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Resources and their use and consumption form a central part of our life. Many branches of

science and engineering are concerned with the question of which given resource objects can

be converted into which target resource objects. For example, information theory studies the

conversion of a noisy communication channel instance into an exchange of information.

Inspired by work in quantum information theory, we develop a general mathematical

toolbox for this type of question. The convertibility of resources into other ones and the

possibility of combining resources is accurately captured by the mathematics of ordered

commutative monoids. As an intuitive example, we consider chemistry, where chemical

reaction equations such as

2H2 + O2 −→ 2H2O,

are concerned both with a convertibility relation ‘−→’ and a combination operation ‘+.’ We

study ordered commutative monoids from an algebraic and functional-analytic perspective

and derive a wealth of results which should have applications to concrete resource theories,

such as a formula for rates of conversion. As a running example showing that ordered

commutative monoids are also of purely mathematical interest without the resource-theoretic

interpretation, we exemplify our results with the ordered commutative monoid of graphs.

While closely related to both Girard’s linear logic and to Deutsch’s constructor theory,

our framework also produces results very reminiscent of the utility theorem of von

Neumann and Morgenstern in decision theory and of a theorem of Lieb and Yngvason on

the foundations of thermodynamics.

Concerning pure algebra, our observation is that some pieces of algebra can be developed

in a context in which equality is not necessarily symmetric, i.e. in which the equality relation

is replaced by an ordering relation. For example, notions like cancellativity or

torsion-freeness are still sensible and very natural concepts in our ordered setting.

1. Introduction

In our industrialized world, we deal with resources and their management on a daily basis.

This applies to things that are commonly considered resources, such as energy, water, and

certain minerals like coal or iron ore. But also more abstract quantities such as time or

information can be considered resources. The main characteristic of a resource is that it

can be used or consumed, either in order to produce some desirable commodity, or in

order to produce other resources for producing desirable commodities, such as machine

equipment.
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The goal of our present work is part of an ongoing project to develop a general

mathematical theory of resources and their convertibility, with intended applications to

the natural sciences, engineering, and eventually economic theory. This has been started

in Coecke et al. (2014) and will be continued here. Before diving into the details, we now

describe the main ingredients of our approach and where they originate. Other already

existing approaches will be discussed in Section 10 and compared to ours.

For our purposes, we make no distinction between desired target commodities and

the resource objects that are used or consumed in generating them. More concretely,

we also treat any target commodity itself as a resource object. The advantage of this is

that it allows for a uniform mathematical formalism in which ‘everything is a resource

object,’ where ‘everything’ refers to every entity in the context under consideration. In

real-world applications, this may also include things like waste or pollution. These are

‘resource’ objects to which one would naturally ascribe a negative value. In the language

of economics, most negative externalities are resource objects of this form. In some cases,

it may not even be clear whether a given resource object has a positive or negative value.

For example, a chemical such as lead (Pb) may be very useful for the construction of

batteries, but at the same time may be a serious annoyance due to its toxicity. For this

reason, it is among the basic tenets of our framework that resource objects should not be

assigned a unique number which measures their value. Rather, the utility of a resource

is determined solely through its interaction with other resource objects. This structuralist

philosophy will be familiar to anyone who has studied some category theory.

As far as this work is concerned, the main characteristic of resource objects is their

convertibility, i.e. the potential of resource objects to be turned into other resource objects.

Due to the inherent circularity in this statement, this cannot be understood as a definition

of what constitutes a resource object. Rather, it serves as a guiding principle for the

mathematical formalism that we develop. This formalism is intended to be a toolbox for

asking and answering questions of the following form:

a. Under which conditions can a resource object x be converted into a resource object y?

b. Can the use of a third resource object z as a catalyst help in achieving the conversion

of x into y?

c. If one tries to convert many copies of x into many copies of y, then how many copies

of x does one need on average in order to produce one copy of y?

As we argued in Coecke et al. (2014), these kinds of questions belong to the pragmatic ap-

proach to science, since they are of an engineering-type nature. So, our work is not intended

to be of relevance to e.g. fundamental physics, but we do not rule out such applications.

