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Abstract. If X is a compact, zero-dimensional group and T is an expansive, transitive
automorphism then (X, T) is shown to be topologically conjugate to a full shift on
finitely many symbols.

The problem of classifying such automorphisms up to simultaneous algebraic
isomorphism and topological conjugacy is discussed but not solved. It is proved
that for any entropy there are only finitely many such equivalence classes. When
the entropy is \ogp for a prime p, there is only one equivalence class. All are then
equivalent to (Zp)z.

0. Introduction
Let X be a compact, zero-dimensional, topological group. If T:X-*X is an
expansive automorphism, theorem 1 shows that the dynamical system (X, T) is
topologically conjugate to an automorphism of a finite group cross a full shift. This
answers a question of Rufus Bowen.

The problem of determining when two such dynamical systems are simultaneously
topologically conjugate and algebraically isomorphic is reduced to studying full
shifts with a block wise multiplication. The structure of these is studied. Theorem
1 also shows that any such dynamical system is simultaneously topologically conju-
gate and algebraically isomorphic to a one step subshift of finite type whose alphabet
is a finite group and that has a group operation inherited from this group. Theorem
2 shows that if the automorphism is transitive and (X, T) has topological entropy
logp for some prime p then it can be recoded to be (Zp)z.

Theorem 3 is analogous to R. F. Williams' theorem A in [W]. It says that any
isomorphism between these groups can be decomposed into a sequence of elementary
isomorphisms. The question of computing when two of these systems are simul-
taneously conjugate and isomorphic is not answered. Example 5 displays some of
the difficulties that arise when this is attempted.

I would like to thank M. Boyle, D. Lind, P. Trow, S. Tuncel and especially D.
Rudolph for their discussions on these subjects.

1. Background
Let X be a compact topological space and T: X -» X be a homeomorphism. Then
the pair (X, T) is a topological dynamical system. If x e X is a point whose forward
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orbit under T is dense in X then we say x is a forwardly transitive point and that
(X, T) is transitive or irreducible. If (X, T) and (X, T) are topological dynamical
systems and there is a homeomorphism <t>:X-»X so that <j>°T=f°4> then we say
that (X, T) and (X, T) are topologically conjugate. The topological entropy (X, 7")
of a dynamical system is a non-negative real number that is an invariant of topological
conjugacy. See [AM] for detailed discussion of these ideas.

Let S be a finite set with the discrete topology. The space Sz with the product
topology is a compact, zero-dimensional, metric space. The shift map o-: Sz -> 5Z

denned by (o-(x)), = x1+1 is a homeomorphism. The dynamical system (Sz, cr) or
sometimes just S z or 2|S| is called the full shift on \S\ symbols or the full \S\ shift.

If A c Sz is a closed shift invariant set the dynamical system (A, cr) or just A is
called a subshift. Define

LA = {ie S: xo = i for some xe A}.

This is the symbol set or alphabet of A. Define W(A, n) = { [ i , , . . . , in] e S": xr = ir,
1 < r < n for some x e A}. This is the set of n blocks or words of length n in A. The
topological entropy of A, h(A), is given by lim (1/n) log I'WXA, n)\. The follower set
or successor set of a word [ i , , . . . , in] in ^ ( A , M) is denoted by / ( [ i ] , . . . , /„]) and
is defined by

/(['".,- • •, <„]) = {;e LA: [/ , , . . . , in,j]e W(A, n + \)}.

We may think of / as a map / : °W(A, n) -> 5P(LA) for each n. The predecessor sets,
p([h, • • •, in]), are defined in the obvious manner. The n block presentation of A is
denoted by A[n]. It is a subshift of (W{A, n))z. A point in A[n] may be thought of
as being labelled by xk = [x\,..., x£], k e Z where each x'k e LA for 1 < i < n. Then
x e CT(A, «))z is in A["] if and only if

Xfc = x ^ for all k e Z, 1< r < n, 0 < j < r and

(• • -x^xix jx^- • - )eA

A[n] is just a relabelling of A so that (A[n], cr) and (A, cr) are naturally topologically
conjugate. If (A, cr) and (A, a-) are subshifts then a map </>:A-»A, such that
(j>o(T = <T°C6, is continuous if and only if there is a k and / so that

(<f>(x))n = <f>([xn_k,..., x n + , ] ) for al l nel.

