal subgroup K � Aut(N) (which contains but may not be equal to Inn(N)). The automorphisms
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{φM ∈ Aut(N) | M ∈ M} defined above form a transversal for Aut(N)/K, and hence f = κ ◦ φM for some
κ ∈ K and M ∈ M.

Since κ ∈ K, κ maps to the identity in M. So there exist integers ki such that

κ : z1 �→ z1c
k1

...

zs �→ zsc
ks

a1 �→ a1cks+1

b1 �→ b1cks+2

...

br �→ brc
ks+2r .

Therefore, applying κ to some zl1
1 · · · zls

s ai1
1 bj1

1 · · · air
r bjr

r ck ∈ N fixes the powers of the generators z1, . . . , br

and adds p(l1, . . . , jr) to the power of c, where p is a linear function determined by the integers
k1, . . . , ks+2r.

On the other hand, φM ∈ Aut(N) takes each generator to a linear combination of the generators
z1, . . . , br, determined by the matrix M. We also have φM(c) = cε where ε ∈ {1, −1}. Rearranging into
the normal form then results in an adjustment to the power of c consisting of a sum of terms of the form
iλjλ with coefficients determined by M. Thus, the image of zl1

1 · · · zls
s ai1

1 bj1
1 · · · air

r bjr
r ck under φM may be

expressed as:
(

zl1
1 · · · zls

s ai1
1 bj1

1 · · · air
r bjr

r M
)∧

cεk+q(l1,...,jr ) = ((l1, . . . , jr)M)
∧cεk+q(l1,...,jr )

where q is a degree 2 polynomial.
Letting x = zl1

1 · · · zls
s ai1

1 bj1
1 · · · air

r bjr
r ck, we have

f (x) = κ ◦ φM(zl1
1 · · · zls

s ai1
1 bj1

1 · · · air
r bjr

r ck)

= κ
((

(l1, . . . , ls, i1, j1, . . . , ir, jr)M
)∧

cεk+q(l1,...,jr )
)

= (
(l1, . . . , ls, i1, j1, . . . , ir, jr)M

)∧
cεk+γ (l1,...,jr )

where γ (l1, . . . , jr) = q(l1, . . . , jr) + p ((l1, . . . , jr)M) is a degree 2 polynomial with coefficients deter-
mined by f .

4. Conjugacy growth of higher Heisenberg groups

This section is dedicated to proving Theorem 4.5. First, we show that the parameter D does not affect
the conjugacy growth of the group HD.

Proposition 4.1. Let D = (δ1, δ2, . . . , δr−1) with each δi | δi+1. Then the conjugacy growth of HD is
equivalent to that of Hr, that is, cHD ∼ cHr .

Proof. We will show that there exist groups �1 and �2, both isomorphic to Hr, such that �1 ≤ HD ≤ �2,
with [HD : �1] and [�2 : HD] both finite. Then, Lemma 2.8 will give the result.

https://doi.org/10.1017/S0017089522000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000428


Glasgow Mathematical Journal S161

From the definition, HD is generated by elements a1, b2, . . . , ar, br with [ai, bi] = ci = cδi−1 for each i
(and [a1, b1] = c). Let γi = δr−1

δi−1
for i > 1, and γ1 = δr−1, and define the subgroup:

�1 = 〈aγ1
1 , b1, aγ2

2 , b2, . . . , aγr
r , br〉 ≤ HD.

For any i, we have [aγi
i , bi] = cγi

i = cδi−1·γi = cδr−1 , and so �1 is isomorphic to Hr. For an element
ai1

1 bj1
1 ai2

2 bj2
2 · · · air

r bjr
r ck ∈ HD, we have

ai1
1 bj1

1 ai2
2 bj2

2 · · · air
r bjr

r ck ∈ am1
1 am2

2 · · · amr
r cn�1

where each mλ = iλ mod γλ, and n = k mod δr−1. Therefore, the following is a set of representatives for
the cosets HD/�1:

{am1
1 am2

2 · · · amr
r ck | 0 ≤ mλ < γλ, 0 ≤ k < δr−1},

and so [HD : �1] = γ1γ2 · · · γrδr−1 < ∞ as required.
Now let �2

∼= Hr be generated by {d1, e1, d2, e2, . . . , dr, er} and denote the commutator by f = [di, ei].
Define a map φ : HD → �2 by its action on the generators:

ai �→ dδi−1
i

bi �→ ei.

