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Abstract

Let A be a commutative algebraic group defined over a number field K. For a prime ℘ in K where A
has good reduction, let N℘,n be the number of n-torsion points of the reduction of A modulo ℘ where n
is a positive integer. When A is of dimension one and n is relatively prime to a fixed finite set of primes
depending on A/K , we determine the average values of N℘,n as the prime ℘ varies. This average value as
a function of n always agrees with a divisor function.
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1. Introduction

Let A be a commutative algebraic group defined over a number field K. For a prime
ideal ℘ in K, denote the residue field by F℘. If A has good reduction at ℘, let Ã be the
reduction of A modulo ℘. Let N℘,n be the number of n-torsion points in Ã(F℘), the set
of F℘-rational points in Ã, where n is a positive integer. If A has bad reduction at ℘,
let N℘,n = 0. We are interested in the average value of N℘,n, where ℘ runs through the
prime ideals in K, namely the limit

lim
x→∞

1
πK(x)

∑
NK
Q
℘≤x

N℘,n,

where πK(x) is the number of primes ℘ with NK
Q℘ ≤ x. We denote this limit by

M(A/K , n).
Any commutative algebraic group of dimension one over K is either Ga, or a torus,

or an elliptic curve. For the trivial case A = Ga/K , the average value M(Ga/K , n) is
always 1 for every n. For the simplest case A = Gm/Q, we can show the following
theorem.
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T 1.1. Let d(n) be the number of positive divisors of n. Then

M(Gm/Q, n) = d(n).

P. The set of n-torsion points of Gm/Q is exactly the set µµµn of the nth roots of
unity. Since F∗p is a cyclic group of order p − 1, Np,n = gcd(n, p − 1). If n = qs is
a prime power, then gcd(qs, p − 1) = qi if and only if qi ‖ p − 1, for all 0 ≤ i ≤ s − 1.
Applying Dirichlet’s theorem on primes in arithmetic progressions, the set of primes
p such that qi ‖ p − 1 has density 1/φ(qi) − 1/φ(qi+1) for each 0 ≤ i ≤ s − 1, where φ is
the Euler function. For the case i = s,

gcd(qs, p − 1) = qs if and only if qs | p − 1,

and therefore the set of primes p such that gcd(qs, p − 1) = qs has density 1/φ(qs). So
the average value of Np,qs is equal to s + 1. For n ∈ N, by the Möbius inversion theorem
on the lattice of positive divisors of n, one can compute that

M(Gm/Q, n) =
∑
d|n

d
∑
dd′ |n

µ(d′)
φ(dd′)

=
∑
d,d′
dd′ |n

dµ(d′)
φ(dd′)

,

which is multiplicative. Let n = qs1
1 qs2

2 · · · q
sr
r be the prime decomposition of n in Q.

Then

M(Gm/Q, n) =

r∏
j=1

(s j + 1).

This concludes the proof. �

Another approach uses the action of Galois groups. Let X = A[n] be the set of
n-torsion points of A and let G = Gal(K(A[n])/K) be the Galois group of K(A[n])
over K, where K(A[n]) is the field obtained by adjoining to K the coordinates of
n-torsion points of A. Then G acts on X naturally. Following the ideas of [7], one
can deduce the following theorem.

T 1.2. The limit M(A/K , n) exists and it is equal to the number of orbits of G
in X.

P. Let
L = K(A[n]), G = Gal(L/K)

and, for 1 ≤ m ≤ |X|, let G(m) be the set of elements g ∈G which have exactly m fixed
points. Then G(m) is a union of conjugacy classes for each m. Observe that, for a prime
℘ which is unramified in L, N℘,n = m if and only if the Artin symbol (℘, L/K) ⊆G(m).
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One derives

M(A/K , n) = lim
x→∞

1
πK(x)

|X|∑
m=1

∑
NK
Q℘≤x

(℘,L/K)⊆G(m)

′

m

=

|X|∑
m=1

m lim
x→∞

1
πK(x)

∑
NK
Q℘≤x

(℘,L/K)⊆G(m)

′

1

=

|X|∑
m=1

m
|G(m)|
|G|

,

using the Chebotarev density theorem. Here the dash means that the sum runs through
primes ℘ which are unramified in L. Applying Burnside’s lemma, the proof of the
theorem is complete. �

Let us go back to the Gm case over an arbitrary number field K. Suppose that
K ∩ Q(ζn) = Q. If n = qs is a prime power, then the number of orbits of Gal(K(ζqs )/K)
in µµµqs is equal to s + 1. Applying Theorem 1.2, we have the following corollary.

