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Snap-induced flow in a closed channel
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Snap-through is a buckling instability that allows slender objects, including those in plant
and biological systems, to generate rapid motion that would be impossible if they were
to use their internal forces exclusively. In microfluidic devices, such as micromechanical
switches and pumps, this phenomenon has practical applications for manipulating fluids
at small scales. The onset of this elastic instability often drives the surrounding fluid
into motion – a process known as snap-induced flow. To analyse the complex dynamics
resulting from the interaction between a sheet and a fluid, we develop a prototypical model
of a thin sheet that is compressed between the two sides of a closed channel filled with
an inviscid fluid. At first, the sheet bends towards the upstream direction and the system is
at rest. However, once the pressure difference in the channel exceeds a critical value, the
sheet snaps to the opposite side and drives the fluid dynamics. We formulate an analytical
model that combines the elasticity of thin sheets with the hydrodynamics of inviscid fluids
to explore how external pressure differences, material properties and geometric factors
influence the system’s behaviour. To analyse the early stages of the evolution, we perform
a linear stability analysis and obtain the growth rate and the critical pressure difference
for the onset of the instability. A weakly nonlinear analysis suggests that the system can
exhibit a pressure spike in the vicinity of the inverted configuration.

Key words: nonlinear instability, bifurcation, pattern formation

1. Introduction

Snap-through is a buckling instability of slender bodies that drives a sudden jump between
two different configurations (Holmes & Crosby 2007; Gomez, Moulton & Vella 2017a;
Holmes 2019; Jiao & Liu 2021). In the past decade or so, this bi-stability has been
recognized as a key factor in the behaviour of several biological systems. For example,
the leaf lobes of the Venus flytrap exploit snap-through to efficiently catch a prey (Sachse
et al. 2020), and the lower jaw of the hummingbird can execute a controlled snap that
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enables the bird to react sufficiently rapidly to catch a flying insect (Smith, Yanega & Ruina
2011). Technological applications exploit the snap-through instability in the design of
mechanical switches (Schultz & Hyer 2003; Giannopoulos, Monreal & Vantomme 2007;
Rothemund et al. 2018; Preston et al. 2019a,b), small-scale pumps (Li et al. 2017) and
energy-harvesting devices (Zhao & Suo 2010; Harne & Wang 2013). In the biomedical
engineering industry, snap-through has been exploited in the design of artificial heart
valves that enable a rapid and reversible response to an external stimulus, such as a change
in hydraulic pressure from blood vessels (Gonçalves et al. 2003; Hu & Burgueño 2015).

Snap instability can be actuated in various ways, including the application of a point
force (Pandey et al. 2014) or the utilization of electrostatic and capillary forces (Krylov
et al. 2008; Fargette, Neukirch & Antkowiak 2014) or thermal effects (Boisseau et al.
2013; Kessler et al. 2018). These actuation methods drive a system towards a marginal
stability state, from which only a small perturbation will drive the instability. In addition
to the above-mentioned mechanisms, previous studies have also explored the possibility
of inducing a snap instability through incoming flows. For example, Gomez, Moulton &
Vella (2017b) demonstrated a method for controlling the flow rate of a viscous fluid in
a tunnel by incorporating a slender beam along the sidewall of the tunnel. They found
that when the flow rate exceeded a critical value, the beam snapped out, increasing the
cross-sectional area of the tunnel, and thereby controlled the flow. Arena et al. (2017)
proposed an adaptive slender structure that can induce a controlled snap in response
to the pressure field exerted by a surrounding fluid. Kim et al. (2020, 2021) revealed
a mechanism of periodic snap-through in a thin sheet that was initiated by a uniform
incoming flow. This mechanism was subsequently utilized to improve the performance of
renewable energy-harvesting systems. Finally, Peretz et al. (2020) introduced an innovative
approach for controlling the shape of a continuous multi-stable structure by utilizing an
inlet flow as an actuation mechanism. This last technology holds promise for a range of
applications, including soft robotics, biomedical devices and active materials.

Although the examples cited above demonstrate scenarios in which fluid motion triggers
an elastic instability, there are also configurations in which the onset of an elastic instability
drives a fluid’s motion, a phenomenon that we denote as snap-induced flow. Indeed,
any object that snaps and is surrounded by a fluid will interact with the fluid to some
extent during its motion. The measure of interaction between the snapping object and its
surrounding fluid can vary, depending on several factors, including the properties of both
the fluid and the object and the geometry of the object. For instance, the snap-through of
the Venus flytrap is affected only minimally by the surrounding air, because the ratio of
hydrodynamic to elastic forces is relatively small (Forterre et al. 2005). In contrast, the
snapping of a shrimp’s claw interacts strongly with the surrounding water. The resulting
high-pressure water jet from the snap can stun or even kill a prey (Versluis et al. 2000; Tang
& Staack 2019). Another example is that of microfluidic pumps, which use snap-induced
flow to drive the motion of the fluid within the microchannels (Tavakol et al. 2014).

Despite the widespread occurrence of snap-induced flow in both natural and
technological systems, analytical analysis of this phenomenon in the literature is relatively
sparse. Our study thus aims to investigate this phenomenon by examining a representative
flow generated by a snapping object. Our model consists of a closed channel that is
filled with an inviscid fluid and is split into two parts by an inextensible sheet that is
compressed between the sidewalls of the channel (see figure 1). Initially, the pressure
difference between the upstream and downstream directions of the channel is equal to
zero, and the sheet buckles towards the upstream direction. Then, the pressure difference
increases slowly until the sheet loses stability and snaps. The intricate dynamics of the
sheet and the fluid after snapping is examined in this article.

986 A12-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.312


Snap-induced flow in a closed channel
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ỹ

L̃y /2 L̃y /2

L̃xx̃

s̃

Figure 1. Schematic overview of the channel’s cross-section in the x̃–ỹ plane (the width W̃ is in the spanwise
direction). A thin sheet divides a closed channel, filled with an inviscid fluid, into two parts. The pressures in
the upstream and the downstream directions at a distance of L̃y/2 from the sheet are designated P̃u and P̃d ,
respectively.

To this end, we formulate a model that couples Kirchhoff equations, which describe
the dynamics of thin sheets, with the hydrodynamics of inviscid fluids (Lamb 1945). In
addition to the pressure difference in the channel, our model depends on three distinct
dimensionless parameters: the excess length of the sheet compared with the vertical
dimension of the channel, Δ (all the lengths are normalized to the total length of the sheet),
the length of the channel, Ly, and the sheet-to-fluid mass ratio, which is represented by λ.
We show that, although this model yields a set of complex and nonlinear equations, it can
be analysed analytically in the case of small excess lengths, Δ � 1. For this purpose, we
use a modal expansion of the sheet’s configuration and the fluid’s potential functions to
derive analytical solutions that hold both at the onset of the instability and at later stages
of the dynamic evolution (Goncharuk, Feldman & Oshri 2023).

To identify the onset of instability, we start by recalling the quasi-static evolution of
the system, which encompasses different branches of solutions (for details, refer to Oshri
(2021)). We then conduct a linear stability analysis around the primary branch of the
solutions, and calculate the growth rate of the instability (σ ) and the critical pressure
difference at which the onset of instability occurs. We show that the instability primarily
perturbs the sheet’s configuration via an asymmetric eigenfunction. This perturbation
induces a rotational pattern flow in the channel that does not lead to a net flow of fluid
from the upstream direction to the downstream direction. The appearance of the net flow
is shown to emerge as a higher-order correction to the theory. To analyse the weakly
nonlinear stage of the system’s evolution, we first show that the sheet’s evolution is
determined mainly by its first two modes of buckling. This allows us to simplify our
set of nonlinear equations into a single and tractable equation for one of the modes. By
solving this equation, we gain valuable insights into the system’s evolution, including the
emergence of the net flow in the channel, with an exponential growth rate of 2σ , and the
pressure difference on the sheet as a function of its geometry.

Of particular interest is the behaviour of the system when the sheet-to-fluid mass ratio
is relatively small, as the hydrodynamic effect on the sheet’s motion dominates in such
conditions. In this case, we observe that the dynamics slows down, and the system evolves
along one of the quasi-static branches of solutions whose energy is higher than that of the
other branches. This implies that dynamic effects enable the system to propagate along a
branch that would otherwise be unstable. We also observe the emergence of pressure spikes
in the channel during the system’s propagation. When the snap transition occurs, the sheet
initially gains bending energy up to a critical point, beyond which it rapidly releases this
energy into the flow. This process generates sharp peaks of pressure drop in the channel,
the duration and maximum magnitude of which depend on the system’s parameters.
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The paper is structured as follows. In § 2, we start by formulating the problem and
obtaining a set of equations that describe the dynamics of the sheet and the fluid. We then
simplify these equations using small-amplitude approximation and modal expansion. In
§ 3, we focus on the early evolution of the system. First, we recall the quasi-static solution
of the problem and then perform linear stability analysis. Moving on to § 4, we analyse the
system’s evolution at intermediate times. Here, we introduce the two-mode approximation
and discuss its limitations, before investigating the onset of the net flow in the channel, the
pressure drop on the sheet as a function of the volume difference in the channel and the
elastohydrodynamic energetic interplay. Finally, in §§ 5 and 6, we discuss the limits of the
model, and then summarize the main findings and present our conclusions.

2. Formulation of the problem

An inextensible thin sheet of total length L̃, bending modulus B̃, thickness h̃ and density
ρ̃sh is compressed between the sidewalls of a closed channel. The channel is filled with
an inviscid fluid of density ρ̃�. The height and the width of the channel’s cross-section
are L̃x and W̃, respectively. The pressures in the fluid in the upstream and downstream
directions, each at a distance L̃y/2 from the sheet, are designated P̃u and P̃d, respectively
(figure 1). A Cartesian coordinate system is located on the bottom edge of the sheet. In
the analysis that follows, all lengths are normalized to the total length of the sheet, L̃, time
is normalized to the inertial time scale of the sheet t̃� = L̃2(ρ̃shh̃/B̃)1/2 and the pressure
fields are normalized to B̃/L̃3. In addition, all dimensional parameters are denoted with a
tilde, while their non-dimensional counterparts appear without a tilde, for example,

t = t̃/t̃�, Lx = L̃x/L̃, x = x̃/L̃, Pu = P̃uL̃3/B̃, etc. (2.1)

This implies the normalization of the hydrodynamic and elastic fields, as is further
discussed below.

To initialize the system, we set the pressure difference between the upstream and
downstream directions, Pud ≡ Pu − Pd, to zero. Additionally, we ensure that the sheet
buckles towards the upstream direction, as shown in figure 1. Subsequently, we slowly
increase the pressure difference in the channel until the sheet loses stability and snaps. At
the point of instability, we reset the time to t = 0 and investigate the coupled dynamics of
the elastic sheet and the fluid flow for t ≥ 0.

Our model is based on the following assumptions. Firstly, we assume that the system
remains uniform along the spanwise direction of the channel. Therefore, we set W = 1
and essentially consider a two-dimensional system. Secondly, we assume that the volume
occupied by the elastic sheet is negligible compared with the total volume of the channel,
i.e. h̃L̃/L̃xL̃y � 1. Consequently, if we define LxLy as our control volume, we have
vu(t) + vd(t) = LxLy, where vu(t) and vd(t) correspond to the volumes in the upstream and
the downstream parts of the control volume, respectively. Hereafter, we denote quantities
related to the upstream and downstream directions of the control volume by the subscripts
‘u’ and ‘d’, respectively. Thirdly, we assume that there is no contact between the sheet and
the sidewalls of the channel, or of the sheet with itself, at any time during the system’s
evolution. Lastly, we choose the length of the control volume, Ly, to be larger than the
characteristic length scale at which the flow disturbances induced by the motion of the
sheet decay to zero.

The velocity profiles and the pressure fields of an irrotational, inviscid flow are
determined by four fields. The first two fields correspond to the potential functions,
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φi(x, y, t), where i = u, d, determined in the upwards and downwards sections of the
channel. From these potentials, we can determine the fluid’s velocity vi = ∇φi, where
∇ is the two-dimensional gradient operator. The remaining two fields are the pressure
fields pi(x, y, t). Using our normalization convention, we find that the potential functions
are normalized to (B̃/ρ̃shh̃)1/2. The evolutions of these hydrodynamic fields, in space and
over time, are determined by the continuity and Bernoulli’s equations:

∇2φi = 0, (2.2a)

λpi + ∂φi

∂t
+ 1

2
|∇φi|2 = ci(t), (2.2b)

where ci(t) are arbitrary time-dependent functions used to set a Dirichlet point on each side
of the channel. In our system, the pressures in the upstream and downstream directions are
predetermined by the boundary conditions at y = ±Ly/2. Therefore, the functions ci(t)
can take any arbitrary value as long as we satisfy these boundary conditions. For the sake
of convenience, we set ci(t) = λPi in the following analysis. This choice explicitly implies
that the pressure is a constant along each side of the channel when the fluid is at rest. In
addition, we define the dimensionless parameters

λ = ρ̃shh̃

ρ̃�L̃
, Δ = L̃ − L̃x

L̃
= 1 − Lx, (2.3a,b)

where the parameter λ represents the sheet-to-fluid mass ratio, which takes into account
the relative densities of the sheet and the fluid, and the second parameter Δ accounts for
the excess length of the sheet compared with the vertical dimension of the channel, i.e.
Δ̃ = L̃ − L̃x. Since we are considering an inviscid fluid, the boundary conditions on the
fluid–channel interfaces correspond to no penetration. In addition, the pressures in the
fluid at y = ±Ly/2 are predetermined. These boundary conditions are given by

∂φi

∂x
(0, y, t) = ∂φi

∂x
(1 − Δ, y, t) = 0, (2.4a)

pi(x, ±Ly/2, t) = Pi. (2.4b)

