EXAMPLES OF MALFORMED SUBSETS OF A RIEMANN SURFACE

by MOSES GLASNER

(Received 14 April, 1981)

Let R be a hyperbolic Riemann surface and W an open subset of R with ∂W piecewise analytic. Denote by $\tilde{M}(R)$ the space of Dirichlet finite Tonelli functions on R and by π the harmonic projection of $\tilde{M}(R)$. Consider the relative HD-class on W, $HD(W; \partial W) = \{u \in \tilde{M}(R) \mid u \mid W \in HD(W) \text{ and } u \mid R \setminus W = 0\}$. The extremization operation μ_D^W is the linear mapping of $HD(W; \partial W)$ into HD(R) defined by $\mu_D^W = \pi \mid HD(W; \partial W)$. Since π preserves values of functions at the Royden harmonic boundary, the maximum principle implies that μ_D^W is an order preserving injection and that $\mu_{BD}^W = \mu_D^W \mid HBD(W; \partial W)$ is an isometry with respect to the supremum norms.

The term malformed was introduced by Nakai [2] for subsets W of R with the property that μ_{BD}^{W} is surjective yet μ_{D}^{W} is not. Royden's theorem [4] on the CD-denseness of HBD(R) in HD(R) (and that of $HBD(W; \partial W)$ in $HD(W; \partial W)$) leads one to believe that there are no malformed subsets. However, Nakai [1, 2] showed that on an arbitrary hyperbolic Riemann surface R corresponding to each unbounded function $h \in HD(R)$ there is a malformed region W with $h \notin \mu_{D}^{W}(HD(W; \partial W))$. The proof of this important result on the classification of Riemann surfaces is elaborate and difficult. In this paper we show that on a suitably chosen R the task of exhibiting malformed subregions is considerably simpler. From this point of view the result presented here is weaker. However, due to its simplicity one can observe a new phenomenon: the existence of malformed subregions such that the deficiency of μ_{D}^{W} , i.e. the dimension of $HD(R)/\mu_{D}^{W}(HD(W; \partial W))$, is infinite.

1. We use the Royden ideal boundary extensively and refer to [5] for the notations and results. Let T be the Tôki surface, a Riemann surface in the class $O_{HD} \setminus O_G$. The harmonic boundary of T consists of a single point p^* . Thus, if U is any subregion of T with $T \setminus U$ compact, then dim $HD(U; \partial U) = \dim HBD(U; \partial U) = 1$. Let g_T be the Green's function on T with pole at a fixed point $q_0 \in T$. For any $\alpha \in (0, +\infty)$ let $G_{\alpha} =$ $\{p \in T \mid g_T(p) < \alpha\}$ and set $\omega_{\alpha} = (1 - \alpha^{-1}g_T) \cup 0$. Note that $\omega_{\alpha} \in HBD(G_{\alpha}; \partial G_{\alpha})$ and $\omega_{\alpha}(p^*) = 1$.

LEMMA. For $\alpha \in (0, +\infty)$ the Dirichlet integral of ω_{α} over T is given by

$$D_{\rm T}(\omega_{\alpha}) = 2\pi/\alpha. \tag{1}$$

For the proof consider the polar coordinate differentials dr, $d\theta$ on T defined by $dr/r = -dg_T$, $d\theta = -^*dg_T$. Whereas $r = e^{-g_T}$ is a global function on T, $\theta = -g_T^*$ is defined only locally. There is a neighborhood of each point of T except the countably many

Glasgow Math. J. 24 (1983) 101-106.

critical points of g_T in which $re^{i\theta}$ may be used as the local parameter. Thus we have

$$D_{G_{\alpha}}(f) = \int_{e^{-\alpha}}^{1} \left(\int_{C_{\rho}} \left\{ \left(\frac{\partial f}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial f}{\partial \theta} \right)^2 \right\} d\theta \right) \rho \, d\rho, \tag{2}$$

where C_{ρ} is the positively oriented boundary of $\{\rho \in T \mid r(p) < \rho\}$ and f is a suitable function on G_{α} . For all but countably many $\rho \in (0, 1)$ we know that

$$\int_{C_{\mu}} d\theta = 2\pi \tag{3}$$

(cf. [5, p. 199]). Setting $f = g_T$ in (2) and using (3) to evaluate the right hand side gives $D_{G_\alpha}(g_T) = 2\pi\alpha$. Since $D_T(\omega_\alpha) = D_{G_\alpha}(\alpha^{-1}g_T)$, we conclude that (1) holds.