Here we abuse notation by thinking of <j> as a map from A to A and from
?r( A, k +1 +1) to LA. We say</>isa/c + / + l Wocfe map with memory k and anticipation
I. A special class of the subshifts are the subshifts of finite type. There are several
characterizations. The one we will use here is to say that a subshift A is a subshift
of finite type if there exists an N so that if n > N and [ i , , . . . , /„] 6 W(A, n) then
/ ( [ ' i , • • •, in]) =/(['n-jv+i, • • •, «'*])• This means that a fixed finite amount of the
past determines the future. In this case we say that A is an N step subshift of finite
type. If we consider the TV block presentation of A we have a one step subshift
of finite type. In A[7V] we have a transition rule given by a matrix A. Let
LA = W(A, N) = W(A[N\ 1) so A is indexed by LA x LA. Then for i = [i, iN],
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J'= [ j \ , • • •, JN ] £ L A we say

f l if[iu...,iN,jN]eW(A,N+l)

Ay = < and ik+1 =jk for 1 < fc < JV

[0 otherwise.

A1*'1 is denoted by (2A, o-) or 2A and consists of all points xe (LA)zsothat AXkXk+i = 1
for all keZ. We say A is the transition matrix. A subshift of finite type SA is
irreducible if the transition matrix, A, is irreducible. That is, for each pair i, j e LA

there is an n so that (A")ij>0. It is aperiodic if there is an n so that A">0. The
topological entropy of a subshift of finite type is h(A) = log A where A is the spectral
radius of A. For a detailed discussion of subshifts and subshifts of finite type see
[AM].

We will also assume that the reader is familiar with the basic ideas about finite
groups and topological groups. See [Ro] and [P] for these discussions.

2. Subshifts as groups
Let A be a subshift. Further, suppose that it is a topological group and that the
shift is a group automorphism.

Examples. (1) £2 = {0,1}Z with coordinate by coordinate addition modulo 2. This
may be more succinctly written as (Z2)z.

(2) Let G be any finite group and then consider (G)z. The group operation is
given by coordinate by coordinate addition in G.

(3) Define S A c (Z4©Z2)Z by

This means

/((0,0)) =/((2,0)) =/(( l , 1)) =/((3,1)) = {(0,0), (2, 0), (1,0), (3,0)}

/((1,0)) =/((3,0)) =/((2,1)) =/((0,1)) = {(1,1), (3,1), (2,1), (0,1)}.

The group operation is given by coordinate by coordinate addition in Z4©Z2. The
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thing that must be checked is that when two points that lie in SA
 a r e added together,

they result in a point that also lies in 2A. Since 2A is presented as a one step subshift
of finite type and the group operation is defined coordinate by coordinate we need
only to check that if [i,, i2] and [j'1,7'2] are A-admissible 2 blocks then their product
is an A-admissible 2 block. This condition is met.

We now make the following observation.

PROPOSITION 1. If A is a subshift that is also a group, with a an automorphism then
there is a k, an I, and a function a: W(A, k+1+1) x W(A, k + l+l)^LA so that

(xy)n = a([xrt_fc,..., xn+l], [yn-k,..., yn+,])

for all n e Z where xy is the product ofx and y in A.

Proof. We may consider multiplication as a continuous shift commuting map
a : A x A-» A. If i e LA we consider [i]0 = {x e A: x0 = 1} and then, since A x A and A
are zero-dimensional, a'l([k]0)c Ax A is open and closed. This means it is a finite
union of cylinders. This is true for each i e LA which is finite so there is a k and /
such that

(xy)0 = a([x_k,..., x,], O _ f c , . . . , y,]).