To obtain a closed set of equations it remains to model the contact between the sheet and
the fluid. To this end, we introduce the position vector to a point on the sheet xsh(s, t) =
(xsh(s, t), ysh(s, t)), where s ∈ [0, 1] is the normalized arclength parameter, and we define
the angle θ(s, t) between the tangent to the sheet and the x axis, as shown in figure 1. The
elastic fields xsh(s, t), ysh(s, t) and θ(s, t) are not independent since they are related by the
following geometric constraints:

∂xsh

∂s
= cos θ, (2.5a)

∂ysh

∂s
= sin θ. (2.5b)

Using these definitions of the elastic fields, we first ensure that there is no penetration of
the fluid through the sheet interface. This requirement is satisfied by imposing kinematic
constraints on each side of the sheet (see Appendix A):

y = ysh(x, t),
Dysh

Dt
= ∂φi

∂y
, (2.6)

where D/Dt = ∂/∂t + vi · ∇ is the two-dimensional convective derivative. Second, we
ensure proper transfer of the momentum between the fluid and the sheet. This requirement
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is satisfied by enforcing the following balance of moments and forces on the sheet:

∂2θ

∂s2 = −Fx sin θ + Fy cos θ, (2.7a)

∂2xsh

∂t2
= −∂Fx

∂s
− [ pd(xsh, ysh, t) − pu(xsh, ysh, t)] sin θ, (2.7b)

∂2ysh

∂t2
= −∂Fy

∂s
+ [ pd(xsh, ysh, t) − pu(xsh, ysh, t)] cos θ, (2.7c)

where Fx(s, t) and Fy(s, t) are the x and y components of the reaction forces per unit length
at a cross-section of the sheet, and the pressure difference term in (2.7b) and (2.7c) is
multiplied by n̂d = (− sin θ, cos θ), which is the unit normal vector on the sheet that points
outwards from the downstream side of the channel. Equations (2.7) are supplemented by
the following hinged boundary conditions on the sheet’s edges:

xsh(0, t) = 0, xsh(1, t) = 1 − Δ, (2.8a)

ysh(0, t) = 0, ysh(1, t) = 0, (2.8b)

∂θ

∂s
(0, t) = 0,

∂θ

∂s
(1, t) = 0. (2.8c)

This completes the formulation of the problem. In summary, given the excess length,
Δ, the sheet-to-fluid mass ratio, λ, the horizontal dimension of the channel, Ly, the
pressures, Pu and Pd, and a proper set of initial conditions, we can, in principle, solve
(2.2)–(2.8) to obtain the temporal evolution of the system. While this set of equations
can be solved numerically, a deeper understanding of the elastohydrodynamic interactions
can be obtained by considering the limit Δ � 1, i.e. the so-called small-amplitude
approximation. For this reason, in the next section we reduce our formulation to this
limit and utilize it to study the system’s behaviour close to the snap-through instability.
A numerical solution of the more general formulation is used subsequently to validate the
reduced model; see Appendix B for details of the numerical solution.

Prior to proceeding to the next section, it is useful to comment on the system’s conserved
quantity. Since we consider an elastic model for the sheet and an inviscid model for the
fluid, the sum of the total energy of the system and the work done by the external pressures
are conserved throughout the system’s evolution. Indeed, following the derivations in
Appendix C it can be shown that (2.2)–(2.8) have the conserved first integral

H = E(t) + Pudvd(t), (2.9)

where Pud = Pu − Pd is the pressure difference between the upstream and the downstream
directions and E(t) = Ek

sh(t) + Ep
sh(t) + Ef (t) is the total energy of the system. The total

energy is comprised of three contributions: the kinetic energy of the sheet, Ek
sh(t) =

1
2

∫ 1
0 |∂xsh/∂t|2 ds, where | · | corresponds to the norm of the enclosed vector; the potential

energy of the sheet, Ep
sh(t) = 1

2

∫ 1
0 (∂θ/∂s)2 ds; and the kinetic energy of the fluid, Ef (t) =∑

i=u,d(1/2λ)
∫∫

vi(t)
|∇φi|2 dx dy. We note that with our normalization convention it can

be shown that energy is normalized to B̃/L̃.
Since the sheet and the fluid are almost at rest close to the elastic instability and the

kinetic energies of the sheet and fluid are very small, the total energy of the system at
t = 0 equals the potential energy of the sheet, E(0) � Ep

sh(0). Consequently, H � Ep
sh(0) +

Pudvd(0) is conserved throughout the system’s evolution.
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2.1. The small-amplitude approximation
The assumption that the lateral displacement remains small, Δ � 1, or equivalently that
the amplitude of the sheet is small, implies that, to leading order, the geometric relations,
(2.5), reduce to ∂ysh/∂s � θ and ∂xsh/∂s � 1 − 1

2 (∂ysh/∂s)2. With these approximations,
the constraint on the lateral displacement of the sheet, (2.8a), becomes

Δ = 1
2

∫ 1

0

(
∂ysh

∂x

)2

dx, (2.10)

where we replace the arclength coordinate of the sheet with the Eulerian coordinate of
the fluid, s � x, according to our level of approximation. The balance of forces (see (2.7))
reduces in the small-amplitude approximation to

∂2ysh

∂t2
+ ∂4ysh

∂x4 + Fx(t)
∂2ysh

∂x2 + pu(x, 0, t) − pd(x, 0, t) = 0, (2.11)

where to leading order the lateral compression, Fx(t), is found to be solely a function of
time.

Equations (2.10) and (2.11) describe the elastic part of the model. To complete the
reduction of the model, we need to approximate the hydrodynamic equations, (2.2) and
(2.6). For this purpose, we use the conserved quantity, (2.9), to estimate the order of
the hydrodynamic fields. At the onset of the instability, the system is nearly at rest, and
we can approximate the conserved quantity as H � Ep

sh(0) + Pudvd(0). The potential
energy of the sheet, represented by the first term in H, is proportional to Ep

sh(0) ∼ Δ,
because it scales as a square of the sheet’s amplitude. Moreover, up to a constant shift
in H, the second term scales approximately as Pudvd(t) ∼ Δ, and this scaling holds
throughout the system’s evolution. This scaling arises from the subsequent analysis of the
small-amplitude approximation, which reveals that both Pud and vd(t) scale proportionally
to

√
Δ. During the dynamic evolution, the energy released from the sheet, combined with

the work done by the external pressures, act to increase the fluid’s velocity. However,
since H ∼ Δ remains constant and Pudvd(t) ∼ Δ, the fluid’s energy must, at most, also
be proportional to |∇φ|2 ∼ Δ. Assuming that a derivative of the potential functions with
respect to time or a spatial coordinate does not change this scaling, i.e. φi ∼ √

Δ, we can
simplify Bernoulli’s equation, (2.2), and the kinematic boundary conditions, (2.6), to

pi − Pi = −1
λ

∂φi

∂t
, (2.12a)

∂ysh

∂t
=
(

∂φi

∂y

)
y=0

. (2.12b)

These approximations are verified numerically in the following sections where we analyse
the nonlinear dynamics of the system. In particular, we compare the approximated results
with the numerical solution of the nonlinear model, (2.2)–(2.8). We note that since the
equations of continuity, (2.2a), are already linear in the potential functions, they remain
unchanged in our approximated model.

This completes the reduction of the model to the small-amplitude approximation. In
summary, given the parameters Δ, Ly, Pi (i = u, d) and λ, we can obtain the system’s
evolution from the solution of the coupled equations (2.2a) and (2.10)–(2.12), the boundary
conditions on the fluid–channel interface (2.4) and the linearized form of the boundary
conditions on the sheet’s edges (2.8b) and (2.8c).
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We have two comments regarding this formulation. Firstly, following the derivations in
Appendix D, it can be shown that the reduced model emanates from the minimization of
the action S = ∫ T

0 L dt. Here, T is the duration of the experiment, and the Lagrangian is
given by

L =
∫ 1

0

[
1
2

(
∂ysh

∂t

)2

− 1
2

(
∂2ysh

∂x2

)2

+ Fx(t)

(
1
2

(
∂ysh

∂x

)2

− Δ

)

+ 1
λ

[φd(x, 0, t) − φu(x, 0, t) + λtPud]
∂ysh

∂t

]
dx

− 1
2λ

∫ Ly/2

0

∫ 1

0
|∇φu|2 dx dy − 1

2λ

∫ 0

−Ly/2

∫ 1

0
|∇φd|2 dx dy, (2.13)

where the minimization is considered with respect to the elastic fields, ysh(x, t) and
Fx(t), and the hydrodynamic fields, φi(x, y, t). Secondly, since at the far edges of the
control volume, y = ±Ly/2, the pressures in the fluid are determined by (2.4b), then from
Bernoulli’s equation, (2.12a), we obtain φi(x, ±Ly/2, t) = 0. These boundary conditions
for the potential functions are used in the minimization of the action, as is discussed further
in Appendix D.

2.1.1. Modal expansion
In the small-amplitude approximation, the general solutions of the continuity equations,
(2.2a), read as

φi(x, y, t) = ai
0(t)

(
y ± Ly

2

)
+

∞∑
m=1

ai
m(t) cos(πmx) sinh

[
πm

(
Ly

2
± y

)]
, (2.14)

where ai
m(t) (m = 0, 1, 2, . . .) are unknown time-dependent coefficients and the ± signs

correspond to the solutions of the potential functions in the downstream and the upstream
directions, respectively. Equation (2.14) satisfies the boundary conditions on the sidewalls
of the channel, (2.4a), and the requirement that φi(x, ±Ly/2, t) = 0 on the edges of
the control volume. Yet, the boundary conditions on the sheet–fluid interfaces, (2.12b),
are not satisfied. The unknown coefficients are later determined so as to satisfy these
requirements.

Similarly, we expand the solution of the sheet’s height function as follows:

ysh(x, t) =
∞∑

n=1

An(t) sin(πnx), (2.15)

where the time-dependent coefficients An(t) are as yet unknown. We note that this
expansion automatically satisfies the boundary conditions on the sheet’s edges, (2.8b) and
(2.8c). We note also that while (2.15) involves infinite summation over the modes of the
height function, in practice, we truncate this series at n = N. It can be shown that a closed
system of equations is then obtained when the coefficients of ai

m(t) are truncated at N − 1.
Using the two expansions for the potential functions and the sheet’s height function,

(2.14) and (2.15), we reduce our problem to finding the unknown coefficients, ai
m(t) and

An(t), and the lateral compression force, Fx(t), from the force balance equation, (2.11), the
kinematic boundary conditions, (2.12b), and the constraint over the lateral displacement,
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Snap-induced flow in a closed channel

(2.10). However, instead of using these equations directly, we take a different yet equivalent
route for the solution by utilizing the action we derived earlier. To this end, we first
substitute (2.14) and (2.15) in the Lagrangian, (2.13), and then integrate over the spatial
coordinates. Thereafter, we minimize the action with respect to ai

m(t) and express these
coefficients in terms of An(t); see Appendix E for the details of this procedure. Overall,
this gives the Lagrangian

L[A1, . . . , AN, Fx]

= T nk
dAn

dt
dAk

dt
− V nkAnAk + Fx(t)CnkAnAk − Fx(t)Δ + tPudW(n, 0)

dAn

dt
, (2.16)

where from now on Einstein’s summation rule is implied for repeated indices, and we
define the following symmetric matrices:

T nk = 1
4
δnk + Ly

2λ
W(n, 0)W(k, 0) +

N−1∑
m=1

2
πmλ

tanh
(

πmLy

2

)
W(k, m)W(n, m), (2.17a)

V nk = π4

4
n2k2δnk, Cnk = π2

4
nkδnk. (2.17b)

In addition, δnk is the Kronecker delta and W(n, m) = (n/π)((1 − (−1)n+m)/(n2 − m2))
for n /= m and zero otherwise. Note that since the matrix T nk is akin to the kinetic terms
in the Lagrangian, it assumes the role of a mass matrix in this framework. This mass
matrix encompasses contributions from both the inertia of the sheet, represented by the
first term in T nk, and the fluid’s hydrodynamics, denoted by terms proportional to 1/λ.
These hydrodynamic terms are commonly known as added mass or virtual mass. This
terminology arises from their characterization of an extra mass that the sheet appears to
acquire when undergoing acceleration in the fluid, as discussed in works such as Munk
(1924), Lighthill (1960) and Coene (1992).

Therefore, in this modal expansion, the evolution of the system is determined by the
amplitudes of the normal modes of the sheet, An(t), and the lateral compression, Fx(t).
Minimization of the Lagrangian, (2.16), with respect to these functions yields the following
equations of motion:

T nk
d2Ak

dt2
+ (V nk − Fx(t)Cnk)Ak = −Pud

2
W(n, 0), (2.18a)

CnkAkAn = Δ. (2.18b)

Given the system’s parameters and the initial conditions for the amplitudes, i.e. An(0) and
(dAn/dt)(0), the time-dependent behaviour of the system may be completely determined
from the solution of (2.18). Once An(t) are determined, the potential functions are obtained
from (E2) and (2.14), and the height function is obtained from (2.15).

We now make a comment regarding this reduced model. At an early stage of our
formulation, we assumed that the length of the control volume, Ly, is greater than the
characteristic length scale at which flow disturbances induced by the motion of the sheet
decay to zero. Using (2.14), we can now identify this characteristic length scale as the
decay length of the hydrodynamic potentials, i.e. � = 1/(πm), where m corresponds to
the lowest non-zero term in the Fourier expansion. Since the fluid’s coefficients, ai

m(t),
are related to the time derivative of the sheet’s modes, dAn(t)/dt (see (E2)), the lowest
dynamic mode of the sheet effectively determines the decay length of disturbances in
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the flow. Furthermore, given that all lengths in our formulation are normalized to the total
length of the sheet, it is necessary to ensure that Ly � 1 to satisfy our assumption, provided
that the lowest modes of the sheet affect the dynamics.

3. The early time evolution

This section is divided into two parts. In the first part, we recall the quasi-static solution
of the system. In the second part, we perform a linear stability analysis around this
quasi-static solution, and obtain the critical conditions for the onset of the snap instability.