2. We follow the procedure of [3] for forming a Riemann surface by welding subsurfaces of T to a region in the complex plane \mathbb{C} . Fix $\nu \in (0, +\infty)$ such that $T \setminus G_{\nu}$ is homeomorphic to a closed disc and does not contain critical points of g_T . Set $c = 2\pi/\nu$ and fix a number $a \in (1, 2)$. Define two sequences

$$\alpha_k = a^k \nu, \qquad \beta_k = 2^k \nu, \qquad k = 1, 2, \ldots$$

Note that $G_{\nu} \subset G_{\alpha_k} \subset G_{\beta_k}$. By the lemma in Section 1 we have

$$D_T(\omega_{\alpha_k}) = c/a^k, \qquad k = 1, 2, \dots$$
(4)

We also remark that $1 - \omega_{\beta_k} | \partial G_{\nu} = \beta_k^{-1}(g_T | \partial G_{\nu}) \cap 1 = \beta_k^{-1} \nu \cap 1 = 2^{-k}$ and in particular,

$$1 - \omega_{\beta_k} \mid \partial G_{\nu} \le \frac{1}{2}, \qquad k = 1, 2, \dots$$
 (5)

We prepare copies T_n , n = 1, 2, ..., of T and for any $\alpha \in (0, +\infty)$ we let G_{α}^n be a copy of G_{α} in T_n . For n = 1, 2, ... define $X_n = G_{\nu}^n$, $W_n = G_{\alpha_n}^n$, $V_n = G_{\beta_n}^n$. We view ω_{α} as being defined on T_n and set $w_n = \omega_{\alpha_n} | W_n, v_n = \omega_{\beta_n} | V_n$. We weld the surfaces V_n to the region $D = \mathbb{C} \setminus \bigcup_{i=1}^{\infty} \{ |z - 3n| \le 1 \}$ by identifying ∂V_n with $\{ |z - 3n| = 1 \}$, n = 1, 2, ... Denote the resulting Riemann surface by R. The functions w_n, v_n can be viewed as being defined on the subsurfaces W_n, V_n of R. Then according to (4) and (5) we have

$$D_{\mathbf{W}_{\mathbf{n}}}(\mathbf{w}_{\mathbf{n}}) = c/a^{\mathbf{n}} \tag{6}$$

and

$$1 - v_n \mid \partial X_n \le \frac{1}{2}, \qquad n = 1, 2, \dots$$
 (7)

3. Denote the harmonic boundary of R by Δ . Since dim $HD(X_n; \partial X_n) = 1$ we see that $\overline{X}_n \cap \Delta$ consists of a single point which we denote by p_n^* . Set $\Delta_1 = \{p_1^*, p_2^*, \ldots\}$.

LEMMA. Δ_1 is dense in Δ .

Assume that there is a point $q^* \in \Delta \setminus \overline{\Delta}_1$. Then we can find a function $u \in HD(R)$ such that 0 < u < 1, $u \mid \overline{\Delta}_1 = 0$, $u(q^*) = 1$. For each *n*, $u(p_n^*) = 1 - v_n(p_n^*) = 0$ and $u \mid \partial V_n < 1 = 1 - v_n \mid \partial V_n$. Thus $u \mid V_n < 1 - v_n \mid V_n$ and in view of (7) we have $u \mid \partial X_n \le \frac{1}{2}$. Consider

the region $R_0 = R \setminus \bigcup_{1}^{\infty} \overline{X}_n$. Clearly, $u \mid \partial R_0 \leq \frac{1}{2}$. Since R_0 is planar we conclude that $u \mid R_0 \leq \frac{1}{2}$ and consequently $u \mid R \leq \frac{1}{2}$. This contradicts $u(q^*) = 1$ and the assertion follows.

4. Set $W = \bigcup_{1}^{\infty} W_n$ and define a function w on R by setting $w | R \setminus W = 0$, $w | W_n = w_n$, n = 1, 2, ... Clearly $w \in HB(W; \partial W)$. By (6) we see that $D_R(w) = \sum_{1}^{\infty} D_{W_n}(w_n) < +\infty$ and hence $w \in HBD(W; \partial W)$. Since $w | \Delta_1 = 1$, the lemma in Section 3 implies that $w | \Delta = 1$. Thus $\Delta \subset \{p^* \in R^* | w(p^*) > 0\} \subset \overline{W}$; i.e. \overline{W} is a neighborhood of Δ in R^* .