It is easily checked that the relators of HD are sent to the identity by φ, and thus it is a well-defined homo-
morphism. Furthermore, if φ(aI1

1 bJ1
1 aI2

2 bJ2
2 · · · aIr

r bJr
r cK) = 1, then dI1

1 eJ1
1 dδ1I2

2 eδ1J2
2 · · · dδr−1Ir

r eδr−1Jr
r f K = 1 and

so I1 = J1 = · · · = Jr = K = 0. Thus, φ is a monomorphism. Similarly to the previous argument, a set of
representatives for the cosets �2/φ(HD) is

{dl1
1 · · · dlr

r | 0 ≤ nλ < δλ−1},
and so [�2 : φ(HD)] = δ1δ2 · · · δr−1.

Definition 4.2. If x = (x1, x2, . . . , xn) is any tuple of integers, we will write

g(x) = gcd (x1, x2, . . . , xn)

for the greatest common divisor of the entries of x.

The next two results describe the structure of the conjugacy classes of Hr.

Lemma 4.3. Let αck be an element of Hr in Mal’cev normal form so that α = ai1
1 bj1

1 ai2
2 bj2

2 · · · air
r bjr

r and
αck = ᾱ ∈Z2r. Then the conjugacy class represented by αck ∈ Hr is either a singleton or a coset of a
cyclic subgroup:

[αck] =
⎧⎨
⎩

{ck} if α is the identity

αck〈cg(ᾱ)〉 otherwise.
(4.1)

Proof. First note that ck is central, so its conjugacy class is [ck] = {ck}. Now consider non-identity α.
Since [at, bt] = c for each 1 ≤ t ≤ r, we have

atαcka−1
t = αck+it and btαckb−1

t = αck−jt .

So we can express the conjugacy class of αck as follows:

[αck] = {
αck+∑r

t=1 (lt1jt−lt2it) | lt1, lt2 ∈Z
}

= αck
〈
cgcd (j1,−i1,j2,−i2,...,jr ,−ir )

〉
= αck〈cg(ᾱ)〉.
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Lemma 4.4. Let α = ai1
1 bj1

1 · · · air
r bjr

r ∈ Hr be a non-trivial element in Mal’cev normal form. Then the
length of the conjugacy class [αck] lies in the range [|α|, |α| + 2], where |α| =∑

λ
(|iλ| + |jλ|) is the

word length of α.

Proof. We claim that any element αck has length at least |α|, so |α| ≤ |[αck]|. To see this, consider
any word over the generators a1, b1, . . . , ar, br that represents αck. We can put this into normal form by
collecting the powers of generators into the given order, at the cost of powers of c, using the identity
[at, bt] = c for each t. Note that the exponent sum of each generator can never increase. So any word
representing αck has at least |i1| instances of a±1

1 , and so on.
From the structure of conjugacy classes given in Lemma 4.3, each conjugacy class [αck] has

a representative of the form αc−l where 0 ≤ l < g(ᾱ) and a representative of the form αcm where
0 < m ≤ g(ᾱ).

Assume that each power it, jt is non-negative. Let I = {m ∈N | im �= 0} and J = {n ∈N | jn �= 0}. Then,
by definition, g(ᾱ) ≤ min{im, jn | m ∈ I, n ∈ J}.

Suppose that there is some t ∈ I ∩ J, that is, both it and jt are non-zero. We have

ait−l
t bta

l
tb

jt−1
t =G ait

t [a−l
t , bt]b

jt
t =G ait

t bjt
t c−l

and so

ai1
1 bj1

1 · · · ait−l
t bta

l
tb

jt−1
t · · · air

r bir
r =G αc−l, (4.2)

and thus we can represent the element αc−l with a word of length |α|.
Now suppose that I ∩ J is empty. Since α �= 1, there exists t ∈N with either it �= 0 or jt �= 0. If it �= 0,

we have

ait−l
t bta

l
tb

−1
t = ait

t [a−l
t , bt] =G ait

t c−l (4.3)

and if jt �= 0 we have

a−1
t bl

tatb
jt−l
t = [a−1

t , bl
t]b

jt
t =G bjt

t c−l. (4.4)