3.1. Recap of the quasi-static solution
The quasi-static solution of the problem in the small-amplitude approximation was
previously investigated in Oshri (2021). For the sake of completeness, and to facilitate the
further comparisons with the dynamic evolution, we summarize this solution here in brief.
In the quasi-static scenario, where there is no fluid flow, the pressure fields are uniform on
each side of the channel and are given by pi(x, y, 0) = Pi.

Three different branches dominate the quasi-static solution: the symmetric branch,
the inverted symmetric branch and the asymmetric branch. In the first two of these
branches, the height functions are close in shape to the first mode of buckling. However,
in the symmetric branch, the sheet buckles towards the upstream direction, as depicted
in figure 1, and in the inverted symmetric branch the sheet buckles in the downstream
direction. Therefore, their corresponding solutions differ only in terms of the sign:

ysh(x, 0) = ±Pud

8u2 (1 − x)x ± Pud

16u4

[
1 − cos[2u(x − 1/2)]

cos u

]
, (3.1a)

Pud = ∓ 16
√

6u7/2 cos u√
6u + 4u(6 + u2) cos2 u − 15 sin(2u)

Δ1/2, (3.1b)

vdu(0) = ∓ 2
√

2[u(3 + u2) − 3 tan u] cos u√
3u3/2

√
6u + 4u(6 + u2) cos2 u − 15 sin(2u)

Δ1/2, (3.1c)

where u = √
Fx(0)/2 and the upper and lower signs correspond to the symmetric and

the inverted symmetric branches, respectively. In addition, vdu(0) = vd(0) − vu(0) is the
volume difference between the downstream and upstream directions. Given the pressure
difference in the channel, Pud, we can solve (3.1b) for the lateral compression, Fx(0).
Substitution of this solution into (3.1a) and (3.1c) gives the sheet’s height function and the
volume difference in the channel, respectively. Note that when the pressure difference in
the channel vanishes, Pud → 0, we have from (3.1a) and (3.1b) that the lateral compression
converges to Fx(0) → π2, and the configuration converges to the first mode of buckling
ysh(x, 0) → ±(2

√
Δ/π) sin(πx).

The third branch, the asymmetric branch, provides a route through which the system can
transform continuously between the symmetric and inverted symmetric branches. In this
family of solutions, the lateral compression remains constant, Fx(0) = 4π2, and the height
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Figure 2. The quasi-static evolution of the system. (a) The evolution on the Pud–vdu(0) plane. Solid lines
correspond to stable states and dashed lines correspond to unstable states. Initially, the pressure difference
vanishes, and the system is in the symmetric branch (blue solid line, label 1©). Then, the pressure difference
increases until Pud = Pcr

ud (label 2©). At this point, the symmetric branch coincides with the asymmetric branch
(dashed grey line) and becomes unstable. When Pud is set above the critical value, the sheet is expected to snap
into the inverted symmetric branch (solid green line, label 4©). The black arrow is introduced for schematic
illustration and does not indicate the actual trajectory of the system. (b) The sheet’s configuration along
the system’s trajectory ( 1© → 2© → 4©); see the corresponding label numbers in (a). Despite the relatively
large pressure changes between labels 1© and 2©, the elastic configuration remains almost unchanged. The
configuration indicated by 3© corresponds to the second mode of buckling in the asymmetric branch (dashed
grey line).

functions are given by

ysh(x, 0) = Pud

16π4 [2π2(1 − x)x + 1 − cos(2πx)] + 1
π

√
Δ − 15 + 2π2

768π6 P2
ud sin(2πx),

(3.2a)

Pud = 24π4

3 + π2 vdu(0). (3.2b)

Note that when Pud → 0, the volume difference between the two sides of the channel
approaches zero, and the elastic configuration converges to the second mode of buckling,
ysh(x, 0) → (

√
Δ/π) sin(2πx). Note also that at the critical pressures

quasi-static: Pcr
ud = ±

√
768π6

15 + 2π2 Δ1/2, (3.3)

the term under the square root in (3.2a) becomes negative, and the asymmetric branch
ceases to exist. In fact, it can be shown that at these critical pressures the asymmetric
branch coincides with the symmetric branch (plus sign) and the inverted symmetric branch
(minus sign). We denoted this pressure difference by Pcr

ud, because later in this analysis we
show that it coincides with the critical pressure at the snap instability.

The system’s trajectory in this quasi-static solution is determined by energetic
considerations (Oshri 2021). A convenient way to visualize this trajectory is through the
Pud–vdu(0) relation. A typical plot of this relation is shown in figure 2(a) for the case
where Δ = 0.01. When the pressure difference vanishes, Pud → 0, the system exhibits the
first mode of buckling (point 1©) that lies within the symmetric branch (blue solid line;
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see figure 2b). When the pressure difference increases, the system propagates along the
symmetric branch until Pud = Pcr

ud (indicated by label 2©) is reached. At this point, the
symmetric branch coincides with the asymmetric branch (grey dashed line) and, as we
show in the next section, becomes unstable. The unstable part of the symmetric branch
is denoted by a dashed blue line in figure 2(a). The second mode of buckling obtained
in the asymmetric branch is indicated by the label 3©. When the pressure difference
slightly exceeds the critical value, i.e. Pud > Pcr

ud, any small perturbation can drive the
snap-through instability. After the instability occurs, the system propagates dynamically
to the inverted symmetric branch (solid green line). Point 4© on this line corresponds to
one possible configuration in this branch, which is close in shape to the first mode of
buckling in the inverted state.

Our goal in this paper is to investigate the system’s trajectory, including the elastic
deformation and the hydrodynamic response, during the snap instability.

3.2. Linear stability analysis
To derive the linear stability analysis of the system around the symmetric branch, we
utilize the modal expansion by perturbing the unknown coefficients, An(t), and the lateral
compression, Fx(t), around their base solutions at t = 0. Assuming that the perturbation
grows exponentially with time, we have An(t) → An(0) + εĀn eσ t and Fx(t) → Fx(0) +
εF̄x eσ t, where Ān and F̄x are unknown constants, σ is the growth rate and ε � 1 is an
arbitrarily small parameter. Substituting these perturbed functions in (2.18), and expanding
to leading order in ε, i.e. order ε0, gives

V nkAk(0) − CnkFx(0)Ak(0) = −Pud

2
W(n, 0), (3.4a)

CnkAk(0)An(0) = Δ. (3.4b)

The subleading order of this expansion, i.e. order ε1, gives

[σ 2T nk + V nk − Fx(0)Cnk]Āk − CnkAk(0)F̄x = 0, (3.5a)

CnkAk(0)Ān = 0. (3.5b)

Note that (3.5) are linear and homogeneous in the unknown constants, Ān and F̄x.
Therefore, to obtain the growth rate, we need to solve (3.4) for the unknown zeroth-order
coefficients, An(0) and Fx(0), and then to substitute this solution in the subleading order,
(3.5). The condition that the determinant of the latter equations equals zero yields the
growth rate.

As expected, one of the solutions of the leading-order equations, (3.4), converges to the
symmetric branch, (3.1), as we increase the number of modes, N, in the solution. Since
this solution is symmetric around x = 1/2, all the even modes that describe this branch
vanish identically, i.e. An(0) = 0 where n = 2, 4, 6, . . ., while only the odd modes, i.e.
An(0) where n = 1, 3, 5, . . . , differ from zero. When this solution is substituted in the
subleading order, we find that the odd perturbations, Ān where n = 1, 3, 5, . . ., and F̄x
vanish identically, while only the even perturbations are non-zero. Therefore, while the
base solution is symmetric, the instability is initially driven by the asymmetric modes.

An analytical approximation of this perturbative solution, which gives a reasonable
estimation of the growth rate σ , is obtained in the case N = 2, i.e. the two-mode
approximation. In this case, we find from (3.4) that A1(0) = 2

√
Δ/π, A2(0) = 0 and

Fx(0) = π2 + 2Pud/(π
2
√

Δ). Substituting this solution into (3.5) gives that Ā1 = F̄x = 0,
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Figure 3. The growth rate as a function of the deviation of the pressure difference from the critical value.
The numerical data (symbols) approximately collapse on a single master curve (solid line) once the analytical
scaling, (3.6), is implied. The matrix part T 22 = 1

4 + 32 tanh(πLy/2)/9π3λ is given by (2.17).

and that the equations are all satisfied if [σ 2T 22 + V 22 − Fx(0)C22]Ā2 = 0. Consequently,
a non-trivial solution is obtained when Ā2 /= 0 and when the growth rate is given by

σ =
√

3π2√
1
4

+ 32 tanh(πLy/2)

9π3λ

√
Pud − P̄cr

ud

P̄cr
ud

, P̄cr
ud = 3π4

2

√
Δ. (3.6)

Equation (3.6) implies explicitly that below the critical pressure difference, Pud < P̄cr
ud,

the growth rate is imaginary and the system is stable around the base solution. However,
when Pud > P̄cr

ud, the growth rate becomes real and positive, and therefore any small
deviation from the static solution drives the snap instability. We note that while the
critical pressure difference in (3.6) is close to the quasi-static solution, (3.3), it does not
coincide with it, i.e. P̄cr

ud/Pcr
ud � 1.002. This is because in addition to the small-amplitude

approximation assumed in the quasi-static analysis we also imposed the modal expansion.
Using the numerical solution of (3.4) and (3.5), we can now show that P̄cr

ud converges to
Pcr

ud as the number of modes is increased.
In figure 3, we compare the growth rate of the two-mode approximation, (3.6), with the

linear stability analysis obtained numerically from (2.2)–(2.8), i.e. where the assumptions
of the small-amplitude approximation and the modal expansion are relaxed. The details of
this more general analysis are summarized in Appendix F. We observe that the numerical
data collapse onto a single master curve when we use the scaling given by (3.6). However,
we note that there are visible deviations from the analytical prediction due to the low order
of our modal expansion (N = 2) and due to corrections resulting from the assumption of
a finite excess length.

When Ly � 1, according to our model’s assumption, (3.6) indicates that the growth rate
is influenced primarily by the sheet-to-fluid mass ratio, λ. This is because tanh(πLy/2) � 1
for large values of Ly, and because Pud ∼ √

Δ close to the instability, so that σ does
not depend on the excess length Δ. In turn, the dependence of the growth rate on λ
defines two asymptotic regions of the system. When λ
 1, the growth rate converges
to a constant that is independent of λ, whereas when λ� 1 the dynamics is slowed
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Figure 4. The relative magnitude of the normal amplitudes and the eigenfunction at the onset of the instability.
In both panels, Δ = 0.01 and Ly = 2. (a) Log–log plot of the relative amplitudes as a function of λ obtained
from the numerical solution of (3.4) and (3.5) with N = 8. While in the solid-dominated region Ān/Ā2 ∝ 1/λ,
in the fluid-dominated region the ratios of the modes converge to a constant. (b) The eigenfunction of the
sheet’s amplitude. Symbols correspond to the linear stability analysis of (2.2)–(2.8), and the solid line to the
two-mode approximation. The eigenfunction is normalized such that the height of the sheet at x = 1/4 is equal
to one (numerically we choose ŷ(1/4) = 1).

down and the growth rate scales as
√
λ; hereafter, we refer to these two regions as

‘solid-dominated’ and ‘fluid-dominated’, respectively. These two asymptotic regions thus
correspond, respectively, to the cases where the solid’s inertia or the fluid’s inertia
dominates the system’s dynamics. Similarly, these two regions are also manifested in the
added mass term 32 tanh(πLy/2)/(9π3λ) in the denominator of the growth rate. As λ
increases, the added mass approaches zero, leaving the sheet’s inertia largely undisturbed
by the fluid’s motion. In contrast, for smaller values of λ, the added mass increases, and
thereby slows down the dynamics.

The relative magnitudes of the modes, Ān/Ā2, exhibit a distinct dependence on λ in the
two asymptotic regions. To show this dependence, we solve (3.4) and (3.5) numerically
for N = 8 and plot the modes’ ratio as a function of λ. While in the solid-dominated
region (λ
 1) this ratio decays to zero as Ān/Ā2 ∼ λ−1, in the fluid-dominated region
(λ� 1) it converges to a constant that is independent of λ; see figure 4(a). Consequently,
we expect higher modes to be suppressed from the dynamics at relatively long times when
λ
 1. Nonetheless, in both regions, the numerical solution of (3.4) and (3.5) implies that
Ān/Ā2 � 1 for all n ≥ 4. Therefore, at the onset of the instability, the sheet’s eigenfunction
is approximated well only by the second mode of the sheet; see figure 4(b).

When the sheet deviates from the base solution, rotational pattern flow is induced in
the channel that is centred at the midpoint of the sheet (figure 5). Indeed, since only even
modes are excited at the instability, and these modes do not alter the volume difference,
vdu(t), there is no net flow of fluid from the upstream direction to the downstream
direction. If the pressure difference is below the critical value, the flow is oscillatory and
synchronizes with the oscillations of the sheet’s eigenfunction. However, if the pressure
difference exceeds the critical value, the flow increases exponentially and the sheet escapes
from the unstable solution. While figure 5 shows rotational pattern flow in the clockwise
direction, in practice, the symmetry is broken spontaneously toward either direction, and
therefore the flow can also occur in the counterclockwise direction.

It should be noted, however, that this linear stability solution may seem counterintuitive,
given that a net flow must occur for the sheet to transition from the symmetric branch to
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Figure 5. The flow field obtained from the linear stability analysis of (2.2)–(2.8), where Ly = 2, Δ = 0.01
and λ = 0.1. The perturbation around the base solution (solid black line) induces rotational pattern flow in the
channel, which is maximized around the sheet’s centre. Arrows correspond to directions of the streamlines and
colours to the relative magnitude of the velocity.

the inverted symmetric branch. In the next section, we demonstrate that this zero net flux
is a result of our order of approximation, i.e. higher-order terms are responsible for the
emergence of a net flow in the channel.