Since the shift is an automorphism, a is shift commuting and we have the desired
result. •

We say that A has k +1 +1 block multiplication with memory k and anticipation I in
this case. Notice that in this terminology all three examples have 1 block multiplica-
tion with no memory or anticipation.

Suppose X and X are two topological groups T.X^X and t:X^>X are
continuous automorphisms. We will say (X, T) and {X, t) are conjugate if there is
a 4>: X -» X satisfying the usual conditions for topological conjugacy. If 4> is also
a group isomorphism we will say that (X, T) and (X, T) are isomorphic.

The motivation for this work was a question raised by Rufus Bowen, namely:
What subshifts can support a group structure that makes the shift an automorphism?

3. Zero dimensional groups
We will now consider topological groups that are both zero dimensional or totally
disconnected and compact. These are the profinite groups. Let X be a topological
group and T an automorphism. We say T is expansive if there exists an open
neighbourhood, % of the identity such that for each x, y e X with x^y there exists
an neZ so that T"x£(T"y)1l. The following theorem is a standard theorem about
topological groups [P, p. 79].

THEOREM. If X is a compact, zero dimensional, topological group then every open
neighbourhood of the identity contains an open normal subgroup.

We will use this to prove a proposition that is motivated by a theorem of W. Reddy
[R].
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PROPOSITION 2. Suppose X is a compact, zero dimensional, topological group and T
is an expansive automorphism, then (X, T) is isomorphic to a subshift (A, a) with a
1 block group operation.

Proof. Let (X, T) be as stated and °ll be an open normal subgroup so that for any
x,yeX,x^y, there is an n e Z such that T"x <£. (T"y) aU. We may choose a neighbour-
hood of the identity that does this because T is expansive, and we may choose it
to be a normal subgroup by the previous theorem. Let 2P be the finite, open-closed
partition of X that is composed of the cosets of a\L. It is finite, hence open and
closed because X is compact. Let G denote the finite group X/<% and think of it
as the labels for the elements of 9. Define A a subshift of (G)z to be the set of all
{9, T) names of points in X. To every x e X we associate a sequence x e (G)z by
(x)n, n € Z is the element of G that labels the element of the partition 9 that contains
T"x. This sequence is the (5s, T) name of x. Each element of X has a unique {9>, T)
name and the set of all names forms a subshift. Clearly, (X, T) is conjugate to
(A, cr). Since, °U was a normal subgroup, the group operation on A is 1 block. It is
given by coordinate by coordinate multiplication in G. It is now clear that (X, T)
is isomorphic to (A, a-). •

We will now examine these types of subshifts a little more carefully.

PROPOSITION 3. Suppose (A, a) is a subshift with a 1 block group operation. Then:
(i) LA is a finite group;

(ii) f([e]n) is normal in LA, where [e]" is the word consisting ofne's, and e is
the identity element of LA;

(iii) / ( « ) , where ueW(A, n), is a coset o / / ( [e]n ) .

Proof. Statement (i) is clear. It is also clear that [e]n € W(A, n) because any word
ue W(A, n) raised to some power will be [e]n. Statement (ii) follows because if
g e / ( [e]n) and heZ,A then there is a word [/ i , , . . . , hn] so that [hlt... ,hn,h]e
W(A, n + l). Then

[ V . . . , hn, h][e, ...,e, g][hlt. ..,hn, h]1

= [fci , . . . , * - , h][e, ...,e, g][hT\ ..., K \ JT1]

= [e,...,e,hgh-1-\eW{A,n + l)

so that
fcg/T1 €/([*]")•

Statement (iii) follows because if [ g t , . . . , gn]e W(A, n) and g e / ( [ g j , . . . , gn]) then
we see that g( / ( [e]"))c/([g, , . . . , gn]). Conversely, if h ef([gl,..., g j ) then
[gi,---,gn,g]~l[gi,---,gn,h] = [e,...,e,g~lh] so that g ^ / i e / d e ] " ) and

*(/([*]")) =/([*!,..., ft,]). •

PROPOSITION 4. Suppose X is a compact, zero-dimensional, topological group and T
is an expansive automorphism, then (X, T) is isomorphic to a one step subshift of finite
type {1-A, cr) with a one block group operation.