Now, similarly to equation (4.2), we can represent the element αc−l with a word of length |α| + 2, since
in equation (4.3) we have inserted an extra bt and b−1

t , and in equation (4.4) we have inserted an extra
at and a−1

t . Therefore, in general, we have the bound |αc−l| ≤ |α| + 2. This in turn implies that |α| ≤
|[αck]| = |[αc−l]| ≤ |α| + 2.

If some powers it, jt are negative, we can find words analogous to equation (4.2) that represent either
αc−l or αcm, depending on the combination of signs. Thus, the result holds for all values of α.

Theorem 4.5. Let G = � × HD be a finitely generated class 2 nilpotent group with infinite cyclic derived
subgroup, with Heisenberg rank r. Let s be the torsion free rank of �. Then,

cG(n) ∼
⎧⎨
⎩

ns+2 log n r = 1

ns+2r r ≥ 2.

Proof. By Lemma 2.9 and Theorem 2.11, we have cG(n) ∼ ns · cHD (n) ∼ ns · cHr (n) and so it suffices to
show that the conjugacy growth of Hr is equivalent to n2 log n in the case r = 1 and n2r otherwise. This
follows from [2] but we provide a new argument here using more elementary methods.

For a fixed non-identity α = ai1
1 bj1

1 · · · air
r bjr

r ∈ Hr, Lemma 4.3 implies that there are exactly g(ᾱ) con-
jugacy classes in the coset α〈c〉, and Lemma 4.4 implies that they have length in the range [|α|, |α| + 2].
The conjugacy classes of elements where α is the identity are simply the elements of 〈c〉. Thus, the
conjugacy growth function satisfies the bounds:

β〈c〉(n) +
∑

ᾱ∈B�1 (n−2)

g(ᾱ) ≤ cHr (n) ≤ β〈c〉(n) +
∑

ᾱ∈B�1 (n)

g(ᾱ),
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where B�1 (n) denotes the n-ball in Z2r ∼= Ab(Hr) with respect to the �1 norm. It is standard (and not hard
to see) that β〈c〉(n) ∼ n2 for any Hr, noting for example that [an

i , bn
i ] is a geodesic spelling of cn2 , with

length 4n. Thus, from Corollary 2.26 we have

cHr (n) ∼
⎧⎨
⎩

n2 log n r = 1

n2r r ≥ 2

which finishes the proof.

Remark 4.6. Comparing Theorem 4.5 to Corollary 4.2 of [2], we see that Babenko proves a stronger
result, covering a more general class of metrics and providing the leading coefficient of the growth
function, but in a more restricted class of groups. In the case of r ≥ 2, we have

cHr (n) = ζ (2r − 1)

ζ (2r)
Rrn

2r + o(n2r)

where Rr is a rational number depending on the metric, and ζ is the Riemann zeta function. Although it
would contradict Conjecture 1.1, if the conjugacy growth series of Hr turns out to be rational (respec-
tively algebraic), then Proposition 2.15 would imply that ζ (2r−1)

ζ (2r)
is a rational (respectively algebraic)

number. As far as the author is aware, it is not known whether such a fraction is algebraic, although it
seems unlikely.

5. Conjugacy growth of virtually higher Heisenberg groups

In this section, we show that if G is commensurable to a higher Heisenberg group then they have
equivalent conjugacy growth functions. We will need the following lemma.

Lemma 5.1. If U is a subgroup of H1, then the Heisenberg rank of U is at most 1.

Proof. First, we claim that a pair of elements of H1 commute if and only if their images in Ab(H1)
are colinear as vectors in Z2. To see this, let g = aibjck and h = aIbJcK be a elements of H1. We have
gh = ai+Ibj+Jck+K−jI and hg = aI+ibJ+jcK+k−Ji and so they commute if and only if jI = Ji. This is equivalent
to the vectors ḡ = (i, j) and h̄ = (I, J) being colinear (including the possibility that one or both is the zero
vector).