4. Evolution at intermediate times

This section is divided into four subsections. The first subsection presents the two-mode
approximation, which allows us to derive analytical results on the weakly nonlinear region
of the system. In the other three subsections, we utilize the two-mode approximation to
analyse (i) the emergence of a net flow in the channel, (ii) the relation between the pressure
drop and the volume difference in the channel and (iii) the elastohydrodynamic energetic
interplay during the snap instability.

4.1. The two-mode approximation
In the previous section, we employed the two-mode approximation to examine the onset
of the instability. We now extend the use of this approximation and suggest that it
can effectively characterize the initial stages of the nonlinear regime of the dynamic
evolution. Later in this section, we investigate the accuracy of this assumption and assess
its limitations by comparing it with the numerical solution of (2.2)–(2.8).

A convenient starting point for this nonlinear analysis is the constant of motion, H =
T nk(dAn/dt)(dAk/dt) + V nkAnAk + PudW(n, 0)An, that is obtained from the integration
of (2.18), or equivalently, from (2.9) in the respective limit of the small-amplitude
approximation. (Equation (2.9) reduces to the small-amplitude limit with a constant shift
in the value of H. This is because the volume vd is measured relative to LxLy/2.) When
only two modes are considered in the expression for H, we obtain

H =
(

1
4

+ 2Ly

π2λ

)(
dA1

dt

)2

+
(

1
4

+ 32 tanh(πLy/2)

9π3λ

)(
dA2

dt

)2

+ π4

4
A2

1 + 4π4A2
2 + 2Pud

π
A1, (4.1)
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where A1(t) and A2(t) are related through the constraint of the lateral displacement,
(2.18b). Therefore, to obtain a solution in the two-mode approximation, it remains only
to express, for example, dA1/dt as a function of A1 and to perform an integral over time.
However, instead of performing this integration explicitly and studying its corresponding
solutions, it is instructive to first investigate the trajectories of the system in the phase
space that is spanned on the (A1, dA1/dt) plane.

To this end, we need to obtain the constant H as a function of the system’s parameters.
If the system is initially almost at rest, and the elastic configuration is given by the
symmetric branch, we have from (2.18) that A1(t) = 2Δ1/2/π and A2(t) = 0, similar
to the leading-order solution of (3.4). Substituting this solution in (4.1), we find that
H = π2Δ + (4/π2)PudΔ

1/2, where the first term corresponds to the potential energy of
the sheet and the second term to the work done by the pressure difference in the channel
Pud.

With the value of H in hand, we return to obtain the trajectory of the system on the
(A1, dA1/dt) plane. Using the constraint over the lateral displacement, (2.18b), to eliminate
A2(t) in favour of A1(t) in (4.1), we obtain

dA1

dt
= ±

√√√√√√
16PudΔ1/2 − 12π4Δ − 8πPudA1 + 3π6A2

1

π2 + 8Ly

λ
+ π4A2

1

4Δ − π2A2
1

(
1
4

+ 32 tanh(πLy/2)

9π3λ

) . (4.2)

This equation explicitly provides the trajectories of the system in phase space. Depending
on the pressure difference, Pud, it reflects two qualitatively different scenarios. When
Pud < P̄cr

ud, there are two separate trajectories: one trajectory corresponds to the fixed point
(A1, dA1/dt) = (2Δ1/2/π, 0) and the second, closed trajectory passes through the inverted
configuration (A1, dA1/dt) = (−2Δ1/2/π, 0); see figure 6(a). The distance between these
two trajectories δ = (8/3π5)(P̄cr

ud − Pud) shrinks to zero when the pressure difference
approaches the critical value P̄cr

ud. (To obtain δ we equate (4.2) to zero and solve for
A1. This gives the two solutions A1 = 2Δ1/2/π and A1 = (2/3π5)(4Pud − 3π4Δ1/2).
Subtracting the first solution from the second solution gives δ = (8/3π5)(P̄cr

ud − Pud).)
Beyond the critical pressure difference, Pud ≥ P̄cr

ud, the two trajectories merge, and the
point (A1, dA1/dt) = (2Δ1/2/π, 0) appears as a stagnation point; see the solid black line
in figure 6(b).

Physically, these two different scenarios represent the stable and the unstable states
of the system. If the system is placed initially in the static equilibrium state, i.e. at the
stagnation point (2Δ1/2/π, 0), a finite perturbation, approximately of a size δ, is required
to displace it from rest when Pud < P̄cr

ud, whereas only an infinitesimal perturbation is
required to displace the system from rest when Pud ≥ P̄cr

ud. In the following analysis, we
are concerned only with the dynamics at the second scenario, i.e. when the system is
unstable.

The configurations of the sheet along the trajectory depicted in figure 6(b), i.e. the
unstable system, are plotted in figure 6(c). At the stagnation point, indicated by 1© in
figure 6(c), the sheet exhibits the static (unstable) equilibrium state. At 2©, the first mode
vanishes, i.e. A1(t) = 0, and the sheet exhibits an asymmetric configuration, which is
instantaneously given by A2(t) = Δ1/2/π. At 3©, the configuration is a superposition of
the two modes, where dA1/dt is minimized, and at 4© the sheet approaches the inverted
shape, A1(t) = −2Δ1/2/π. Since the theoretical trajectory is symmetric around the A1
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Figure 6. The system’s trajectories on the (A1, dA1/dt) plane and the evolution of the sheet’s configuration. In
all panels, we use Δ = 0.01, λ = 0.1 and Ly = 2. (a) When Pud < P̄cr

ud , (4.2) exhibits two separate trajectories,
namely a trajectory that corresponds to the static equilibrium state, (A1, dA1/dt) = (2Δ1/2/π, 0) (black dot),
and a second closed trajectory that passes through the inverted shape (A1, dA1/dt) = (−2Δ1/2/π, 0). The
distance between the two trajectories on the A1 axis falls to zero as the pressure difference approaches the
critical value, δ ∝ P̄cr

ud − Pud . (b) When Pud ≥ P̄cr
ud , (4.2) exhibits a single trajectory where (A1, dA1/dt) =

(2Δ1/2/π, 0) is the stagnation point. Symbols correspond to the numerical data obtained from (2.2)–(2.8).
The analytical and numerical trajectories deviate slightly after the sheet reaches to the inverted shape. In (a,b),
closed trajectories are oriented in the clockwise direction, as indicated by the arrows on the theoretical curves.
(c) The sheet’s configuration along the system’s trajectory; see the corresponding circled numbers 1©- 4© in
(b). Solid black lines correspond to the two-mode approximation and blue circles correspond to the numerical
data.

axis, the sheet undergoes the same shape changes, but in the opposite direction, as it returns
to the static configuration, 4© → 1©.

Interestingly, these shape changes are not limited to the above example, because they
are independent of the sheet-to-fluid mass ratio λ and of the length of the control volume
Ly. Indeed, given the excess length Δ, and given that the weakly nonlinear region of the
system is predominantly governed by the first two modes of the sheet, the shape changes
depend only on the geometric constraint, (2.18b), while the parameters λ and Ly merely
shrink or inflate the trajectory of the system in phase space.

We note that in the above discussion we calculated H on the assumption that the system
is initially at rest. We also implicitly assumed that any small perturbations over the initial
configuration do not alter H. In practice, however, the perturbation that displaces the
system from rest is arbitrary and may either slightly increase or decrease this conserved
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quantity. This minute change eliminates the stagnation point in the system’s trajectory and
essentially causes the onset of the sheet’s motion. Indeed, in a similar way, our system
is perturbed in the numerical solution of (2.2)–(2.8). In this numerical analysis, we first
fix the system’s parameters λ, Δ and Ly, and then set the pressure difference above the
critical value, Pud > Pcr

ud. Thereafter, we solve the elastic system of equations assuming
that the sheet is initially at rest. This static solution places the system at the stagnation
point in phase space. The system is displaced from this point by adding a small and random
perturbation to the elastic shape, similar to the procedure introduced in Kodio, Goriely &
Vella (2020). This random perturbation eliminates the stagnation point in the system’s
trajectory and essentially initiates the snap instability.

Despite these minor discrepancies between the initial conditions of the numerical data
and the analytical approximation, the trajectories of the two solutions in phase space
are almost identical, up until the sheet approaches the inverted shape; see figure 6(b).
Slightly beyond the inverted shape, the two trajectories, numerical and theoretical,
separate and take different routes. This deviation apparently results from higher modes,
i.e. An where n > 2, that start to affect the numerical solution beyond the inverted
configuration. The elastic configurations along the numerical trajectory, 1© → 4©, fit well
with the shapes of the two-mode approximation; compare the symbols and the solid
lines in figure 6(c). Similar agreement between the numerical data and the analytical
approximation is obtained when we vary the system’s parameters. Notably, the agreement
between the numerical and analytical trajectory extends beyond the inverted shape in
the solid-dominated region, i.e. λ
 1. Nonetheless, in the following analysis, we limit
the nonlinear investigation of the system up to the inverted shape, where the two-mode
approximation holds for both the fluid-dominated and the solid-dominated regions.

Although the trajectories of the numerical and analytical solutions in phase space are
almost identical, the time-dependent solutions of the modal amplitudes, A1(t) and A2(t),
may not align precisely with the numerical data. When the initial conditions are set closer
to the stagnation point, the system takes longer to depart from its starting state. This
delay in the onset of instability diverges as the system approaches the static configuration.
Therefore, even minor variations in the initial conditions between the theoretical and
numerical solutions can result in significant discrepancies at later times. However, since
both solutions exhibit similar trajectories in phase space, we expect their corresponding
time-dependent behaviours to match except for a constant shift in time that accounts for
the ‘delay’ in the initial evolution of the system.

One way to determine this constant shift is to ensure that both solutions approach the
inverted shape at the same time. From this point on, we can integrate (4.2) backwards
and forwards in time to obtain the complete theoretical profile. A comparison between
this shifted theoretical solution and the numerical solution is plotted in figure 7 for both
modes A1(t) and A2(t). We find that the two solutions are almost identical until the sheet
arrives at the inverted shape; see the corresponding markers in comparison with sheet’s
configurations plotted in figure 6(c). Consequently, while our theory cannot predict the
time that it takes for the system to evolve, for example, from 1© → 2©, because it depends
on an arbitrary shift in time, it can predict accurately the evolution between later intervals
in time, for example, 2© → 3© or 2© → 4©, that lie within the nonlinear regime of the
system.

This completes the first section of the nonlinear analysis. In summary, we showed that
the two-mode approximation describes well the system’s evolution in phase space, from
the initial state, which is assumed to be close to the static (unstable) equilibrium state, up
to the inverted shape. However, since the system is sensitive to the initial conditions, the
dynamics obtained from the theoretical model matches the numerical observations only
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Figure 7. Dynamic evolution of (a) the first mode, A1(t), and (b) the second mode, A2(t). In both panels,
Δ = 0.01, λ = 0.1, Ly = 2 and Pud = 1.01Pcr

ud (Pud � 1.007P̄cr
ud), similar to the set of parameters used in

figure 6(b). The numerical data correspond to the solution of (2.2)–(2.8), whereas the analytical prediction is
given up to a constant shift in time by the integration of (4.2). The shift in time is determined such that both
solutions reach the inverted shape, indicated by 4©, simultaneously. The numbered markers correspond to the
points in phase space and the sheet’s configurations that are shown in figure 6(b,c).

up to a constant shift in time. Nonetheless, fortunately, some of the system’s observed
characteristics depend very weakly on the exact form of the initial perturbation, and as
such are almost independent of the arbitrary shift in time. We discuss these observed
characteristics in the following sections.

4.2. Emergence of a net flow
We concluded § 3.2 by observing that the flow pattern produced by the linear solution
results in a zero net flow in the channel, because only even modes (An, where n =
2, 4, 6, . . .) are activated at the onset of the instability. Clearly, this result no longer holds
at intermediate times because the odd mode A1(t) appears in the nonlinear analysis; see,
for example, (4.2). In this section, we go back to the early times of the evolution but now
exploit the analysis at intermediate times to investigate the initiation of this net flow.

Naively, to investigate the onset of the net flow, we need only to extend the linear stability
analysis to the next order, i.e. order ε2. However, this extension is invalid, because at the
onset of the instability the growth rate (3.6) can be arbitrarily small. This introduces an
additional small parameter, in addition to ε, which leads to the mixing of different orders in
the expansion. To obtain a consistent expansion, we follow (Goriely, Nizette & Tabor 2001)
and define the new small parameter, ε = (Pud − P̄cr

ud)
1/2, that measures how far the system

is from the neutral stability state. In addition, since we anticipate the modal amplitude to
evolve slowly in time compared with the inertial time scale of the sheet, we introduce the
multiple scale-like expansion A1(εt) = 2Δ1/2/π − εA1,1(εt) − ε2A1,2(εt) + · · · , where
εt designates the initial slow evolution of the mode. In this expansion, when Pud = P̄cr

ud,
the system exhibits the static solution, which satisfies (3.4); however, when Pud > P̄cr

ud, the
dynamics starts and the amplitude evolves over a time scale of εt. Note that the negative
sign in front of the expansion terms is chosen for convenience, and will allow us later to
treat A1,2(εt) as a positive function. Note also that when we expand the solution in powers
of ε we assume that this parameter is smaller than all other parameters in the system.