Questions a–c have already been studied extensively in certain particular contexts, and

this is where we draw some of our motivation and ideas from. Especially in quantum

information theory, the ‘resource’ aspect of certain quantum states has been widely

investigated, and answers to the above questions have been sought. For example, quantum

entanglement has long been thought of as a valuable resource for quantum information

processing (Bennett et al. 1996a,b; Bennett 1998; Horodecki et al. 2009). The conversion

of entanglement as a resource into information processing as a target commodity happens

through a multitude of protocols such as quantum teleportation, dense coding etc. In recent
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years, the study of resource theories other than entanglement has become a subdiscipline

of quantum information theory (Janzing et al. 2000; Gour 2013; Marvian and Spekkens

2013; Brandão et al. 2013b). The term ‘resource theory’ refers to a particular context in

which one investigates a collection of resource objects with a given convertibility relation.

Some of these resource theories have close connections to thermodynamics and its

second law. In fact, resource-theoretic considerations have been central to thermodynamics

since Carnot’s work on heat engines, which was concerned precisely with questions of the

above form: how much work can be extracted from two bodies of different temperatures?

So it is no surprise that definitions and results closely related to ours can also be found in

the approach of Lieb and Yngvason to thermodynamics and thermodynamic entropy (Lieb

and Yngvason 1999)†. We hope that our toolbox will be useful for the further development

of Lieb–Yngvason thermodynamics. For example, our Theorem 9.4 is closely related to

the main theorem of Lieb and Yngvason (1999) on the characterization of thermodynamic

entropy—and surprisingly, also to the ‘utility theorem’ of von Neumann and Morgenstern

in the foundations of economics (von Neumann and Morgenstern 2007). Besides the study

of resource theories in quantum information theory, these can be considered to be the

main precursors to our work. Lieb and Yngvason already anticipated the possibility that

mathematical structures similar to theirs may have wide applicability in the sciences (Lieb

and Yngvason 2002, p. 2).

1.1. How to read this paper

Except for Appendix B, this paper is self-contained. Almost all our references are pointers

to further reading or have been included for proper attribution. Since this paper is long

and contains a substantial amount of material, we now try to assist the reader in deciding

which parts to read. Of course, this depends on the reader’s background and interests.

• Sections 2 to 5 are mathematically rather basic, and our main points in these sections

are the resource-theoretic interpretations. The mathematics will be close to obvious to

† See Lieb and Yngvason (1998, 2000, 2002) for further developments and exposition, and Thess (2011) for a

textbook account.
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anyone familiar with universal constructions in algebra or with the different kinds of

symmetric monoidal categories (Appendix B), and these readers may proceed through

these sections rather quickly.

• On the other hand, Sections 6 to 9 are mathematically more technical, and contain less

new material on the resource-theoretic interpretation. This is where most of our hard

results are to be found, which we hope to be useful in concrete applications. The kind

of mathematics used here is functional analysis, and readers with a good background

on locally convex spaces will encounter familiar material.

• Readers with a background in linear logic may start with Section 10.1, possibly after

a cursory read of Section 3.

• Readers who understand symmetric monoidal categories well may want to refer to

Appendix B rather early on and refer back to it repeatedly.

The following detailed outline will help readers get a better idea of which parts of the

paper are of interest to them. Figure 1 provides a section dependence diagram.

1.2. Summary and main results

The purpose of this paper is to construct a mathematical framework in which questions

of the form a–c can be asked, and to develop some general tools for answering them.

In Section 2, we start gently by considering the mathematics of ordered sets. These

formalize the convertibility relation between resource objects: if x can be converted into

y and y can be converted into z, then also x can be converted into z; moreover, any x

can be converted into itself. Mathematically, this constitutes the definition of a preorder.

Since any two mutually interconvertible resource objects might as well be considered to

be ‘the same’ resource object, we argue that there is no loss of generality in working

with partial orders instead of preorders, which is what we do from then on. We discuss

some questions of interpretation and present the resource theory of chemistry as our first

example, where the resource objects are collections of molecules or atoms such as

CH4, C60 + HCl + C6H6, 2H2O2, 4N2 + O2, . . .

There is a notion of convertibility of two such resource objects generated by chemical

reactions, such as

CH4 + 2O2 −→ CO2 + 2H2O, Zn + 2HCl −→ ZnCl2 + H2, . . .

Then we introduce ordered maps as morphisms of ordered sets. Resource monotones

which measure the value of every object in terms of a real number are ordered maps with

values in R. We explain that x � y in an ordered set A if and only if f(x) � f(y) for all

such resource monotones f : A → R. A resource monotone f is a conservation law if −f
is a resource monotone as well.