PROPOSITION. The extremization μ_{BD}^{W} : HBD(W; ∂W) \rightarrow HBD(R) is surjective.

This follows from Theorem 2 of [1] or can be established directly. Let h be any function in HBD(R). Then wh is in the Royden algebra since each factor is and we can set $u = \pi_{R \setminus W}(wh)$, the harmonic projection of wh on W (cf. [5, p. 165]). Since $u \in HBD(W; \partial W)$ and $\mu_{BD}^W |\Delta = u| \Delta = wh |\Delta = h| \Delta$, it follows that $\mu_{BD}^W u = h$.

5. Define a measure σ on Δ as follows:

$$\sigma(\Delta \setminus \Delta_1) = 0, \qquad \sigma(\{p_n^*\}) = D_{W_n}(w_n), \qquad n = 1, 2, \dots$$
(8)

The space $HD(W; \partial W)$ is completely determined by σ .

PROPOSITION. $HD(W; \partial W) \mid \Delta = L^2(\Delta, \sigma).$

Assume that $u \in HD(W; \partial W)$. Then $u \mid W_n = u(p_n^*)w_n$ and hence by (8) we see that $+\infty > D_W(u) = \sum_{1}^{\infty} D_{W_n}(u) = \sum_{1}^{\infty} (u(p_n^*))^2 \sigma(\{p_n^*\})$. Conversely, let $\xi \in L^2(\Delta, \sigma)$ and define $\xi_n = \xi(p_n^*)$. The function $u = \sum_{1}^{\infty} \xi_n w_n$ is in $HD(W; \partial W)$ and $u(p_n^*) = \xi_n$, n = 1, 2, ... Thus $u \mid \Delta = \xi$, σ -a.e.

6. Recall that the definitions of W and σ depend on an arbitrary constant $a \in (1, 2)$. Set $W^a = W$ and $\sigma^a = \sigma$ to express this dependence.

PROPOSITION. The subset W^{α} of R has the property that the deficiency of $\mu_{D}^{W^{\alpha}}$ is infinite.

For the proof set $Z^a = \mu_D^{W^a}(HD(W^a; \partial W^a))$. By (8) and (6) it is easily seen that for a', a'' with $a \le a' < a'' < 2$ the space $L^2(\Delta, \sigma^{a'})$ is properly contained in $L^2(\Delta, \sigma^{a''})$. Since extremization leaves values on Δ fixed, the proposition in Section 5 gives $Z^a \mid \Delta = L^2(\Delta, \sigma^a)$ and similarly for a', a''. We conclude that Z^a is contained in $Z^{a'}$ and that $Z^{a'}, a < a' < 2$, form a family of properly increasing subspaces of HD(R).

7. We revert to the notations W and σ . In the remainder of this paper we show that the open set W is contained in a region Ω such that

$$HD(\Omega;\partial\Omega) | \Delta = HD(W;\partial W) | \Delta.$$
(9)

Actually, in order to make $\partial \Omega$ piecewise analytic it will be necessary to shift our

MOSES GLASNER

considerations to a Riemann surface R' obtained from R by removing a point s_0 from R. Since the harmonic boundary of R' can be identified with Δ and s_0 will not be in \overline{W} , the propositions in Sections 4 and 6 will not be affected. The result in (9) implies that the image of μ_D^{Ω} coincides with the image of μ_D^{W} in HD(R') and in particular that the image of μ_{BD}^{Ω} coincides with the image of μ_{BD}^{W} . Thus our main result will follow from (9) and the two propositions just mentioned.

THEOREM. There exists a Riemann surface R' and a subregion Ω with $\partial \Omega$ piecewise analytic such that μ_{BD}^{Ω} is surjective yet the deficiency of μ_D^{Ω} is infinite.

The region Ω will consist of the union of W, a fixed parametric disc and a collection of thin strips joining the components of W to this disc. Fix a point p_0 in the subset D of R(cf. Section 2) and let g_R be the Green's function for R with pole at p_0 . Choose $\gamma \in (0, +\infty)$ such that the set $B_{\gamma} = \{p \in R \mid g_R(p) > \gamma\}$ is homeomorphic to a disc and \overline{B}_{γ} contains no critical points of g_R . We now fix the arbitrary constant $a \in (1, 2)$ that determines W so that none of the critical points of g_R lie on ∂W .