C 1.3. Assume that K ∩ Q(ζn) = Q. Then

M(Gm/K , n) = d(n),

where d(n) is the number of positive divisors of n.

More generally, Corollary 1.3 can be straightforwardly extended to any one-
dimensional torus T/K over K, that is, there exists an integer constant CT/K such that
the average value M(T/K , n) = d(n) for all n prime to CT/K . For the case of T/Q, we can
work out a precise formula for every n.

T 1.4. Let T/Q be a one-dimensional torus defined by the quadratic equation
x2 − my2 = 1, where m is a square-free integer, and denote the discriminant of Q(

√
m)

by Dm. For n ∈ N, denote the number of positive divisors of n by d(n). Then

M(T/Q, n) =

d(n) + d
( n

Dm

)
if m < 0 and Dm | n,

d(n) otherwise.

In the case of elliptic curves E/K , we have Gal(K(E[n])/K) acting on E[n] so that

φn : Gal(K(E[n])/K) ↪→ GL2(Z/nZ).

A result due to Serre [6, Section 4.2, Theorem 2] asserts that, for any elliptic curve E/K

without complex multiplication (CM), there exists an integer constant CE/K such that
φ` is surjective for any prime ` -CE/K . It follows [2, Appendix] that φn is surjective
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for all n prime to CE/K . Then one computes the number of orbits of Gal(K(E[n])/K)
in E[n], which is equal to d(n). Applying Theorem 1.2 again, one has the following
corollary.

C 1.5. Let E/K be an elliptic curve without CM. There exists an integer
constant CE/K such that, for all n prime to CE/K ,

M(E/K , n) = d(n),

where d(n) is the number of positive divisors of n.

We conclude this section with the case of elliptic curves E/K with CM by an order in
a quadratic imaginary field k. Here we are not requiring that K contains k. Denote by
dk(n) the number of ideal divisors of n in k. We shall prove the following in Section 3.

T 1.6. Let E/K be an elliptic curve with CM by an order in a quadratic
imaginary field k. There exists an integer constant CE/K such that, for all n prime
to CE/K ,

M(E/K , n) =

 1
2 (dk(n) + d(n)) if k * K,

dk(n) if k ⊆ K.

In particular, in the case of K = Q, CE/K may be taken to be 6∆E , where ∆E is the
discriminant of E.

R. For any commutative algebraic group A/K of dimension one and n relatively
prime to finitely many primes (depending on K and A), the average value M(A/K , n)
is given by a simple ‘divisor’ function from the fraction field of endomorphisms of A.
In the case of Gm, tori T, and elliptic curves without CM, this is the usual d(n), since
their fraction field of endomorphisms is Q. In the case of elliptic curves E/K with
CM by k, the average value M(E/K , n) = dk(n), provided that k ⊆ K. The ‘exceptional
primes’ in each case depend on the base field K and the places where A has bad
reduction.

2. The case of one-dimensional tori

This section is devoted to the proof of Theorem 1.4. If T/Q is a one-dimensional
torus which is not isomorphic to Gm over Q, then T/Q can be defined by a quadratic
equation of the form

x2 − my2 = 1,

where m is a square-free integer. An explicit isomorphism between T and Gm, defined
over Q(

√
m), is

φ : T→ Gm, (x, y) 7→ x + y
√

m.

From this isomorphism, we can compute that

[n](x, y) =

( (x + y
√

m)n + (x − y
√

m)n

2
,

(x + y
√

m)n − (x − y
√

m)n

2
√

m

)
.
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Observe that the multiplication by [n] is a morphism defined over Q and the set of
n-torsion points in T is equal to

T[n] =

{(ζ i
n + ζ−i

n

2
,
ζ i

n − ζ
−i
n

2
√

m

)
: 1 ≤ i ≤ n

}
.

Denote by Dm the discriminant of Q(
√

m). We have the following lemma.

L 2.1. Let T/Q be a one-dimensional torus defined by the quadratic equation
x2 − my2 = 1, where m is a square-free integer. Then the degree of Q(T[n]) over Q is
equal to φ(n)/2 if m < 0 and Dm | n, and it is equal to φ(n) otherwise.