To prove the Lemma, suppose, on the contrary, that U has Heisenberg rank at least 2. This implies
that there exist four elements x1, y1, x2, y2 ∈ U ≤ H1 such that [x1, y1] �= 1, [x2, y2] �= 1, and

[x1, x2] = [x1, y2] = [y1, x2] = [y1, y2] = 1. (5.1)

Now the claim above along with (5.1) implies that x̄1 and x̄2 are colinear, and ȳ1 and x̄2 are colinear.
Since being colinear is a transitive relation, x̄1 and ȳ1 are colinear, and hence x1 and y1 commute, which
is a contradiction.

Next, we show that conjugacy growth is preserved when passing to finite index subgroups.

Lemma 5.2. Let G be a class 2 nilpotent group with infinite cyclic derived subgroup. If H is a finite
index subgroup of G, then H is also class 2 nilpotent with infinite cyclic derived subgroup. Furthermore,
G and H have equivalent conjugacy growth functions.

Proof. Since H is a subgroup of G it is nilpotent of class at most 2 and since it has finite index, [H,
H] has finite index in [G, G] and is therefore infinite cyclic. We have G = �1 × HD1 and H = �2 × HD2 ,
where �1 and �2 are abelian and the groups HD1 and HD2 are as in Definition 3.6. Let r1 and r2 denote
the corresponding Heisenberg ranks, and let si denote the torsion-free rank of �i.
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By Proposition 2.5, G and H have equivalent standard growth functions. Therefore by Theorem 2.11,
we have s1 + 2r1 + 2 = s2 + 2r2 + 2, that is,

s1 + 2r1 = s2 + 2r2. (5.2)

This also follows from Theorem 5.9. If r1, r2 ≥ 2, then Theorem 4.5 implies that cG(n) ∼ ns1+2r1 and
cH(n) ∼ ns2+2r and hence cG ∼ cH by (5.2). If r1 = r2 = 1, then s1 = s2 and Theorem 4.5 again implies that
cG ∼ cH .

Suppose r1 > 1 and r2 = 1. Applying Theorem 4.5, we have cG(n) ∼ ns1+2r1 and cH(n) ∼ ns2+2 log n.
From (5.2), ns1+2r1 = ns2+2, and then cG(n) ∼ ns2+2 and cH(n) ∼ ns2+2 log n together violate Lemma 2.8.

Finally, suppose that r1 = 1 and r2 > 1. So there exist four elements x1, y1, x2, y2 ∈ H < G = �1 × H1

such that 〈x1, y1, x2, y2〉 ≤ G has Heisenberg rank 2. Since G is a direct product and �1 is abelian, two
elements of G commute if and only if their H1 components commute. So by passing to just the H1 com-
ponents of each element, we find elements x′

1, y′
1, x′

2, y′
2 contained in the H1 factor of G, that generate

a subgroup of Heisenberg rank 2. This contradicts Lemma 5.1.

Now we show that conjugacy growth is also preserved when passing to finite index supergroups.

Theorem 5.3. Suppose H is a class 2 nilpotent group with infinite cyclic derived subgroup. If a group
G contains H as a finite index subgroup, then G and H have equivalent conjugacy growth functions.

Before we prove this Theorem, we note the following consequence.

Corollary 5.4. If G is (virtually) nilpotent with Heisenberg rank equal to 1, then its conjugacy growth
series is non-holonomic, with respect to any finite generating set.

Proof. Theorems 5.3 and 4.5 show that the conjugacy growth of such a group is equivalent to nd log n
for some positive integer d. But by Theorem 2.16, no such function can have a holonomic power series.

To prove Theorem 5.3, we will use a general necessary and sufficient condition for conjugacy growth
to be preserved under finite extensions. First, we define twisted conjugacy growth.