For each positive integer n let p_n be a point in the compact set ∂W_n such that $g_R(p_n) = \max_{\partial W_n} g_R$. Then grad g_R at p_n is perpendicular to the tangent to ∂W_n at p_n . Here we are using the notations dr, $d\theta$ for the polar coordinate differentials of R obtained from g_R . In terms of the local parameter $re^{i\theta}$ we can represent ∂W_n in a neighborhood of p_n in the form $r = f_n(\theta)$, $\theta \in I_n$, an open interval. The function θ has a harmonic continuation along any integral curve of grad g_R with θ being constant on the curve. Thus we may choose $\theta_n \in I_n$ such that the maximal integral curve of grad g_R starting at the point $q_n \in \partial W_n$ with $\theta(q_n) = \theta_n$, $r(q_n) = f_n(\theta_n)$ does not terminate at any of the critical points of g_R . Therefore, this curve intersects $\partial B_{3\gamma}$ and we denote by l_n the portion connecting q_n with $\partial B_{3\gamma}$.

Let S_n be a region on which θ is well-defined and which contains l_n but does not contain any critical point of g_R . Then $re^{i\theta}$ may be used as the parameter on S_n . Denote by ε_0 the minimum of the positive quantities $\min_{t \in \partial I_n} |t - \theta_n|$ and $\inf_{p \in \partial S_n} |\theta(p) - \theta_n|$. For any $\varepsilon \in (0, \varepsilon_0]$ define

$$U_n^{\varepsilon} = W_n \cup \{ p \in R \mid |\theta(p) - \theta_n| < \varepsilon \text{ and } e^{-3\gamma} < r(p) \le f_n(\theta) \}.$$

Clearly U_n^e is a region containing W_n with ∂U_n^e piecewise analytic and $\bigcap_{0 \le e \le e_0} U_n^e = W_n \cup \tilde{l}_n$, where $\tilde{l}_n = l_n \setminus \partial B_{3v}$. Moreover, if $n \ne n'$, then the U_n^e , $U_n^{e'}$ constructed here are disjoint.

8. Consider a fixed positive integer *n*. For each integer $m > \varepsilon_0^{-1}$ there is a function $u_m \in HD(U_n^{1/m}; \partial U_n^{1/m})$ such that $u_m(p_n^*) = 1$. Extend the definition of w_n to *R* by setting $w_n \mid R \setminus W_n = 0$. It is easily seen that for $m' > m > \varepsilon_0^{-1}$, $w_n \le u_m \le u_m \le 1$ on *R*. Thus $u = \lim_{m \to \infty} u_m$ exists on *R*,

$$w_n \le u \le u_m \text{ on } R,\tag{10}$$

 $u \mid W_n$ is harmonic and $u \mid R \setminus (W_n \cap \tilde{l}_n) = 0$. By (10) we see that if we set $u(p_n^*) = 1$, then u is continuous on $W_n \cap \{p_n^*\}$. Since each point in $\partial W_n \setminus \{q_n\}$ is eventually contained in $R \setminus U_n^{1/m}$, (10) implies that u vanishes continuously on $\partial W_n \setminus \{q_n\}$. Let $g_R(\cdot, q_n)$ be the

Green's function on R with pole at q_n . We apply the HB-maximum principle (cf. [5, p. 160]) to $w_n + \eta g_R(\cdot, q_n) - u$ for any $\eta > 0$ and let $\eta \to 0$ to obtain $w_n \ge u$ on W_n . Consequently, $u = w_n$ on $R \setminus l_n$. Since the sequence $\{u_m\}$ is eventually harmonic at each point of $R \setminus (\partial W_n \cup l_n)$, we conclude that

$$\lim_{m} \operatorname{grad} u_{m} = \operatorname{grad} w_{n} \quad \text{on} \quad R \setminus (\partial W_{n} \cup l_{n}).$$
(11)

For $m' > m > \varepsilon_0^{-1}$, the function $u_m - u_{m'}$ vanishes on $(\overline{R \setminus U^m}) \cup \{p_n^*\}$ and is therefore orthogonal to a harmonic projection on $U_m^{1/n}$ (cf. [5, p. 162]). In particular, $D_R(u_m - u_{m'}, u_m) = 0$ and consequently

$$0 \le D_{R}(u_{m'} - u_{m}) = D_{R}(u_{m'}) - D_{R}(u_{m}).$$
(12)

Similarly,

$$0 \le D_R(w_n - u_m) = D_R(w_n) - D_R(u_m).$$
(13)