P. Since T[n] is a cyclic group, Q(T[n]) = Q(ζn + ζ−1
n , (ζn − ζ

−1
n )/
√

m). Note that
((ζn − ζ

−1
n )/
√

m)2 ∈ Q(ζn + ζ−1
n ) and thus the degree of Q(T[n]) over Q is equal to φ(n)

or φ(n)/2. Observe that (ζn − ζ
−1
n )/
√

m ∈ Q(ζn + ζ−1
n ) if and only if (ζn − ζ

−1
n )/
√

m is
fixed by complex conjugation and

√
m ∈ Q(ζn), which is equivalent to m < 0, and n is

divisible by the discriminant of Q(
√

m) [4, Ch. IV] �

L 2.2. Let T/Q be a one-dimensional torus defined by the quadratic equation
x2 − my2 = 1, where m is a square-free integer. For d, n ∈ N with d | n, let Ud be the
set of points of order d in T[n]. Then the number of orbits of Gal(Q(T[n])/Q) in Ud is
equal to

φ(d)
[Q(T[d]) : Q]

,

where [Q(T[d]) : Q] is the degree of Q(T[d]) over Q.

P. Since the restriction map Gal(Q(T[n])/Q)→ Gal(Q(T[d])/Q) is surjective, the
number of orbits of Gal(Q(T[n])/Q) in Ud equals that of Gal(Q(T[d])/Q) in Ud. Let
G = Gal(Q(T[d])/Q). Note that the cardinality of Ud is equal to φ(d). Also note
that, for each x ∈ Ud, the orbit G · x has cardinality equal to the order of G due to
the bijection G→G · x by σ 7→ xσ. Hence the number of orbits of G in Ud is equal to

φ(d)
[Q(T[d]) : Q]

.

This concludes the proof. �

We are now ready to prove Theorem 1.4. Because T[n] is the disjoint union of Ud

for all d | n and Ud is stable under of the action of the Galois group Gal(Q(T[n])/Q),
in order to apply Theorem 1.2 we only need to compute the number of orbits of
Gal(Q(T[n])/Q) in Ud. For square-free integer m and positive integer d, define εm(d)
by

εm(d) =

1 if m < 0 and Dm | d,

0 otherwise.

Combining Lemmas 2.1 and 2.2, the number of orbits of Gal(Q(T[n])/Q) in Ud is
equal to 1 + εm(d). So the number of orbits of Gal(Q(T[n])/Q) in T[n] is equal
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to
∑

d|n(1 + εm(d)). One can compute∑
d|n

(1 + εm(d)) =
∑
d|n

1 +
∑
d|n

εm(d)

=


d(n) +

∑
Dm |d|n

1 if m < 0 and Dm | n,

d(n) otherwise.

=

d(n) + d
( n

Dm

)
if m < 0 and Dm | n,

d(n) otherwise.

This completes the proof of Theorem 1.4.

3. The case of elliptic curves with complex multiplication

Let E/K be an elliptic curve over a number field K with CM by an order in a
quadratic imaginary field k. Denote byOk the ring of integers of k. It is well known that
if k ⊆ K, there exists an integer constant AE/K such that Gal(K(E[n])/K) � (Ok/nOk)∗

for all n prime to AE/K (see [6, Section 4.5]).

L 3.1. Let q be a prime in k with gcd(q, AE/K ) = 1. If k ⊆ K, then the number of
orbits of Gal(K(E[qs])/K) in E[qs] is equal to s + 1.

P. Since k ⊆ K, the endomorphism [qs] is defined over K. For each 0 ≤ i ≤ s,
let ui be the set of elements which have order exactly qi in E[qs]. Since E[qs] is
a cyclic Ok/q

sOk-module and Gal(K(E[qs])/K) is isomorphic to (Ok/q
s)∗, each ui is

stable under of the Galois action and Gal(K(E[qs])/K) acts transitively on ui for each i.
So the number of orbits of Gal(K(E[qs])/K) in E[qs] is equal to s + 1. �

Applying Lemma 3.1 and Theorem 1.2, we consider the prime decomposition of n
in k and therefore deduce the average value M(E/K , n) = dk(n) under the assumption
of k ⊆ K, where dk(n) denotes the number of ideal divisors of n in k.

From now on, we always assume that k * K and gcd(n, AE/K ) = 1. Let L = Kk and
let ℘ be a prime in K, which has absolute degree one (over Q). If ℘ splits in L, say
℘OL =P1P2, then N℘,n = NPi,n for i = 1, 2, since F℘ = FPi . So∑

NK
Q℘≤x,deg(℘)=1
℘ splits in L

N℘,n =
1
2

∑
NL
QP≤x

deg(P)=1

NP,n

and

lim
x→∞

1
πK(x)

∑
NK
Q℘≤x

℘ splits in L

N℘,n =
1
2

lim
x→∞

1
πL(x)

∑
NL
QP≤x

deg(P)=1

NP,n

=
1
2

lim
x→∞

1
πL(x)

∑
NL
Q
P≤x

NP,n.
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The second equality follows from the fact that the set of primes P whose residue
degree is greater than 1 in L has density 0 [4, Ch. VIII, p. 168]. Since k ⊆ L,

lim
x→∞

1
πL(x)

∑
NL
Q
P≤x

NP,n = dk(n).