Proof Notice that/([e]"+ 1)c/([e]n)c • • • c / ( e ) c LA. Since LA is finite and each
f([e]k) is a normal subgroup there is an N so that f([e]")=f{[e]N) for all n > N.
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Furthermore, if [ g l , . . . , gN]e W(A, N), [A, hm, gu ..., gN]e W(A, N + m)
then f([hu...,hm,gl,...,gN])=f([gi,...,gN]). This follows because
f([h1,...,hm,gu...,gN])^f([g1,...,gN]) and both are cosets off([e]N). This
says A is an N step subshift of finite type. Let 1.A be the N block presentation of
A and carry the one block group operation on A over to a one block group operation
on 1A in the obvious way. •

4. Structure and isomorphism
Here, we will examine carefully the structure of subshifts of finite type that have a
group structure which makes the shift an automorphism. First, assume I.A is a
subshift of finite type with one block multiplication. Then by proposition 3 we see
tha t / (e ) and p(e) are normal subgroups of LA, f(g) and p(g) are cosets of f(e)
and p(e) respectively, and so f(gh) = f{g)f(h). This means that f: LA^> LA/f(e) is
a group homomorphism. It has kernel p(e) so that LA/p(e) is isomorphic to LA/f{e).
This leads to the following observation.

PROPOSITION 5 . 1 A , a one step subshift of finite type, has a one block group operation
if and only iff: LA -»• LA/f(e) is an onto group homomorphism. Furthermore, it is trans-
itive if and only iffk(e) = LAfor some k where fk is defined inductively byf"+1(g) —
Uf(h) with her(g)-
Proof. We have already seen that the 'only i f part of the first assertion follows from
proposition 3. The ' i f direction is also clear.

Notice that any one step subshift of finite type with a one step group operation
has a fixed point of all e's, the identity element of LA. This is because any point
will have finite order. This means that transitivity will always imply aperiodicity.
This proves the 'only i f direction of the second assertion. For the converse consider
a set of paths

{[e, g\,..., g[] e W(1A, k +1): 1 < i s \LA\ and {gl..., g ' M = LA}.

Let g be any element of LA and [g, hx,..., hk] any element of <W(S.A, k +1). Then
multiplying through the chosen set gives

{[h, hlg\,..., htgi] 6 W(1A, k+1) and ( V I , • • •, hyg^} = LA}. D

Everything that we have said so far about the structure of 1.A is true whether it is
irreducible or not. We will see that in fact there are no interesting differences.

THEOREM 1. Suppose X is a compact, zero dimensional, topological group and T is an
expansive automorphism. Then:

(i) (X, T) is isomorphic to (LA, o-) a one step subshift of finite type with a one
block group operation;

(ii) (X, T) is isomorphic to (F,T)X (Sn, cr) where F is a finite finite group, T is an
automorphism, Xn is a full n shift with a k block group operation, and the group opera-
tion on F x 2 n is given as an extension of 2 n by F;

(iii) If (X, T) has zero entropy then n = \, i.e. the full shift is trivial.
(iv) If (X, T) is irreducible then F = {e}, i.e. the finite group is trivial.

Proof. Part (i) is proposition 4. We will start here and prove part (ii).
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Take [1A, a) as stated. Let H = p(e)nf(e), it is a normal subgroup of LA.

Step 1. Assume H = {e}. Then we can define a new isomorphic subshift 1A by letting
LA = LA/f(e)) and defining transitions by saying:

g(/(e)) -> h(f(e)) if and only if there is a g'e g(/(e)) with/(g') = h(f(e)).

Notice that this g' will be unique by the assumption that H = {e}. This is crucial,
it gives a one block isomorphism <j>:HA-*?.A by </>(g) = g(/(e)). The inverse, <£"',
is a two block map defined by #~'([g(/(e))> M/(e))]) = g' where g' is the unique
element of g(f(e)) with /(g') = h(f(e)). The group operation on 1.A is the natural
one block operation from LA.