Taken together, when we substitute Pud = P̄cr
ud + ε2 along with A1(εt) in (4.2), and

expand this equation in powers of ε, we find to leading order that A1,1(εt) = 0. The first
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Figure 8. The emergence of a net flow in the channel. In both panels, λ = 10, Δ = 0.01 and Ly = 2.
(a) The evolution of the system on the (A1, dA1/dt) plane. The symbols correspond to the numerical solution
of (2.2)–(2.8) and the solid black line corresponds to the two-mode approximation, (4.2). The approximation
from the amplitude equation (dashed orange line) agrees with the numerical solution in a narrow region near
the stagnation point. The dotted orange line represents the linear order of the amplitude equation, the solution of
which grows exponentially at a rate of 2σ . (b) The flow field obtained from the numerical solution of (2.2)–(2.8)
at the point indicated by the grey arrow in (a). The vortex that was centred around the sheet’s midpoint (see
figure 5) is pushed by the net flux of fluid to the sidewall of the channel.

non-trivial equation is obtained at O(ε3) and reads

dA1,2

d(σ t)
= 2A1,2

√
1 + 3π5

8
A1,2, (4.3)

where σ is given in (3.6). As shown in Appendix G, this equation is equivalent to the
so-called amplitude equation derived from the Fredholm alternative theorem (Goriely et al.
2001; Gomez et al. 2017a; Gomez, Moulton & Vella 2019; Kodio et al. 2020; Liu, Gomez
& Vella 2021). Equation (4.3) describes the early-time evolution of the modal amplitude
A1(t), and therefore also describes the emergence of a net flux in the channel. Below we
investigate some properties of its solution.

If we linearize (4.3), we find that the solution grows exponentially at a rate of 2σ , i.e.
A1,2(εt) = A1,2(0) e2σ t, where A1,2(0) is determined by the initial condition. Restoring the
nonlinear term causes the system to escape from the unstable state even faster, because the
term under the square root is greater than one. To compare this result with our numerical
solution, we plot the system’s trajectory in phase space and identify that in this diagram the
exponential growth appears as a straight line with a slope of 2σ , as seen in the example in
figure 8. Although this line matches the system’s trajectory in the vicinity of the stagnation
point, it soon underestimates the actual velocity of the mode. The complete form of (4.3)
corrects the system’s trajectory towards the actual solution, but overestimates the velocity
beyond the early stages of the evolution.

To quantify the net flow induced by this odd mode, we calculate the flux through
a vertical line in the channel, Q(t) = ∫ 1

0 (∂φi/∂y) dx � (2/π)(dA1/dt), where we used
the two-mode approximation and (2.14) and (E2). Using (4.3), we find that |Q(t)| ∼
ε3A1,2

√
1 + (3π5/8)A1,2. Therefore, at the early stages of the evolution, a net flux appears

as a small correction, of order ε3, to the rotational pattern flow encountered in the linear
stability analysis. Initially, the net flux grows exponentially at a rate of 2σ , but in later
stages, it becomes faster than exponential. In figure 8(b), we plot the typical flow field in
the early stages of the evolution. Compared with the linear stability eigenfunction shown
in figure 5, there is a clear net flow towards the downstream direction. A uniform flow
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Snap-induced flow in a closed channel

from left to right pushes aside the vortex that was originally centred around the sheet’s
midpoint.

Despite the usefulness of (4.3) in describing the early times of the system’s evolution,
its solution clearly deviates from the actual trajectory slightly beyond the onset of the
instability. This is because the dynamics at later times is composed primarily of a net flow,
which cannot be adequately described as a small perturbation around the linear stability
solution that consists of a rotational pattern flow. Nonetheless, the amplitude equation
analysis provides us with two important observations. The unusual exponential growth
observed near the instability, together with the rapid deviation from the static solution
shortly afterwards, represents the distinctive and robust behaviours of the solution, which
are independent of the precise nature of the initial disturbance.

Yet, the solution at these early times depends strongly on ε and hence on the exact
initial deviation from the critical pressure difference. In the next section, we show that as
the system progresses deeper into the nonlinear region, the evolution becomes even less
sensitive, not just to the initial perturbation but also to the initial state, as corrections of
order ε become negligible. To demonstrate this, we resort to the more general solution,
and examine the relation between the pressure difference on the sheet and the volume
difference in the channel.

4.3. The p̄ud(t)–vdu(t) relation
To gain deeper insight into the weakly nonlinear region of the system’s evolution, we now
examine the relationship between the volume change and the pressure difference in the
channel. Since the pressure fields are functions of the spatial coordinates, it is convenient,
instead, to focus on the evolution of the instantaneous force that the fluid exerts on the
sheet and the edges of the control volume: f = ∑

i=u,d
∮
δvi(t)

pin̂i ds, where δvi(t) are the
perimeters of the system in the upstream and the downstream directions and n̂i are the
corresponding outward unit normal vectors of these contours. This force corresponds to
the time derivative of the system’s impulse (Lamb 1945), or virtual momentum (Saffman
1995). In the small-amplitude approximation, the total force in the y direction significantly
surpasses that in the x direction. Consequently, we define the average pressure difference
on the sheet as minus the total instantaneous force acting on the sheet in the y direction,
p̄ud(t) = Pud − ŷ · f , and examine how the relationship between p̄ud(t) and vdu(t) changes
over time.

In figures 9(a) and 9(b), we plot the typical evolution of the system on the p̄ud–vdu
plane in the fluid-dominated (λ = 0.1) and solid-dominated (λ = 10) regions, respectively.
In these figures, the solid black lines correspond to the two-mode approximation and
the green triangles represent the numerical solution of (2.2)–(2.8). For purposes of
comparison, we also plot the Pud–vdu relation of the quasi-static solution, (3.1) and (3.2),
and add the labels 1©– 4© that correspond to the points in the trajectories depicted in
figures 6(b) and 8(a). In both fluid-dominated and solid-dominated regions, the system
starts from rest, and the external pressure difference is set only slightly above the critical
value, Pud = 1.01Pcr

ud. Consequently, the initial average pressure difference is given by
p̄ud � Pud, and the initial volume difference is very close to that in the first mode of
buckling; see point 1© in the figures. As the instability develops, the volume difference
decreases until the system approaches the inverted configuration, i.e. point 4©. During
this evolution, the average pressure difference initially decreases and then, when the
sheet almost approaches the inverted shape, i.e. close to point 3©, it increases gradually.
The time-dependent behaviour of p̄ud(t) is presented in the insets of figures 9(a) and 9(b),
and shows the rapid amplification of the pressure difference.
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Figure 9. The p̄ud–vdu relation in the fluid-dominated (a) and the solid-dominated (b) regions, where Ly = 2
and Δ = 0.01. In all the panels, green triangles represent the numerical solution of (2.2)–(2.8) and the solid
black line represents the solution of the two-mode approximation. The labels 1©– 4© correlate with the
corresponding labels in figures 6(b) and 8(a), in the fluid-dominated and solid-dominated regions, respectively.
The quasi-static solution, (3.1) and (3.2), is plotted for comparison. The symmetric and inverted symmetric
branches are denoted by solid blue and solid orange lines and the asymmetric branch by the dashed grey line.
(c) A closer view into the initial evolution of the system depicted in (a) that displays the evolution along the
asymmetric branch. The insets in (a,b) show p̄ud(t) with a focus on the pressure spikes.

Despite these similarities, there are some notable differences between the trajectories
in the fluid-dominated and solid-dominated regions. Notably, within the fluid-dominated
region, the system initially traces the asymmetric branch of the quasi-static solution; see
figure 9(c) for a zoom-in into this stage of the system’s evolution. The system deviates
from this quasi-static trajectory only when the average pressure difference is close to
zero, i.e. close to point 2©. We remind the reader that the asymmetric branch of the
quasi-static solution is always higher in energy than the two other branches of solutions,
i.e. the symmetric and inverted symmetric branches, and therefore is statically unstable
(Oshri 2021). This dynamic stabilization of the asymmetric branch is explained as follows.
The dynamics in the fluid-dominated region is very slow, and the inertia of the sheet
is negligible compared with the hydrodynamic pressure of the fluid; compare the first
and last terms in (2.11). As a result, the volume change in the channel occurs very
slowly and essentially mimics the volume-constrained analysis in Oshri (2021), a process
that facilitates the stabilization of the asymmetric branch. When the pressure difference
on the sheet approaches zero, the sheet’s inertia starts to play a role in the system’s
motion once again, causing it to deviate from the quasi-static solution. In contrast, in the
solid-dominated region (figure 9b), the decline in the average pressure difference is steeper
and its p̄ud–vdu relation does not exhibit any correlation with the asymmetric branch.

Another notable difference between the two regions of the system is apparent in the
magnitudes of p̄ud. As depicted in figures 9(a) and 9(b) and their corresponding insets,

986 A12-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.312


Snap-induced flow in a closed channel

10–3

10

5

1

0.5

0.1

10–2 10–1 101100

λ
102 103

p–
ud Numerics

N = 2 (4.4)

N = 3

2Point

1.0 0.5 0 –0.5 –1.0

y

1.00

0.1 1.0

0.75

0.50

0.25

0

x

(b)(a)

Figure 10. The flow field and the average pressure difference near point 2©. In both panels Ly = 2 and
Δ = 0.01. (a) The numerical solution of (2.2)–(2.8) with λ = 10 shows a pure net flow towards the downstream
direction. (b) The average pressure difference as a function of λ. Logarithmic scales are used on both axes.
Results from the numerical solution of (2.2)–(2.8) are indicated by black squares. The solid black line
corresponds to the two-mode approximation, (4.4), where vdu = 0. The numerical data deviate from the
two-mode approximation in the fluid-dominated region. These deviations are eliminated by the addition of
a higher mode (N = 3) to the solution of (2.18).

the average pressure difference reaches significantly higher values in the fluid-dominated
region than in the solid-dominated region. These quantitative distinctions are elaborated
on below by employing the two-mode approximation.

In the two-mode approximation, we can express the p̄ud–vdu relation as a function
of A1(t), where A1(t) varies between 2Δ1/2/π and −2Δ1/2/π as the shape changes
from the initial configuration to the inverted shape. To calculate p̄ud(t) as a function
of A1, we firstly use (2.12a), (2.14) and (E2a) and obtain p̄ud(t) = ∫ 1

0 pud(x, 0, t)dx =
Pud + (2Ly/πλ)(d2A1/dt2). Thereafter, we differentiate equation (4.2) with respect to
time and use (4.2) once again to express the result in terms of A1(t) alone. This gives
a cumbersome expression, which for the sake of brevity we do not write explicitly here. In
addition, the volume difference is given by vdu(t) = 2

∫ 1
0 yshdx = 4A1(t)/π (Oshri 2021).

Figure 9 shows this parametric solution (solid black line) in comparison with the numerical
data. Although the two-mode approximation matches the numerical solution of (2.2)–(2.8)
throughout most of the trajectory, there are still some noticeable discrepancies in the
fluid-dominated region. To delve further into these details, we now examine particular
regions in the system’s trajectory and extract additional quantitative properties from this
parametric two-mode p̄ud–vdu solution.

4.3.1. The p̄ud(t)–vdu(t) relation near point 2©
Near point 2©, the sheet’s configuration is close in shape to the second mode of buckling,
where A1(t) ≈ 0 and A2(t) ≈ Δ1/2/π. The flow field around this point exhibits a pure net
flow in the downstream direction; see figure 10(a). This is because when an even mode,
i.e. A2(t), dominates the sheet’s configuration, the shape of the sheet is primarily disturbed
by an odd mode, i.e. A1(t), which drives the net flow.

To calculate the p̄ud–vdu relation, we first set the pressure difference to the critical
value Pud = P̄cr

ud (σ = 0) in our two-mode p̄ud–vdu relation. By so doing, we stress that,
in contrast to the early-times solution, the evolution at later times is largely unaffected
by small deviations from the critical pressure value. Then, we expand the relation near
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vdu = 0, where A1(t) ≈ 0, and obtain

close to point 2© :

vdu = 24(8Ly + π2λ)2

π5Ly

[
288πLy + 27π3λ− 128 tanh

(
πLy

2

)] (p̄ud − P̄cr
ud

π2λ

8Ly + π2λ

)
. (4.4)

In the previous section, we observed that the system traces the quasi-static asymmetric
branch in the fluid-dominated region (see figure 9b). This is reflected in our two-mode
approximation through the compressibility parameter, β = dvdu/dp̄ud, which gives β �
16/(3π6) � 5.54 × 10−3 when λ� 1 and Ly � 1; this value is very close to the
quasi-static solution, (3.2b), that yields dvdu(0)/dPud � 5.50 × 10−3. In contrast, in the
solid-dominated region (λ
 1) (4.4) exhibits an almost vertical line in the p̄ud(t)–vdu(t)
plane, i.e. the average pressure difference on the sheet remains almost constant throughout
the motion.

Despite its usefulness, the two-mode approximation may not always provide highly
accurate quantitative predictions. For example, in an attempt to calculate the pressure
difference at point 2©, we employed the two-mode approximation given by (4.4) and
obtained p̄ud(vdu = 0) = π2λP̄cr

ud/(8Ly + π2λ). However, comparing this solution with
the corresponding numerical data, we observe that it fails to accurately predict the
pressure difference in the fluid-dominated region, as shown in figure 10(b). Although the
discrepancies are small when compared with Pud or the maximum pressure difference,
they are still qualitatively different. This difference can be eliminated if, for example,
we include three modes (N = 3), instead of only two modes (N = 2), in the solution of
(2.18); see dashed orange line in figure 10(b). Namely, in the two-mode approximation,
p̄ud(vdu = 0) is zero, and therefore even a small non-zero correction from a higher mode
leads to a qualitative change in the results.

4.3.2. The p̄ud(t)–vdu(t) relation near point 4©
Let us now focus on the inverted shape, point 4©, where the pressure difference is
maximized. The flow field around this point once again exhibits pure rotation (see
figure 11a), as we encountered in the linear stability analysis. This is because, when an
odd mode, i.e. A1(t), dominates the sheet’s configuration, it is primarily perturbed by an
even mode, i.e. A2(t), which drives a rotational pattern flow.