Definition 5.5. Let φ be a fixed automorphism of a group G. Define the φ-twisted conjugacy class of
g ∈ G by

[g]φ = {φ(h)gh−1 | h ∈ G}
and write Cφ

G for the set of φ-twisted conjugacy classes of G (it is easy to check that φ-twisted conjugacy
defines an equivalence relation). As in Definitions 2.1 and 2.2, the length of a twisted conjugacy class
is defined as:

|[g]φ|S = min{|h|S | h ∈ [g]φ}
and the corresponding φ-twisted conjugacy growth function is

cφ

G,S(n) = #{κ ∈ Cφ

G | |κ|S ≤ n}.
It is not hard to prove that the analogue of Proposition 2.4 holds in this case. In other words, the

equivalence class of φ-twisted conjugacy growth does not depend on the choice of generating set and
we can therefore drop the S from the notation. The following result is reminiscent of Theorem 3.1 of [5]
in that conjugacy in an extension is understood via twisted conjugacy of the base group.

Proposition 5.6. Let H be any finitely generated group. Then cφ

H(n) � cH(n) for every finite-order
automorphism φ ∈ Aut(H), if and only if every finite extension G of H satisfies cG(n) ∼ cH(n).
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Proof. First, suppose that cφ

H(n) � cH(n) for every finite order φ ∈ Aut(H). For any finite extension
G, Lemma 2.8 states that cH(n) � cG(n), so it remains to show the opposite bound. Fix a choice of
transversal, T ⊂ G, for G/H. We consider the cosets tH separately, for each t ∈ T (since the conjugacy
class of any element of tH is contained within tH by normality). If a pair of elements of tH are con-
jugate by an element of H, then they are in the same conjugacy class (in G). Therefore, the number of
H-conjugacy classes in the n-ball is at least the number of G-conjugacy classes. Therefore, only consid-
ering conjugation by elements of H will give an upper bound for the G-conjugacy growth of tH. Fixing
t ∈ T , and choosing an element h ∈ H, we have the H-conjugacy class:

[th]H = {xthx−1 | x ∈ H} = {tφt(x)hx−1 | x ∈ H} = t[h]φt ,

where φt ∈ Aut(H) is the finite-order automorphism defined by conjugation: φt : γ �→ t−1γ t. So we can
understand H-conjugation in tH as φt-twisted conjugation in H itself.

Since cφt
H (n) � cH(n) by hypothesis, and the growth of tH is equivalent to the growth of H (as per

Lemma 2.7), the contribution to the conjugacy growth of G from the coset tH is at most the conjugacy
growth of H. Since there are only finitely many such cosets, we have cG(n) � cH(n) as claimed.

For the converse part of the statement, we prove its contrapositive, namely that if there exists some
finite-order automorphism giving twisted conjugacy growth strictly greater than untwisted conjugacy
growth, then there is a finite extension of H with inequivalent conjugacy growth. Suppose φ ∈ Aut(H)
is such an automorphism. So there exists k ∈N such that φk is the identity automorphism, and we have
cφ

H(n) � cH(n). Form the semidirect product G := H �φ Z/kZ, where the finite cyclic group is generated
by t, which acts on H via t−1ht = φ(h) for all h ∈ H. We have cH � cG from Lemma 2.8, and we need to
show this is a strict inequality to prove our result. It is enough to do this for one of the k cosets of H in
G (which are again closed under conjugation since H � G). We consider conjugating an element of the
coset tH by elements of H. Let h ∈ H. As above, we have

[th]H = {xthx−1 | x ∈ H} = {tφ(x)hx−1 | x ∈ H} = t[h]φ

and so, again, H-conjugacy classes of the coset tH are t-translates of φ-twisted conjugacy classes
of H. Therefore, the number of H-conjugacy classes in tH which intersect the n-ball is equivalent to
the twisted conjugacy growth function cφ

H(n). We have

[th]G = {gthg−1 | g ∈ G} = {tixthx−1t−i | x ∈ H, 0 ≤ i ≤ k − 1} =
k−1⋃
i=0

ti[th]Ht−i

and so passing from H-conjugacy classes to full conjugacy can only increase the number of conjugacy
classes in the n-ball by at most a constant factor of k, which does not change the equivalence class. Thus,
the contribution to conjugacy growth from tH is equivalent to cφ

H(n), which is strictly greater than cH(n)
by hypothesis, and we have cG(n) � cH(n) as required.

Now we apply this general criterion to the specific case at hand. We will need the following simple
observation.