Step 2. This is the more difficult part. Here we have that H is bigger than just {e}.
Let LA/ H = G and recall from the theory of group extensions (see [Ro] for example)
that LA can be written as an extension of G by H by considering the short exact
sequence

l^H^G^G^l,
/\ .A .A

and choosing a section a.G-^G which produces a function p:GxG->H satisfying

o-(gg') = o-(g)tr(g')p(g, g')-
Then G—GxH where the multiplication is given by

(g, *)(«', *') = ( « ' , P(g, g')<r-\g')h*{g')h').
A

Here, define a subshift of finite type ~LA by L^ = G = LA/ H and transitions gH -» h/f
if and only if hHcf(gH). Give Z,j a one block group operation from LA. Now 1A

is isomorphic to S^x2|H|. Where 2|H| is the full |H| shift and 2^x2 | H | has a one
block multiplication that comes from considering it as a subshift of (Gx H)z with
the multiplication given by the isomorphism G—GxH. Notice that 1A by itself
has a one block multiplication that agrees with the multiplication in 1Ax^H^, but
S|H| by itself does not unless Gx H is a direct product, G®H.

Step 3. Start with 1A and apply step two to get 1A isomorphic to S^x2|H|. By the
construction in step 2 we have that in 1A, H = {e}. Now either f(e) = {e} or we
may apply step 1 to get ~LA isomorphic to 1A. When/(e) = {e}, 1.^ is a finite group.
If we have applied step 1, 2.A is isomorphic to 1Ax1^H\ where the multiplication
is given by tracing back through S^x2|H|. The multiplication on 1Ax1.\H\ will be
two block multiplication with no memory and anticipation one.

Step 4. Notice that in 2^xS|H | , 1A has one block multiplication that agrees with
the multiplication in 1Ax^HI[. This means we may proceed to work on 1A just as
we did on 1A. Since \LA\ • \H\ < \LA\ we will eventually end up with a 1A that has
f(e) = {e). Notice that every time we apply step two and then step one the length
of multiplication goes up by one block of anticipation.

To prove part (iii) notice that if |/(e)|> 1 then h(LA)>0. This means that when
h(X) = 0, |/(e)| = 0 and 2A consists of a finite number of periodic orbits.

To prove part (iv) just observe that if F^{e) then (F, r )x(Sn , a-) cannot be
irreducible. •
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Example 4. Consider 2A the subshift defined as example three. Here LA = ZA@Z2,
/(e) = Z4e{0}, p(c) = {(0,0), (2,0), (1,1), (3,1)} and if = {(0,0), (2,0)}«Z2. First
we observe that SA is not isomorphic to (G)z for any finite group G. Suppose it
were, then since it is commutative and has entropy log 4 it would have to be
isomorphic to either (Z4)z or (Z2©Z2)

Z. But 1A has four fixed points (0,0)z, (2,0)z,
(0, l)z, and (2, l ) z which have orders as group elements of one, two, two, and two,
respectively. This means LA is not isomorphic to (Z4)

z because the fixed point (l)z

has order four. Similarly, 2A is not isomorphic to (Z2©Z2)
Z because SA contains

the point . . . (1,1)(1, 0)(l, 1)(1, 0 ) . . . , which has order four. There is no point of
order four in (Z2©Z2)

Z.

Now let us apply the construction of the proof of theorem 1. We think of Z4©Z2

as an extension of / / = Z2 by G = Z2©Z2 producing the function

if n = n '= l ,
otherwise.

This gives 1.A defined by

This, by step one of the proof is isomorphic to (Z2)
z. The final result is that J,A is

isomorphic to the full four shift with alphabet L4 = {(0, 0)(l, 0)(0,1)(1,1)} and two
block multiplication given by

when [xJ,x!],b>J,y!]e {[0,1], [1,0]}

otherwise.