To study this particular stage, we expand the two-mode p̄ud–vdu relation around the
inverted configuration, where A1(t) � −2Δ1/2/π and Pud � P̄cr

ud. Again, when we set the
pressure difference at the critical value, we emphasize that the dynamics at later stages is
insensitive to the initial disturbance of the system. This gives,

close to point 4© :

vdu = −8Δ1/2

π2 +
[
9π3λ+ 128 tanh

(
πLy/2

)]2
216π7

[
1152πLy + 135π3λ− 128 tanh

(
πLy/2

)] (p̄max
ud − p̄ud

)
,

(4.5a)

p̄max
ud = P̄cr

ud

(
1 + 1152πLy

9π3λ+ 128 tanh(πLy/2)

)
, (4.5b)

where p̄max
ud denotes the maximum average pressure difference in the inverted shape. In

figure 11(b), we plot this maximum pressure difference as a function of λ and compare the
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Figure 11. The flow field and the average pressure difference near point 4©. In both panels, Ly = 2 and Δ =
0.01. (a) The flow field around point 4© is characterized by pure rotation around the centre of the sheet. This
flow pattern is obtained from the numerical solution of (2.2)–(2.8) with λ = 10. (b) The maximum average
pressure difference (point 4©) as a function of λ. Logarithmic scales are used on both axes. The two-mode
approximation (solid black line) overestimates the numerical solution (2.2)–(2.8) (open black triangles) in the
fluid-dominated region. This deviation is eliminated when a higher mode (N = 4) is used for the solution of
(2.18).

results with the numerical data. We find that in the solid-dominated region (λ
 1), where
the sheet’s motion is unaffected by the hydrodynamic pressure, the maximum pressure
difference remains nearly equal to Pud. In contrast, in the fluid-dominated region, the
external pressure difference is instantaneously amplified to p̄ud � 9πLyP̄cr

ud when Ly � 1.
This amplification may be attributed to the increased transfer of energy from the sheet
to the fluid in this particular region of the parameter space. We discuss these energetic
considerations further in the next section.

While the numerical data in figure 11(b) agree qualitatively with the two-mode
approximation, there are some noticeable quantitative deviations when λ� 1. These
deviations can be attributed to the excitation of higher modes in the system. In fact, when
we solve (2.18) with N = 4 (indicated by the orange dashed line in figure 11b) instead
of N = 2, we observe a convergence towards the numerical data. We are of the opinion
that this deviation occurs because the compressibility of the system is very low in the
fluid-dominated region. For instance, when Ly = 2, (4.5a) implies that β ∼ 10−6. Hence,
even a minor deviation of the volume difference from the approximate solution, owing to
the presence of non-zero higher modes, can lead to significant deviations in the pressure
difference.

We note that while four modes are necessary to correct the deviations around point 4©
of the evolution, only three modes are needed to achieve a similar result around point 2©;
see figures 10(a) and 10(b). We attribute this difference to the fact that when the sheet’s
configuration is symmetric (as in point 4©), it is primarily perturbed by even modes, as we
observed in our linear stability analysis. However, when the base solution is asymmetric
(as in point 2©), it is primarily perturbed by odd modes.

4.3.3. Duration of the pressure spikes
The insets in figures 9(a) and 9(b) show that in the vicinity of the inverted shape, the
pressure difference exhibits a spike-like behaviour, in that it rapidly increases and then
decreases. Let us define the width of these spikes as the time it takes for the system
to transition from point 3© to point 4© and investigate its dependence on the system’s
parameters. Hereafter, we denote this time interval by t 3©→ 4©.
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Figure 12. Duration of the pressure spike as a function of λ, where Ly = 2 and Δ = 0.01. The numerical
solution of (2.2)–(2.8) is denoted by open squares and the two-mode approximation is denoted by the solid
line. While t 3©→ 4© converges to a constant in the solid-dominated region, it exhibits a power law in the
fluid-dominated region.

To compute t 3©→ 4© by using the two-mode approximation, we integrate (4.2) from
point 3©, where dA1/dt is a minimum, to the inverted shape at point 4©, where A1(t) �
−2Δ1/2/π. Although this integration can be carried out analytically (we use Mathematica
(Wolfram Research Inc. 2018) for the symbolic integration), the resulting expression is
long and cumbersome, and therefore we do not present it explicitly here. Instead, we
focus on discussing the general properties observed from this solution. Firstly, since in
the two-mode approximation the limits of integration are proportional to Δ1/2, the time
t 3©→ 4© is independent of the excess length Δ. Secondly, the typical dependence of t 3©→ 4©
on λ for a fixed Ly is presented in figure 12. In the solid-dominated region, we find that
t 3©→ 4© converges to a constant that is independent of λ. In this region, the pressure drop on
the sheet is almost a constant, i.e. it is independent of the fluid’s motion. Therefore, λ does
not contribute to the force balance equation on the sheet and does not affect the duration of
the spike. In contrast, in the fluid-dominated region, we find the scaling t 3©→ 4© ∝ λ−1/2.
Indeed, as λ decreases, the dynamics is slowed down by the resistance of the fluid to the
sheet’s motion, and it takes longer for the pressure difference in the fluid to increase. These
two observations remain valid even when we vary the length of the control volume Ly.

4.4. The elastohydrodynamic energetic interplay
During the evolution of the dynamic system, the external pressure difference Pud supplies
energy to the system that is distributed between the sheet and the fluid. The energy added to
the system is given by E(t) = H − Pudvd(t) (equation (2.9)), where E(t) = Esh(t) + Ef (t)
is the total energy of the sheet and the fluid. Since H and Pud remain fixed during the
sheet’s motion, and since the downstream volume, vd(t), decreases monotonically as the
system evolves from point 1© to 4©, the total energy E(t) always increases. However, the
distribution of the supplied energy between the sheet and the fluid is not monotonic and
depends on the system’s trajectory. Roughly speaking, we can divide the trajectory into
two different regions: between points 1© and 2© of the evolution, the system ‘climbs’ an
energetic hill, because the energy added to the system increases both the potential energy
of the sheet (the bending energy increases; see figure 6c) and the kinetic energies of the
sheet and the fluid. In contrast, when the system passes point 2©, the potential energy
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of the sheet decreases, i.e. the sheet releases bending energy by transforming from the
asymmetric shape to the inverted symmetric shape. The energy gained from the sheet,
together with the work done by the external pressures, acts to increase the system’s kinetic
energy. This process terminates at point 4© when the sheet arrives at the inverted shape
and the total kinetic energy reaches a maximum value.

While the process described above is robust in the sense that it is independent of the
system’s parameters, the final distribution of the kinetic energy between the sheet and
the fluid does depend on the parameters that we choose. These quantitative details can
be further characterized by the two-mode approximation. To show this, we first set the
pressure difference at the critical value, Pud = P̄cr

ud, because deviations from this value
have minimal effect on the evolution at intermediate times. This gives H = 7π2Δ for the
conserved quantity, P̄cr

udvd = 3π3Δ1/2A1 for the work of the pressure difference (vd is
measured relative to LxLy/2) and Ep

sh(t) = V nkAnAk = 4π2Δ − 3π4A2
1/4 for the potential

energy of the sheet. Taken together, the sum of the kinetic energies of the sheet and the
fluid as a function of A1(t) is given by

Ek
sh(t) + Ef (t) = 3π2Δ + 3π4

4
A2

1 − 3π3Δ1/2A1. (4.6)

Initially, at point 1©, we have A1(t) = 2Δ1/2/π and the right-hand side of (4.6) vanishes
to zero, i.e. the total kinetic energy vanishes and the system is at rest. Between points
1© and 2©, the system ‘climbs’ an energy barrier as the potential energy of the sheet

increases. At point 2©, the potential energy reaches a maximum, A1(t) = 0, and the sum
of the kinetic energies increases to 3π2Δ. Between points 2© and 4©, the sheet releases
potential energy and, together with the work of the external pressures, increases the kinetic
energy of the system. The total kinetic energy reaches a maximum value of 12π2Δ when
the sheet reaches the inverted shape (A1(t) = −2Δ1/2/π).

The kinetic energies of the sheet and the fluid are given in the two-mode approximation
by Ek

sh(t) = (limλ→∞ T nk)(dAn/dt)(dAk/dt) and Ef (t) = T nk(dAn/dt)(dAk/dt) − Ek
sh.

Using these two relations and (2.17), (2.18b) and (4.2), we find that the total kinetic energy
at point 4© is distributed between the sheet and the fluid as follows:

point 4©
Ek

sh

12π2Δ
= 1

1 + 128 tanh(πLy/2)

9π3λ

, (4.7a)

Ef

12π2Δ
= 1

1 + 9π3λ

128 tanh(πLy/2)

. (4.7b)

In figure 13, we show that this theoretical prediction fits well with the results
obtained from the numerical solution of (2.2)–(2.8). Equation (4.7) implies that in the
solid-dominated region most of the energy supplied to the system is converted to a kinetic
energy of the sheet, while only a small fraction of the order of λ−1 is converted to the
kinetic energy of the fluid. The picture is reversed in the fluid-dominated region where
most of the energy is converted to the kinetic energy of the fluid. In this case, only a small
fraction of the order of λ is converted to the kinetic energy of the solid.
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Figure 13. The kinetic energy of the sheet and the fluid as a function of λ (Ly = 2). A log–log scale is used on
both axes. The dashed blue line corresponds to the kinetic energy of the sheet, (4.7a), and the dotted black line
corresponds to the fluid’s energy, (4.7b). Symbols with corresponding colours correspond to the numerical
solution of (2.2)–(2.8). In the fluid-dominated region (λ� 1), most of the energy is converted to the fluid,
whereas in the solid-dominated region (λ
 1) most of the energy is converted to the kinetic energy of the
sheet.

5. A discussion on the limits of the model

Early in the formulation, we assumed an inviscid and incompressible flow. In this section,
we discuss some of the limits associated with these two assumptions and assess their
validity in typical experimental set-ups.

The incompressibility assumption implies that the hydrodynamic pressure adjusts
instantaneously to accommodate the sheet’s motion and the boundary conditions, as
dictated by the dynamic system of equations. However, in a real fluid with a finite speed
of sound c̃, the pressure does not adjust instantaneously but requires a time of the order
of L̃y/c̃ to adapt to these changes. This finite time for the propagation of a pressure wave
has only a minor effect on our results, given that the pressure fields change very slowly
compared with L̃y/c̃. Since our system involves the snapping of an elastic object with the
occurrence of seemingly rapid variations in the pressures (spikes), one may question the
validity of the incompressibility assumption. Note that compressibility effects can manifest
even when the Mach number in the system is small, as observed in a phenomenon like a
‘water hammer’ (Ghidaoui et al. 2005).

If we estimate the snapping time by the duration of the spike, then the incompressibility
assumption holds when T ≡ t 3©→ 4© t̃�c̃/L̃y 
 1, where t 3©→ 4© is a dimensionless time
that is given in figure 12 and t̃� = L̃2(ρ̃shh̃/B̃)1/2 is the inertial time scale of the sheet. We
remind the reader that a dimensional quantity is denoted by a tilde.

To test this criterion, we adopted, for example, the experimental parameters of Gomez
et al. (2017a) and consider a sheet with a thickness of h̃ = 0.35 mm, a total length of L̃ =
240 mm, Young’s modulus ẽ = 5.7 GPa and a density of ρ̃sh = 1337 kg m−3. With these
parameters, the characteristic time scale of the system is t̃� � 0.26 s and the characteristic
velocity is L̃/t̃� � 0.9 m s−1. For water, the speed of sound and the fluid’s density are
c̃ � 1500 m s−1 and ρ̃� � 1000 kg m−3, respectively, and therefore the Mach number is
very small. In addition, the sheet-to-fluid mass ratio is λ = 0.002 and the system is in
the fluid-dominated region where the pressure spikes are relatively high. Using figure 12,
where Δ̃/L̃ = 0.01 and L̃y/L̃ = 2, we find that t 3©→ 4© � 0.2. Therefore, T � 160, and
compressibility corrections are most probably negligible. However, if we just decrease the
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total length of the sheet to, say, L̃ = 50 mm, then we find T � 17, and compressibility
may become significant.

In addition, given that the theory is confined to inviscid fluids, it is reasonable to
anticipate that our predictions should align with the solution of the more general, viscous
equations, in the limit of high Reynolds numbers. The Reynolds number is given by
Re = ṽL̃/ν̃, where ν̃ is the kinematic viscosity and ṽ is the typical velocity of the fluid.
Using our normalization convention, where lengths and time are normalized by the
characteristics of the sheet, it can be shown that, up to a multiplication by the typical
normalized velocity, the Reynolds number expresses the ratio between the viscose time
scale L̃2/ν̃ and the inertial time scale of the sheet t̃�.

Adopting again the parameters from (Gomez et al. 2017a) and assuming that the sheet
is immersed in water with ν̃ = 10−6 m2 s−1, we find Re ∼ 105v, where v represents the
typical dimensionless velocity. This velocity depends on the system’s set-up and it can be
estimated using (4.2), which expresses the velocity of the first mode of the sheet. Assuming
L̃y = 2L̃, we obtain v ∼ |dA1/dt|max � 0.1 for the maximum mode velocity (point 3©), and
consequently, Re ∼ 104. Therefore, we can carefully assess that, in this particular case, the
potential flow can adequately describe the dynamic evolution. However, if we reduce the
thickness of the sheet to h = 0.01 mm, the Reynolds number would become much smaller,
and the inviscid assumption of the flow would break down. Nonetheless, we emphasize that
since our problem involves a transient flow, the instantaneous Reynolds number may not
always accurately represent the flow pattern, and a more accurate analysis is required to
verify this assumption.

6. Summary and conclusions

Our paper explores the intricate dynamics that arises when a slender sheet snaps within
a closed channel. To this end, we developed an analytical model that couples the elastic
theory of thin sheets with the hydrodynamic theory of inviscid fluids. Despite the inherent
nonlinearities of our model, which typically require numerical solutions, we derived
analytical predictions by using two complementary assumptions: the small-amplitude
approximation and modal expansion. These predictions apply both for the early stages
of the system’s evolution and at intermediate times when nonlinearities are crucial for the
dynamics. Overall, our findings provide insights into the fundamental physics of slender
structures that interact with an ambient fluid.