Thus $\{D_R(u_m) \mid m > \varepsilon_0^{-1}\}$ is an increasing sequence bounded above by $D_R(w_n)$. Set $d = \lim_m D_R(u_m)$. Let $m' \to +\infty$ in (12). By (11) and Fatou's lemma we arrive at $0 \le D_R(w_n - u_m) \le d - D_R(u_m)$ which, by the triangle inequality, implies that $\lim_m D_R(u_m) = D_R(w_n)$. Choose a positive integer m_n such that

$$D_R(w_n)/2 \le D_R(u_{m_n}) \le D_R(w_n).$$
 (14)

We repeat this construction for each n = 1, 2, ... Set $Y_n = U_n^{1/m_n}$, $y_n = u_{m_n}$ and $Y = \bigcup_{1}^{\infty} Y_n$. Also define a measure τ on Δ by setting $\tau(\Delta \setminus \Delta_1) = 0$, $\tau(\{p_n^*\}) = D_R(y_n)$. By (14) and (8) we see that $\sigma(A)/2 \le \tau(A) \le \sigma(A)$ for any subset A of Δ . Thus $L^2(\Delta, \sigma) = L^2(\Delta, \tau)$. On the other hand, by the reasoning of Section 5 we can establish that

$$HD(Y; \partial Y) \mid \Delta = L^{2}(\Delta, \tau).$$
(15)

It follows that

$$HD(Y; \partial Y) | \Delta = HD(W; \partial W) | \Delta.$$
(16)

9. Each component Y_n of Y intersects the disc $B_{2\gamma}$ and $\partial Y \cap \partial B_{2\gamma}$ has precisely one accumulation point s_0 in R. We now regard $R' = R \setminus \{s_0\}$ as a Riemann surface in its own right. Let R'^* be its Royden compactification and denote by \hat{B} the closure of a set B in R'^* . Let D_0 be a punctured disc centered at s_0 . Then there is a homeomorphism between $R'^* \setminus \hat{D}_0$ and $R^* \setminus \tilde{D}_0$ with harmonic boundary points corresponding to harmonic boundary points (cf. [5, p. 189]). Since the Green's function of R' (with pole at a fixed point in R') is a potential bounded away from 0 in \hat{D}_0 , all the harmonic boundary points of R' are contained in $R'^* \setminus \hat{D}_0$. In this sense the harmonic boundary of R' can be identified with Δ . Thus (16) continues to hold when Y and W are viewed as subsets of R'.

Define $\Omega = Y \cup B_{2\gamma}$. Clearly Ω is a region with piecewise analytic $\partial \Omega$ in R'. The final step in our proof is to show that

$$HD(\Omega; \partial\Omega) | \Delta = HD(Y; \partial Y) | \Delta.$$
⁽¹⁷⁾

MOSES GLASNER

Let $v \in HD(Y; \partial Y)$. Set $u = \pi_M v$ (where $M = \widehat{R' \setminus \Omega}$). Then $u \mid \Delta = v \mid \Delta$ and since $v \mid R \setminus \Omega = 0$ we have $u \in HD(\Omega; \partial \Omega)$. To establish the converse let $f \in M(R')$ such that $f \mid R' \setminus B_{\gamma} = 1$ and $f \mid B_{3\gamma/2} = 0$. The support of grad f is compact in R' and consequently, for any $u \in HD(\Omega; \partial \Omega)$, $fu \in M(R')$. Moreover, fu = 0 on $(R' \setminus \Omega) \cup B_{3\gamma/2}$ which contains $R' \setminus Y$. Therefore the function $v = \pi_N(fu)$ (where $N = \widehat{R' \setminus Y}$) belongs to $HD(Y; \partial Y)$ and $v \mid \Delta = (fu) \mid \Delta = u \mid \Delta$.

In view of (17) and (16) we conclude that (9) holds for R'. This establishes the theorem.

REFERENCES

1. M. Nakai, Extremizations and Dirichlet integrals on Riemann surfaces, J. Math. Soc. Japan, 28 (1976), 581-603.

2. M. Nakai, Malformed subregions of Riemann surfaces, J. Math. Soc. Japan, 29 (1977), 779-782.

3. M. Nakai and S. Segawa, Harmonic dimensions related to Dirichlet integrals, J. Math. Soc. Japan, 29 (1977), 107-121.

4. H. L. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. Math. Soc. 73 (1952), 40-94.

5. L. Sario and M. Nakai, Classification theory of Riemann surfaces (Springer-Verlag, 1970).

Pennsylvania State University, University Park, PA 16802, U.S.A.