Lemma 5.7. Let U be a subgroup of Zd, and therefore a free abelian group of rank u ≤ d. Then the
n-ball in Zd (with respect to the standard generating set of unit vectors) intersects O(nd−u) distinct cosets
of U.

Proof of Theorem 5.3. To apply Proposition 5.6, we need a normal subgroup. Any torsion in H is
contained in the abelian factor and is therefore a finite subgroup, so we initially pass to the torsion-
free direct factor. The conjugacy growth of a finite group is clearly eventually constant, so Lemma 2.9
shows that removing a finite direct factor preserves (the equivalence class of) the conjugacy growth
function. Then, a standard argument allows us to pass to a normal subgroup of G, contained in H, also
of finite index. By Lemma 5.2, this subgroup has equivalent conjugacy growth to the original subgroup.
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Therefore, we may assume without loss of generality that H is normal and torsion-free. Now to prove
the Theorem, it is enough to show that cφ

H(n) � cH(n) for any φ ∈ Aut(H).
We explicitly describe φ-twisted conjugacy in H, for any fixed φ ∈ Aut(H). With h =

zx1
1 · · · zxs

s au1
1 bv1

1 · · · aur
r bvr

r cw ∈ H and x = zl1
1 · · · zls

s ai1
1 bj1

1 · · · air
r bjr

r ck ∈ H, Proposition 3.19 gives

φ(x)hx−1 = φ(zl1
1 · · · bjr

r ck) · zx1
1 · · · bvr

r cw · z−l1
1 · · · b−jr

r c−k−∑λ iλjλ

=
(

(l1, . . . , jr)(M − I) + (x1, . . . , vr)
)∧

cεk−k+w−∑λ iλjλ+∑λ (vλiλ−uλjλ)+γ (l1,...,jr )

=
(

(l1, . . . , jr)(M − I) + (x1, . . . , vr)
)∧

cεk−k+w+f (l1,...,jr ) (5.3)

where γ is a polynomial of degree 2 (and therefore so is f ), ε ∈ {−1, 1}, and M ∈ M, and these all depend
only on φ. We analyse various cases depending on the value of ε and the nature of the matrix M − I
(which defines an endomorphism of Ab(H) ∼=Z2r+s).

(1) If φ is the identity automorphism, then φ-twisted conjugacy is nothing more than standard
conjugacy, and so cφ

H(n) = cH(n) in this case. In the remaining cases, we assume that φ is not
the identity.

(2) Suppose ε = −1, that is, φ inverts the commutator. If x = ck, then φt(x)hx−1 = hc−2k. So just con-
sidering conjugators of the form ck for varying k, we can see that each fixed (x1, . . . , vr) ∈ Ab(H)
corresponds to at most two φ-twisted conjugacy classes in H, which both have representatives
of length |(x1, . . . , vr)|, as in Lemma 4.4. Considering all conjugators will not increase the
number of conjugacy classes of a given length, so we have cφ

H(n) � βAb(H)(n) ∼ n2r+s � cH(n).
(3) Now let ε = 1, and so equation (5.3) becomes

φ(x)hx−1 =
(

(l1, . . . , jr)(M − I) + (x1, . . . , vr)
)∧

cw+f (l1,...,jr ).

We think of (the Cayley graph of) H embedded in R2r+s+1 via Mal’cev coordinates (see
Definition 3.10) and see that the projection of a φ-twisted conjugacy class [h]φ onto the first
2r + s coordinates (i.e. the image under the abelianisation map) is a coset of the image of M − I.
That is,

[h]φ = h̄ + Im(M − I) ⊂Z2r+s.

Write rk(M − I) for the dimension of the image of M − I. Lemma 5.7 implies that the number
of distinct images of φ-twisted conjugacy classes in the abelianisation Z2r+s that have length at
most n is O(n2r+s−rk(M−I)). Note that if h ∈ H has length at most n, then its image in the abelian-
isation will also have length at most n in Z2r+s. So the number of distinct φ-twisted conjugacy
classes in the ball of radius n in H isO(n2r+s−rk(M−I)+2), with the extra n2 coming from the growth
of the c axis. We consider subcases depending on the dimension of the image of M − I.