To investigate the system’s dynamics during the initial stages of the evolution, we
conducted a linear stability analysis around the symmetric branch of the quasi-static
solution. This analysis provided us with two important results. Firstly, we obtained the
growth rate σ , from which we identified the critical pressure difference for the onset
of the instability (equation (3.6)). Given the significance of this result and to facilitate
comparisons with experiments, we repeat this solution here in dimensional form:

Δ̃/L̃ � 1 : σ̃ =
√

3π2√
1
4

+ 32 tanh[πL̃y/(2L̃)]
9π3λ

√√√√ P̃ud − ˜̄Pcr
ud

˜̄Pcr
ud

, ˜̄Pcr
ud � 3π4

2
Δ̃1/2B̃

L̃7/2
,

(6.1)

where we remind the reader that a tilde designates the dimensional form of the
corresponding quantity and λ is given by (2.3a,b). Below the critical pressure difference,
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i.e. P̃ud < ˜̄Pcr
ud, the system is stable to small perturbations, whereas above the critical

pressure difference, i.e. P̃ud > ˜̄Pcr
ud, any small perturbation can drive the instability.

Secondly, we demonstrated that when the onset of the instability begins, an asymmetric
eigenfunction perturbs the configuration of the sheet, as illustrated in figure 4(b). This
eigenfunction indicates that the midpoint of the sheet remains fixed, while all other points
on the sheet exhibit exponential growth at a rate of σ . As a result, the sheet’s motion
induces rotational pattern flow in the channel, which does not cause a net fluid flux, as
shown in figure 5.

The emergence of a net flux in the channel becomes apparent only when nonlinearities
are taken into account in the analytical analysis. By employing modal expansion and the
two-mode approximation, we accounted for these nonlinearities and derived a simplified,
first-order equation, (4.2), that governs the physics in the weakly nonlinear regime of the
system. This equation predicts the onset of a net flux in the channel with an exponential
growth rate of 2σ . Additionally, it provides accurate estimates of the p̄ud(t)–vdu(t)
relationship and of the amount of energy transferred from the sheet to the fluid during
the snap.

Furthermore, we showed that the system manifests two different behaviours in the
two asymptotic regions, namely λ
 1 (solid-dominated) and λ� 1 (fluid-dominated).
In the solid-dominated region, where the sheet is relatively heavier than the fluid, the
fluid’s motion has minimal influence on the dynamic evolution of the system. As a result,
the parameter λ is scaled out of the solution, and the pressure difference on the sheet
remains approximately constant. In addition, the energy gained from the sheet together
with the work of the external pressure difference is used primarily to increase the kinetic
energy of the sheet, rather than the energy of the fluid. In contrast, in the fluid-dominated
region where the fluid is relatively heavier than the sheet, the dynamics of the system
is slowed down, and the system follows the quasi-static branches of solutions. During
the initial stages of the snap instability, the system traces the asymmetric branch of
solutions, which is quasi-statically unstable, whereas at later stages, it propagates along
the inverted symmetric branch, as shown in figures 9(a) and 9(c). This gradual evolution
facilitates an efficient transfer of energy from the sheet to the fluid and results in significant
amplification of the hydrodynamic pressure. The maximum amount of energy that can be
transferred to the fluid is limited to 12π2Δ, and the rate at which this energy is transferred
can vary greatly and depends on the value of λ. In fact, in the fluid-dominated region,
the width of the pressure spike increases as λ decreases, following scaling of λ−1/2.
Consequently, the width of the pressure spike, or equivalently the rate of the transfer of
energy, can be made arbitrarily slow as λ approaches zero.

In conclusion, our findings demonstrate that the snap instability can either be
significantly affected by the surrounding fluid or remain entirely insensitive to it, where
the degree of sensitivity depends primarily on the sheet-to-fluid mass ratio, λ, which
plays a crucial role in determining the system’s behaviour. These findings have important
implications for the design and functionality of fluidic devices that utilize snap-induced
flow for tasks such as mixing, pumping and particle manipulation in channels. For
example, when the two sections of a channel contain different fluids, a substantial pressure
difference across a sheet can cause the sheet to rupture, leading to the mixing of the two
fluids.

Finally, in order to broaden the scope of our study, it is crucial to consider the effect
of viscosity in the analytical model. This addition will enable us to explore the effect of
viscous dissipation and boundary layers on the dynamics. We plan to pursue this direction
in a future study.
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Appendix A. Derivation of (2.6)

The kinematic boundary condition ensures that at every point along the sheet, i.e. constant
s, the normal velocity of the sheet is equal to the normal velocity of the fluid. This implies

x = xsh(s, t) and y = ysh(s, t) :
(

∂xsh

∂t

)
s
· n̂i = ∇φi · n̂i, (A1)

where in this appendix we explicitly specify which variable is held constant when taking
a derivative with respect to time. Since the equivalence between (2.6) of the main text and
(A1) might not be immediately apparent, in this appendix, we elaborate on the relation
between them.

Up to a normalization factor, the normal vector of, say, the downstream direction is
given by n̂d ∝ (−∂ysh/∂x, 1). Therefore, (A1) reads

− ∂ysh

∂x

(
∂xsh

∂t

)
s
+
(

∂ysh

∂t

)
s
= −∂ysh

∂x
∂φd

∂x
+ ∂φd

∂y
. (A2)

This equation is equivalent to the kinematic boundary condition in the main text, (2.6),
given that (∂ysh/∂t)x equals the left-hand side of (A2). To show this, we write the total
differentials of ysh(s, t) and ysh(x, t) and equate between them at a constant x. This gives

(
∂ysh

∂t

)
x
= ∂ysh

∂s

(
∂s
∂t

)
x
+
(

∂ysh

∂t

)
s
. (A3)

Additionally, at a constant x we have dxsh = (∂xsh/∂s)t ds + (∂xsh/∂t)s dt = 0 which gives

(
∂s
∂t

)
x
= −(∂xsh/∂t)s

∂xsh/∂s
. (A4)

Finally, by substituting (A4) into (A3) and considering that ∂ysh/∂x = (∂ysh/∂s)/
(∂xsh/∂s), we complete the derivation.

Appendix B. Numerical scheme for the solution of (2.2)–(2.8)

In this appendix, we elaborate on the numerical approach for the solution of the nonlinear
model. We start by discretizing time into intervals of �t and the sheet’s arclength into N
equally spaced grid points �s = 1/(N − 1), i.e. sk = (k − 1)�s for k = 1, . . . , N. In each
point, we define the discrete elastic fields at time j and position k by {xk,j

sh , θk,j, F k,j}.
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In addition, the following Fourier expansions are assumed for the potential functions:

φ j
u(x, y) = au,j

0 y + cu,j
0 +

M−1∑
m=1

au,j
m cos

(
πm
Lx

x
)

e(πm/Lx)y +
N−2∑
m=1

cu,j
m cos

(
πm
Lx

x
)

e−(πm/Lx)y,

(B1a)

φ
j
d(x, y) = ad,j

0 y + cd,j
0 +

N−2∑
m=1

ad,j
m cos

(
πm
Lx

x
)

e(πm/Lx)y +
M−1∑
m=1

cd,j
m cos

(
πm
Lx

x
)

e−(πm/Lx)y,

(B1b)

where Lx = 1 − Δ is the vertical dimension of the channel and {ai,j
m , ci,j

m } are yet unknown
constants. These expansions satisfy automatically the continuity equation (2.2a) and the
no-penetration boundary conditions at the sheet–channel interfaces (2.4a). Note that the
unknown coefficients au,j

m and cd,j
m are coupled to exponential terms that may become very

large at the boundaries y = ±Ly/2. To mitigate the impact of these large exponential terms
in the vicinity of the sheet, where y � 1, the coefficients au,j

m and cd,j
m diminish to zero

already with a small number of modes. For this reason, we will generally choose M to be
much smaller than N.

At each time step, our objective is to formulate a closed set of nonlinear and algebraic
equations for the constants defining the elastic fields and the potential functions. These
equations will then be solved using Newton’s method.

Following the methodology outlined by Kodio et al. (2020), we employ a backward
second-order finite difference for the time discretization:

∂xk,j
sh

∂t
= 3xk,j

sh − 4xk,j−1
sh + xk,j−2

sh
2�t

≡ v
k,j
sh , (B2)

where v
k,j
sh is the sheet’s velocity vector at point k and time j. Additionally, we utilize a

central difference to compute derivatives with respect to arclength. The discretizations of
the geometric relations and the force balance equations, (2.5) and (2.7), are given by

xk+1,j
sh − xk,j

sh
�s

= cos θk+1/2,j, (B3a)

yk+1,j
sh − yk,j

sh
�s

= sin θk+1/2,j, (B3b)

θk+1,j − θk,j

�s
= κk+1/2,j, (B3c)

κk+1,j − κk,j

�s
= −Fk+1/2,j

x sin θk+1/2,j + Fk+1/2,j
y cos θk+1/2,j, (B3d)

3v
k,j
sh − 4v

k,j−1
sh + v

k,j−2
sh

2�t
= −F k+1,j − F k,j

�s
+ ( pk+1/2,j

d − pk+1/2,j
u )n̂k+1/2,j

d , (B3e)

where we use the notation k + 1/2 to denote, for example, xk+1/2
sh = (xk+1

sh + xk
sh)/2, and

the variable κ = ∂θ/∂s. The boundary conditions on the sheet (2.8) are given by

x1,j
sh = y1,j

sh = yN,j
sh = κ1,j = κN,j = 0 and xN,j

sh = 1 − Δ. (B4)
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Equation (B3) is coupled to the fluid’s motion through the hydrodynamic pressure
differences, given by Bernoulli’s equation (2.2b):

i = u, d : p j
i (x, y) = −1

λ

3φ
j
i − 4φ

j−1
i + φ

j−2
i

2�t
− 1

2λ
|∇φ

j
i |2 + Pi. (B5)

To complete the numerical scheme we need to account for the kinematic boundary
conditions (A1) and the constant pressures at y = ±Ly/2 (2.4b). The discrete equations
are given by

v
k+1/2,j
sh · n̂k+1/2,j

i = ∇φ
k+1/2,j
i · n̂k+1/2,j

i , (B6a)

p j
i (xn, ±Ly/2) = 0, xn = n − 1

M − 1
Lx, (n = 1, . . . , M). (B6b)

This completes the discretization. In summary, at each time step, (B2)–(B6)
constitute a system of 10N + 2M − 2 equations for the same number of unknowns
{xk,j

sh , θk,j, κk,j, F k,j, v
k,j
sh , ai,j

m , ci,j
m }. Therefore, we have obtained a closed set of nonlinear

algebraic equations that can be solved using Newton’s method.
In our simulations, we use N = 40 and M = 5, and utilize time steps that vary between

�t � 10−2 to address the slower dynamics in the fluid-dominated region, down to �t �
10−4 for the relatively faster dynamics in the solid-dominated region. Newton’s method
is implemented in each time step using the FindRoot routine in Mathematica (Wolfram
Research Inc. 2018).

Appendix C. Derivation of (2.9)

In this appendix, we elaborate on the derivation of (2.9) in the main text. To derive
this equation, we first multiply (2.7a) by ∂θ/∂t, and (2.7b) and (2.7c) by ∂xsh/∂t and
∂ysh/∂t. Then, we add the latter two equations and subtract the result from the first one,
integrate over the configuration of the sheet and use integration by parts and the geometric
constraints, (2.5), to simplify the result. This gives

d
dt

[Ek
sh(t) + Ep

sh(t)] =
∫ 1

0

∂

∂s

(
∂θ

∂t
∂θ

∂s
− ∂xsh

∂t
· F
)

ds

−
∫ 1

0
[ pu(xsh, ysh, t) − pd(xsh, ysh, t)]

∂xsh

∂t
· n̂d ds, (C1)

where Ek
sh(t) = 1

2

∫ 1
0 |∂xsh/∂t|2 ds and Ep

sh(t) = 1
2

∫ 1
0 (∂θ/∂s)2 ds are readily identified as

the kinetic and potential energies of the sheet, respectively. Given the boundary conditions
on the sheet edges, (2.8), the first term on the right-hand side of (C1) vanishes. Therefore,
to complete the derivation, it remains to show that the second term on the right-hand side
of (C1) equals −(d/dt)[Ef (t) + Pudvd(t)].

To show this, we recall that the kinetic energy of an incompressible fluid is given by
Lamb 1945

d
dt

(
1

2λ

∫∫
vi(t)

|∇φi|2 dx dy
)

= −
∮

δvi(t)
pi∇φi · n̂i(s̄, t) ds̄, (C2)

where δvi(t) denotes the perimeter of the upstream or the downstream parts of the control
volume, ds̄ is an infinitesimal element on δvi(t) (on the sheet ds̄ = ds) and n̂i(s̄, t) are the
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corresponding outward local unit normal vectors on δvi(t). Since (∇φi · n̂i)x=0,1 = 0 on
the sidewalls of the channel (see (2.4a)) and pi(x, ±Ly/2, t) = Pi on the upper and lower
walls of the control volume (see (2.4b)), (C2) reduces to

d
dt

(
1

2λ

∫∫
vi(t)

|∇φi|2 dx dy
)

= −
∫ 1

0
pi∇φi · n̂i ds − Pi

∫ 1

0
∇φi · n̂i dx, (C3)

where the first term on the right-hand side of (C3) is integrated over the contour of the
sheet and the second term is integrated over either the left or the right edges of the control
volume. Since the kinematic boundary conditions, (2.6), imply that ∇φi · n̂i = (∂xsh/∂t) ·
n̂i on the sheet, and the change of volumes on each side of the sheet is given by dvi/dt =
− ∫ 1

0 ∇φi · n̂i dx, we can rewrite (C3) as

d
dt

(
1

2λ

∫∫
vi(t)

|∇φi|2 dx dy
)

= −
∫ 1

0
pi

∂xsh

∂t
· n̂i ds + Pi

dvi

dt
. (C4)

Keeping in mind that the total volume in the system is conserved, vd(t) + vu(t) = LxLy,
we have dvd/dt = −dvu/dt. In addition, the normal vectors on the sheet in the upstream
and downstream directions are parallel but opposite in sign, n̂d = −n̂u. Using the latter
relations and summing (C4) over the two parts of the channel, we obtain

d
dt

[Ef (t) + Pudvd(t)] =
∫ 1

0
[ pu(xsh, ysh, t) − pd(xsh, ysh, t)]

∂xsh

∂t
· n̂d ds, (C5)

where Ef (t) = ∑
i=u,d(1/2λ)

∫∫
vi(t)

|∇φi|2 dx dy is the kinetic energy of the fluid. Using
(C5) to replace the last term on the right-hand side of (C1), and integrating once with
respect to time gives (2.9) in the main text.