Assume now that ℘ is an absolute degree-one prime which stays prime in L lying
above p. Recall that, assuming that E/K has good reduction at ℘, ℘ stays prime in L if
and only if E/K has supersingular reduction at ℘ [8, Ch. II, p. 184]. Adapting the proof
of Theorem 1.1 in [5], one can conclude the following lemma.

L 3.2. Let E/K be an elliptic curve over a number field K with CM by an order
in a quadratic imaginary field k and ℘ an absolute degree-one prime in K lying
above p. Assume that E/K has good reduction at ℘. Suppose that k * K and E/K

has supersingular reduction (mod ℘). Then the odd part of Ẽ(F℘) is cyclic and
#Ẽ(F℘) = p + 1.

P. If Ẽ(F℘) contains a subgroup of type (`, `) for some prime `, then this subgroup
is contained in the set of fixed points of the Frobenius endomorphism π℘. Since
ker[`] ⊆ ker(π℘ − 1), there is an endomorphism h : Ẽ→ Ẽ such that (π℘ − 1) = h ◦ [`],
and one deduces that (π℘ − 1)/` is an algebraic integer. Let L = Kk and P a prime
in L lying above ℘. Since E/K has supersingular reduction modulo ℘, ℘ stays prime
in L and ℘OL =P. From the CM theory, the Frobenius endomorphism πP = [−p],
via End(E) ↪→ End(Ẽ) [8, Ch. II, Proposition 4.4]. Since πP = π2

℘, π℘ = ±
√
−p. But

(±
√
−p − 1)/` is never an algebraic integer, if ` > 2. Hence the odd part of Ẽ(F℘) is

cyclic. Since ℘ is an absolute degree-one prime and E/K has supersingular reduction
modulo ℘, #Ẽ(F℘) = p + 1. �

From Lemma 3.2, N℘,n = gcd(n, p + 1). Suppose that n is odd and L ∩ Q(ζn) is
equal to Q. For d | n, write

C1 = {σ ∈ Gal(L/K) : σ|L , id},

Cd = {σ ∈ Gal(L(ζd)/K) : σ|L , id and σ|K(ζd) is of order two}, if d > 1.

Note that #Cd = 1 for all d | n. Observe that for d | n and d > 1, d | p + 1 if and only if
the Artin symbol (℘, K(ζd)/K) has order two. So ℘ stays prime in L and d | p + 1 if
and only if the Artin symbol (℘, L(ζd)/K) ⊆Cd.

For d | n, write

S d = {℘ : ℘ stays prime in L, absolute degree one and gcd(n, p + 1) = d},

Td = {℘ : ℘ stays prime in L, absolute degree one and d | p + 1}.

Applying the Chebotarev density theorem, the density of Td can be given by

den(Td) =
#Cd

[L(ζd) : K]
=

1
2φ(d)

.

https://doi.org/10.1017/S0004972712000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000019


346 Y.-M. J. Chen and Y.-L. Kuan [8]

Since Td is equal to the disjoint union of S dd′ for all d′ dividing n/d,

den(Td) =
∑

d′ |n/d

den(S dd′).

This implies that

den(S d) =
∑

d′ |n/d

µ(d′) den(Tdd′) =
∑

d′ |n/d

µ(d′)
2φ(dd′)

.

Since ∑
℘ stays prime in L

′

N℘,n =
∑

℘ stays prime in L

′

gcd(d, p + 1)

=
∑
d|n

d · #{℘ ∈ S d : NK
Q℘ ≤ x},

where the dash means that the sum runs through all absolute degree-one primes ℘ with
NK
Q℘ ≤ x in K, we can write

lim
x→∞

1
πK(x)

∑
NK
Q℘≤x

℘ stays prime in L

N℘,n =
∑
d|n

d · den(S d)

=
∑
d,d′
dd′ |n

dµ(d′)
2φ(dd′)

=
1
2

d(n).

The last equality follows from the proof of Theorem 1.1.
Set CE/K = 2 · AE/K · disc(L), where disc(L) denotes the discriminant of L. In the

case of E/Q with CM by k, one can simply choose CE/Q
= 6∆E , where ∆E is the

discriminant of E, since Gal(k(E[n])/k) is isomorphic to (Ok/nOk)∗ for all n prime to
6∆E (see [1, Lemma 5] and [3, Theorem 2]). We conclude the proof of Theorem 1.6.
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