(a) For 2 ≤ rk(M − I) ≤ 2r + s, we have

cφ

H(n) =O(n2r+s−rk(M−I)+2) � n2r+s � cH(n)

as required.
(b) Consider the case rk(M − I) = 1. Since the kernel of M − I must be non-trivial in this case,

we can fix a non-trivial element b ∈ ker (M − I). Then we have{
h̄cw+f (ηb) | η ∈Z

}⊂ [h̄cw]φ = [h]φ .

Now f (ηb) is a quadratic polynomial in the single variable η with zero constant term.
Considering just those η in the range [−n, n] yields at least n distinct elements of h̄〈c〉 ∩ [h]φ ,
all with c-coordinate of length O(n2) (since w =O(n2), f has degree 2, and b is constant),
and hence contained in the n-ball in H (or more precisely the Cn-ball for some constant C).
So amongst the O(n2) elements of any 〈c〉-coset in the n-ball, there can be at most O(n)
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distinct φ-twisted conjugacy classes. So in this case, the contribution from the c-axis is
reduced from n2 to n, and the number of distinct φ-twisted conjugacy classes in the n-ball
is reduced from O(n2r+s−rk(M−I)+2) to O(n2r+s−rk(M−I)+1). Since the rank is 1 in this case, we
have the claimed upper bound:

cφ

H(n) =O(n2r+s−1+1) � n2r+s � cH(n).

(c) The final case is when rk(M − I) = 0, so M = I and φ ∈ ker θ . In this specific case, we can
be more explicit about the function f in the calculation at (5.3). We have

φ(x)hx−1 = zl1
1 · · · bjr

r ck+p(l1,...,jr )hc−kb−jr
r · · · z−l1

1

= hcp(l1,...,jr )+x1l1+···+vr jr

= (x1, . . . , vr)
∧cw+(x1+λ1)l1+···+(vr+λs+2r )jr

where, as in the proof of Proposition 3.19, p is a linear function with coefficients λi

determined by φ.
At each point (x1, . . . , vr) in the abelianisation, there are gcd (x1 + λ1, . . . , vr + λs+2r) φ-
twisted conjugacy classes, all of length (asymptotically) equal to the length of zx1

1 · · · bvr
r .

Thus, by Corollary 2.27, we have cφ

H(n) ∼ cH(n).

5.1. A conjecture

As mentioned above, Hull and Osin [24] exhibit a finitely generated group with exponential conjugacy
growth function, possessing a finite index subgroup with only two conjugacy classes, and so conjugacy
growth fails to be a commensurability invariant in general. On the other hand, the conjugacy growth of
a virtually abelian group is equivalent to its standard growth (see Proposition 2.12), and so conjugacy
growth is a quasi-isometry invariant in this very restricted context. Theorem 5.3 tells us that conjugacy
growth is a commensurability invariant amongst class 2 nilpotent groups with infinite cyclic derived
subgroup.

We ask the following natural question.

Question 5.8. In which other classes of finitely generated groups is conjugacy growth a quasi-isometry
invariant?

In light of Proposition 5.6, a detailed understanding of (finite-order) automorphisms would be valu-
able in understanding how conjugacy growth behaves under finite extensions. The following Theorem
of Pansu gives insight into the nature of quasi-isometry in nilpotent groups.

Theorem 5.9 ([16, 30]). For a finitely generated nilpotent group G, the numbers ri, the torsion-free
ranks of the quotients G(i+1)/G(i), are quasi-isometry invariants.

This Theorem suggests that ‘geometrically speaking’, the numbers ri define the structure of a finitely
generated nilpotent group. In light of this, and Theorem 5.3, we venture the following conjecture, which
would imply that conjugacy growth was a quasi-isometry invariant amongst (virtually) nilpotent groups.

Conjecture 5.10. The conjugacy growth of a finitely generated nilpotent group G depends only on the
numbers ri.

A natural next step to approach this conjecture would be to extend Theorems 4.5 and 5.3 to include
groups whose derived subgroup is virtually cyclic, which would imply that conjugacy growth is a quasi-
isometry invariant amongst this class of nilpotent groups.
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