Appendix D. Minimization of the action

In this appendix, we show that the minimization of the action S = ∫ T
0 L dt, where L is

given by (2.13), yields the small-amplitude model that we derived in § 2.1. To this end, we
add a small perturbation to the elastic and hydrodynamic fields, i.e. ysh(x, t) → ysh(x, t) +
δysh(x, t), and expand the action to leading order in the perturbations. The result of this
expansion is given by

δS =
∫ 1

0

[(
∂ysh

∂t
+ φd(x, 0, t) − φu(x, 0, t)

λ
+ tPud

)
δysh

]T

t=0
dx

+
∫ T

0

[
−∂2ysh

∂x2
∂δysh

∂x
+
(

∂3ysh

∂x3 + Fx(t)
∂ysh

∂x

)
δysh

]x=1

x=0
dt

−
∫ T

0

∫ 1

0

(
∂2ysh

∂t2
+ ∂4ysh

∂x4 + Fx(t)
∂2ysh

∂x2 + [ pu(x, 0, t) − pd(x, 0, t)]
)

δysh dx dt
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Snap-induced flow in a closed channel

+
∫ T

0

∫ 1

0

(
1
2

(
∂ysh

∂x

)2

− Δ

)
δFx dx dt

+ 1
λ

∫ T

0

∫ 1

0
[δφd(x, 0, t) − δφu(x, 0, t)]

∂ysh

∂t
dx dt

− 1
λ

∑
i=u,d

(∫ T

0

∮
δvi

∇φi · n̂iδφi ds̄ dt −
∫ T

0

∫
vi

∇2φiδφi dx dy dt
)

, (D1)

where vi are the volumes in the upstream and downstream directions in the
small-amplitude approximation, δvi are the perimeters of these volumes, n̂i(s̄, t) are the
unit normal vectors to δvi and ds̄ is an infinitesimal line element on δvi.

The first and the second lines in (D1) vanish given the initial conditions in the system
and the boundary conditions on the edges of the sheet, (2.8b) and (2.8c). The third and
the fourth lines in (D1) vanish given that the force balance equation, (2.11), Bernoulli’s
equation, (2.12a), and the constraint of the lateral displacement, (2.10), are all satisfied.
The last term in the last line of (D1) also vanishes when the continuity equations, (2.2a),
are both satisfied. Therefore, it is left to show that the fifth line and the first term in the last
line are both equal to zero.

To this end, we note that the integrals over the perimeters of the upstream and
downstream volumes, δvu and δvd, respectively, both reduce to integrals over the
configuration of the sheet. This is because ∇φi · n̂i = 0 on the sidewalls of the channel
(x = 0, 1), and because δφi(x, ±Ly/2, t) = 0. At our level of approximation, the normal
vector on the sheet points in the y direction. Therefore, we obtain

δS = 1
λ

∫ T

0

∫ 1

0

[(
∂ysh

∂t
−
(

∂φd

∂y

)
y=0

)
δφd(x, 0, t)

+
((

∂φu

∂y

)
y=0

− ∂ysh

∂t

)
δφu(x, 0, t)

]
dx dt. (D2)

Consequently, the perturbation δS vanishes identically when the kinematic boundary
conditions, (2.12b), are satisfied. This completes the proof that the small-amplitude model
emanates from the minimization of action.

Appendix E. Derivation of (2.16) and (2.17)

In this appendix we derive (2.16) and (2.17) in the main text. Firstly, we substitute
the expansions of the potential functions, (2.14), and the height function, (2.15), in the
Lagrangian, (2.13), and integrate over the spatial coordinates. This gives

L =
N∑

n=1

1
4

[(
dAn

dt

)2

+ π2n2
(

Fx(t) − π2n2
)

A2
n

]
− Fx(t)Δ + tPud

N∑
n=1

W(n, 0)
dAn

dt

+ Ly

2λ
(ad

0 + au
0)

N∑
n=1

W(n, 0)
dAn

dt
+ 1
λ

N∑
n=1

N−1∑
m=1

W(n, m)(ad
m − au

m)
dAn

dt
sinh

(
πmLy

2

)

− Ly

4λ
[(ad

0)
2 + (au

0)
2] −

N−1∑
m=1

πm
8λ

sinh(πmLy)[(ad
m)2 + (au

m)2]. (E1)
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Secondly, we minimize (E1) with respect to ai
m(t). This gives

ad
0 = au

0 =
N∑

k=1

W(k, 0)
dAk

dt
, (E2a)

ad
m = −au

m =
N∑

k=1

4
πm

sinh(πmLy/2)

sinh(πmLy)
W(k, m)

dAk

dt
(m = 1, 2, . . . , N − 1), (E2b)

where W(n, m) = (n/π)((1 − (−1)n+m)/(n2 − m2)) for n /= m and zero otherwise.
Thirdly, we substitute equation (E2) back into the integrated Lagrangian, (E1), and

collect terms that are proportional to (dAn/dt)(dAk/dt), the lateral compression, Fx(t),
the pressure difference, Pud, and AnAk. This yields (2.16) and (2.17) in the main text.

Appendix F. Linear stability analysis at a finite excess length

In this appendix, we derive the linear stability analysis of (2.2)–(2.8) for a finite excess
length Δ. In addition, we also outline our numerical approach for the solution of these
equations.

To derive the linear equations, we perturb the elastic fields and the hydrodynamic
fields around their base solutions at t = 0. For example, the sheet height function is
expanded to ysh(s, t) = ysh(s, 0) + εŷsh(s) eσ t, where ysh(s, 0) is the quasi-static solution
of the nonlinear equations at t = 0, ŷsh(s) is an eigenfunction that is yet to be
determined, σ is the growth rate and ε is an arbitrarily small parameter. Similarly,
we expand the other fields in the system and define their corresponding eigenfunctions
{x̂sh(s), θ̂ (s), F̂x(s), F̂y(s), φ̂i(x, y), p̂i(x, y)}. Then, we substitute these perturbed fields in
(2.2)–(2.8) and expand the equations to linear order in ε.

To linear order, the continuity and Bernoulli equations, (2.2), reduce to

∇2φ̂i = 0, (F1a)

p̂i = −σ

λ
φ̂i. (F1b)

Similarly, the geometric constraints, (2.5), and the balance of moments and forces on the
sheet, (2.7), are given by

dx̂sh

ds
= −θ̂ sin θ(s, 0), (F2a)

dŷsh

ds
= θ̂ cos θ(s, 0), (F2b)

d2θ̂

ds2 = [−F̂x(s, 0)θ̂ + F̂y] cos θ(s, 0) − [F̂x + Fy(s, 0)θ̂ ] sin θ(s, 0), (F2c)

σ 2x̂sh = −dF̂
ds

+ Pud θ̂ t̂(s, 0) − [p̂u(xsh(s, 0), ysh(s, 0)) − p̂d(xsh(s, 0), ysh(s, 0))]n̂d(s, 0),

(F2d)

where n̂d(s, 0) = (− sin θ(s, 0), cos θ(s, 0)) and t̂(s, 0) = (cos θ(s, 0), sin θ(s, 0)) are the
normal and tangent vectors of the solution at t = 0, respectively. To form a closure, we
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Snap-induced flow in a closed channel

first supplement equation (F1) with the following boundary conditions at the fluid–channel
interfaces and at the sidewalls of the channel:

∂φ̂i

∂x
(0, y, t) = ∂φ̂i

∂x
(1 − Δ, y, t) = 0, (F3a)

p̂i(x, ±Ly/2) = 0. (F3b)

The sheet–fluid interfaces are supplemented with the kinematic boundary condition:

y = ysh(x, 0) : σ ŷsh + ∂φ̂i

∂x

[
∂ysh

∂x
(s, 0)

]
= ∂φ̂i

∂y
. (F4a)

Finally, we impose the following boundary conditions on the edges of the sheet:

x̂sh(0, t) = x̂sh(1, t) = 0, (F5a)

ŷsh(0, t) = ŷsh(1, t) = 0, (F5b)

dθ̂

ds
(0, t) = dθ̂

ds
(1, t) = 0. (F5c)

This completes the derivation of the equations of the linear stability analysis at a finite Δ.
In summary, (F1)–(F5) always have the trivial solution, where the eigenfunctions vanish
altogether, unless their corresponding determinant is equal to zero.

Given the system’s parameters, Ly, λ and Δ, and the external pressures, Pu and Pd, we
first obtain numerically the quasi-static solution of the system (Oshri 2021), i.e. we obtain
the base solution {xsh(s, 0), ysh(s, 0), θ(s, 0), Fx(s, 0), Fy(s, 0)} and we keep in mind that
φi(x, y, 0) = 0 and pi(x, y, 0) = Pi. Then, we substitute this solution into (F1)–(F5) and
discretize the equations. We use a finite-difference scheme for the equations on the sheet
and a finite-element numerical scheme for the solution of (F1) in the bulk of the fluid.

Appendix G. Derivation of (4.3) from a solvability condition

In this appendix, we demonstrate that (4.3) arises as a solvability condition in a
perturbative solution of (2.18). To this end, we firstly expand the modal amplitudes and
the lateral compression force in the powers of the small parameter ε = (Pud − P̄cr

ud)
1/2:

An(εt) = An(0) − εAn,1(εt) − ε2An,2(εt) − · · · , (G1a)

Fx(εt) = Fx(0) + εFx,1(εt) + ε2Fx,2(εt) + · · · , (G1b)

where we assume slow evolution in time. The minus signs in front of the terms of the modal
amplitudes are chosen for convenience. Secondly, we substitute equation (G1) and Pud =
P̄cr

ud + ε2 into the equations of the modal amplitudes, (2.18), and expand the equations in
powers of ε.

At order ε0 we find the equations

[V nk − Fx(0)Cnk]Ak(0) = − P̄cr
ud
2

W(n, 0), (G2a)

CnkAk(0)An(0) = Δ, (G2b)

where P̄cr
ud is an unknown parameter. These equations are equivalent to the zeroth-order

equations of the linear stability analysis, (3.4), where Pud is replaced with the critical
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pressure difference. Since the initial configuration is symmetric around x = 1/2, these
equations imply that all the even modes vanish, while only the odd modes differ from
zero. At the next order, order ε, we have

[V nk − Fx(0)Cnk]Ak,1 + CnkAk(0)Fx,1 = 0, (G3a)

CnkAk(0)An,1 = 0. (G3b)

These homogeneous equations resemble the linear stability analysis, (3.5), at the
neutral stability state, where σ = 0. They yield a non-trivial solution only when their
corresponding determinant vanishes.

The equations at order ε2 read

[V nk − Fx(0)Cnk]Ak,2 + CnkAk(0)Fx,2 = W(n, 0)

2
+ CnkFx,1Ak,1, (G4a)

2CnkAk(0)An,2 = CnkAk,1An,1. (G4b)

Lastly, at order ε3 we find

[V nk − Fx(0)Cnk]Ak,3 + CnkAk(0)Fx,3 = −T nk
d2Ak,1

d(εt)2 + CnkFx,1Ak,2 + CnkFx,2Ak,1,

(G5a)

CnkAk(0)An,3 = CnkAk,1An,2. (G5b)

As can be seen, at this order the inertial term first affects the hierarchical set of equations.
Therefore, we would expect to obtain the amplitude equation from this order of the
expansion.

Equations (G2)–(G5) provide the complete set of perturbative equations required to
derive the amplitude equation. In the next subsection, we present the derivation of the
amplitude equation in the two-mode approximation.

G.1. The two-mode approximation
In the two-mode approximation (N = 2), the solution to the leading-order equations, (G2),
is given by A2(0) = 0 and

A1(0) = 2Δ1/2

π
, Fx(0) = π2 + 2P̄cr

ud

π2Δ1/2 . (G6a,b)

When this solution is substituted into the equations at the first order, (G3), we find
that A1,1(εt) = Fx,1(εt) = 0. A non-trivial solution, where A2,1(εt) remains arbitrary, is
obtained when we fix the critical pressure difference at P̄cr

ud = 3π4Δ1/2/2, as we obtained
from the linear stability analysis, (3.6). Using the solutions of the first two orders, we
obtain for the solution of (G4) that A2,2(εt) remains arbitrary and that

A1,2(εt) = π

Δ1/2 A2,1(εt)2, Fx,2(εt) = 2
π2Δ1/2 + 3π4

2Δ
A2,1(εt)2. (G7a,b)

It remains to solve (G5) at order ε3. However, this set of equations does not have a solution
unless the following solvability condition is satisfied:

d2A2,1

d(σ t)2 = A2,1 + 3π6

4Δ1/2 (A2,1)
3, (G8)
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Snap-induced flow in a closed channel

where we used the growth rate, (3.6), to simplify the equation. To recover (4.3) from the
main text, we multiply (G8) by dA2,1/dt and integrate it with respect to time. This gives(

dA2,1

d(σ t)

)2

= (A2,1)
2 + 3π6

8Δ1/2 (A2,1)
4, (G9)

where we set the constant of integration to zero, because we seek the trajectory of the
system that passes through the stagnation point. We can now use (G7a,b) to replace
A2,1(εt) with A1,2(εt). This final step yields (4.3) in the main text.
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