The main remaining problem is to compute whether or not two specified subshifts
with group structures are isomorphic. At this point we do not have a method to do
this. The next results are partial results in this direction.
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PROPOSITION 7. If G and H are two finite groups then (G) z and ( H ) z are isomorphic
if and only if G and H are isomorphic. •

Proof. Let <£:(G)Z-»(H)Z be an isomorphism. Then <£:Fix (G)->Fix (H) is a finite
group isomorphism where Fix (G) = {xe Gz, cr(x) = x}. But Fix (G) is isomorphic
to G. •

THEOREM 2. Suppose X is a compact, zero-dimensional, topological group, and T is
an expansive transitive automorphism. Let h(X, 7) = log N, and N = p*1 • • • pe/ be
the prime decomposition of N. Then (X, T) is isomorphic to the full N shift with an
at most et + - • • + er block group operation that has zero memory.

Proof. Begin with (X, T) as stated and apply theorem l(i) to get (2 A , cr) with LA a
finite group. Consider H as in the proof of theorem l(ii). By applying step one if
need be we may assume \H\ > 1 in 2 A , unless h{X, T) = 0 which is trivial. Since H
is a normal subgroup, its order divides p\l • • • p\r. Apply step two to get £A

isomorphic to 2 A x 2 | H | . Then use step one to reduce 2 A to £A. Notice £A is
isomorphic to 2 A x 2 | H | with the appropriate group operation. The operation is two
block with zero memory. Also /i(2A) = log TV, N- \H\ = pe

r
l • • • pe/. In 1A, we again

have \H\ > 1, unless 2 A is a single fixed point. Proceed by taking out this new H.
The resulting subshift will have a three block group operation with no memory. We
continue until 1 A is isomorphic to a full shift with a k block operation that has no
memory. Observe that k < e, + • • • + er since there is no non-trivial reduction, \H\ > 1,
at each step. •

COROLLARY. IfX is a compact, zero-dimensional, topological group, T is an expansive,
transitive automorphism, andH(X, T) = log p for a prime p, then (X, T) is isomorphic
to (Zp)z.P'

ZProof. Theorem 2 shows that (X, T) is isomorphic to (G) for some G. But G has
order p and is therefore isomorphic to Zp. •

Here we will follow the lead of R. F. Williams [W] and define four elementary
isomorphisms between subshifts of finite type with one block multiplication. Then
we will show that any isomorphism can be decomposed into a finite sequence of these.

Given S A , / ( e ) , p(e) and H = p(e)nf(e) as before we obtain a new subshift of
finite type with a one block group operation, SA, by state splitting as follows. Choose
S a normal subgroup of f(e) and then define

L* = {(g, hS): I . S c / ( g ) } c L A @ L A / S

and transitions (g, hS) -»(g', h'S) if and only if g' e hS. Multiplication is defined by
multiplication in LA®LA/S. The map (f> : 2 A - » 2 A is a two block map

<£"' is a one block map (g, hS)-> g, and </> is a group isomorphism of 2 A and 2 A .
As an example consider the subshift (Z4)z, let S = {0, 2}. Notice that if S = {0}

we get the usual two block presentation and if S = / ( e ) nothing happens.
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The inverse operation to state splitting is amalgamation. We obtain a new subshift
1A from 1A by choosing si<^G such that:

(i) M is a normal subgroup of f{e);
(ii) i n p ( e ) = (e}; this insures that the elements of si have disjoint successors.

Then define LA = LA/'M with transitions gM^g'M if and only if there exists an
element hegM with g'si^f(h). This element hegM will be unique because of (ii).
Here <}>:I.A^ZA is a one block map given by g-*gs&, <f>~i:'S.A-*'S.A is a two block
map given by [gsd, g'sd~\^>h where h is the unique element in gsi with g'sicf(h)
and $ is a group isomorphism of 2 A and 1A.

Both of these operations may also be performed when the roles of / (e) and p(e)
are reversed. We will say that the splitting we have denned is a state splitting by
successors and when the roles of/ and p are reversed as a state splitting by predecessors.
The same is true for amalgamations, the operation described is an amalgamation
by common predecessor and disjoint successors, when the roles of f(e) and p(e) are
reversed we have an amalgamation by common successor and disjoint predecessors.
These four operations will be collectively referred to as the elementary isomorphisms.
Then we have the following theorem which is analogous to the R. F. Williams
theorem A in [W].

THEOREM 3. Two subshifts of finite type with one block group operations are isomorphic
if and only if it is possible to go from one of them to the other by a finite sequence of
elementary isomorphisms.

Proof. The fact that when the two are related by a finite sequence of elementary
isomorphisms they are isomorphic, is clear. To see the converse, let <f> :I.A-*I.A be
an isomorphism. By going to a higher block presentation for ZA we may assume </>
is a one block map. This means that <j>: LA-> LA is an onto group homomorphism,
<f>~\e) is a normal subgroup of LA, <f>~\g) is a coset for any geLA and that
LA/^)~\e)^LA. All of this is true when we consider <f>: W(ZA, n)^> W(1A, n) by
which we mean that cj> is viewed as a map on the n block level. This says that
combinatorially the inverse image of any block of length n looks like the inverse
image of [e]". Since 0 is a conjugacy there is an N and k so that all inverse images
of any block of length JV from 1A agree in the fcth position.

Pictorially
fcth entry

TV

Consider [e]n, then
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assume g) = e for i = 1 , . . . , N and then g'k = e for i = 1 , . . . , r. Notice that the set
•^-{gk+u • • •, gk+i} (disregard repeats) forms a normal subgroup of/(e). Also
note that sinp(e) = {e} otherwise there would be a block [e, g), e] mapping to
[e, e, e] with g) # e. si meets the two conditions for an amalgamation. We can form
1 A by amalgamating in 2A by si and still have that c/cSA-^^isa one block map.
Now notice that all the inverse images of any block of length N in LA, agree in the
k and fc+1 entries. We continue in the same way from the (fc + l)st to the Nth
entry. Then go back and make amalgamations using the predecessors working down
from the (/c — l)st entry to the first entry. When we are done we have a new subshift
1B with a one block map <f> :1B^1A- Notice now that each block of length N in
2A has exactly one preimage. This means the iV-block presentation of 2 B and the
N block presentation of 1* are identical. •

Example 5. Let LA = Z4©Z2©Z4,

/(e) = Z4©Z2©{0},
and

/((0,0, n)) =/((2,1, n)) = Z4©Z2©{0},

/((1,0, «)) =/((3,1, «)) = Z4©Z2©{1},

/((2,0, /!)) =/((0,1, n)) = Z4ffiZ2©{2},

/((3,0, it)) =/((l , 1, «)) = Z4©Z2©{3}.
Then l.A is an irreducible one step subshift of finite type with a one block group
operation. Define one amalgamation by s&x = {(0,0,0), (0,1,0)}. This results in SA,
which after relabelling has LA = Z4©Z4 and is described by
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= Z4©2Z4, />(e,) = 2Z4©Z4, /f, = 2Z4©2Z4 and it is not possible to make
any further amalgamations. We may, however, proceed as in the proof of theorem
1 to get the full eight shift with a two block multiplication. We may define a different
amalgamation on ~LA by taking s£2 = {(0, 0,0), (2,0,0)}. This results in J.Al which
after relabelling has LA2 = Z2©Z2©Z4 and can be described by

Here /(e2) =Z2©Z2©2Z4, p(e2) = {0}©Z2©Z4, and H2 = {0}©Z2©Z4. Another
amalgamation can now be made by taking s£3 = {(0,0, 0), (1, 0, 0)}. The result is
(Z2©Z4)

Z.

We have produced five representations of (Z2©Z4)
Z. This illustrates the problem

of computing when two such groups are isomorphic. The situation is similar to the
general topological conjugacy problem for subshifts of finite type [W]. There we
also know that any topological conjugacy can be decomposed into a sequence of
elementary conjugacies but we do not know if it is even possible to compute when
two are conjugate. Here there may be another approach. It may be possible to
develop a cohomology using the multiplication functions. We know that we get at
least one representative function from each conjugacy class by considering functions
with no memory and a bounded anticipation (theorem 2).
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