In Section 3, we go further by also considering the other main structure of resource

theories besides the convertibility relation, and this is the combination operation: for any

two resource objects x and y, there should exist a resource object denoted x + y which

describes the situation of having both x and y together, and moreover there should exist a

resource object denoted 0 which represents the vacuous resource object or ‘nothing’. This
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leads to our Definition 3.1, which introduces the notion of ordered commutative monoid.

The idea is that in any resource theory, the convertibility relation and combination

operation should equip the collection of resource objects with the structure of an ordered

commutative monoid. Mathematically, ordered commutative monoids are the central

concept of this paper. Our third example is the resource theory of communication, as

developed by Shannon in his foundational work which established information theory.

It has communication channels – mathematically formalized by stochastic matrices – as

resource objects. These can be converted into each other by pre- and post-processing using

representing encoding and decoding operations. Two such communication channels can

be combined by using them in parallel. In this way, the resource theory of communication

is described by an ordered commutative monoid denoted CommCh. Unfortunately, we do

not yet know how to deal with the analytic details in Shannon’s theory having to do

with allowing small errors of communication in order to optimize throughput. Therefore,

we consider CommCh mostly because of its close relation with Grph in terms of zero-error

communication, and also to give some idea of what the challenges for improving our

present approach are. We hope to achieve a comprehensive resource-theoretic treatment

of Shannon’s theorems in future work.

More examples of resource theories can be found in Coecke et al. (2014). Specific

examples will need to be developed in detail in dedicated work for each application

separately, and so we keep the selection of examples rather sparse in this paper.

The section continues with the definition of homomorphisms and isomorphisms of

ordered commutative monoids. Definition 3.15 introduces functionals on an ordered

commutative monoid as homomorphisms with values in R; in resource-theoretic terms,

these are the resource monotones which respect the combination operation. We then pose

the main question of the present work:

Question 3.24. If f(x) � f(y) for all functionals f, what does this tell us about the ordering

of x relative to y?

In resource-theoretic terminology, the same question reads like this:

Question 1.1. If f(x) � f(y) for all additive resource monotones f, what does this tell us

about the convertibility of x into y?

We use this as a guiding question for the rest of the paper – not only because it

seems like a natural question, but also because the methods that we develop to answer

it should be interesting and useful in their own right. Definition 3.18 then introduces

the notion of generating pair as a technical property that a given ordered commutative

monoid may or may not possess. We hope that generating pairs will exist in many cases

of interest, and many of our subsequent results assume the existence of a generating

pair.

Section 4 explores ordered abelian groups as a particularly nice and tractable class of

ordered commutative monoids. We explain how to every commutative monoid A, one can

associate an ordered abelian group oag(A) together with a homomorphism A → oag(A)

having the property that every homomorphism f : A → G to another ordered abelian

group G factors uniquely through oag(A), resulting in Theorem 4.7. Since R is an
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ordered abelian group, this applies in particular with G = R, and hence gives a partial

answer to Question 3.24. The construction of oag(A) has an appealing resource-theoretic

interpretation in terms of catalysis: oag(A) describes the same resource theory as A,

up to two important differences. First, the convertibility relation is replaced by ‘catalytic

convertibility,’ in which arbitrary catalysts are allowed to facilitate conversions. Second, for

every resource object x there is a new resource object −x such that x+ (−x) = 0, i.e. such

that −x stands for ‘owing’ a copy of x to a ‘bank.’ In fact, this second modification

necessitates the first, since then we can borrow any desired catalyst from a bank and

return it after use. The construction of oag(A) generalizes the standard construction of

the Grothendieck group associated to a commutative monoid.

Section 5 continues this strategy of ‘regularizing’ ordered commutative monoids to

structures that are easier to analyse mathematically. The new protagonists are ordered

Q-vector spaces, which form a particularly well-behaved subclass of ordered abelian

groups, namely those that are torsion-free and divisible. Similar to the previous case, we

associate to every ordered abelian group G an ordered Q-vector space ovsQ(G) together

with a homomorphism G → ovsQ(G) such that any other homomorphism G → V to

an ordered Q-vector space V factors uniquely through ovsQ(G). This regularization also

has a nice resource-theoretic interpretation, again in terms of two important differences

between G and ovsQ(G). First, the convertibility relation on ovsQ(G) is the many-copy

convertibility, where x can be converted into y if and only if some number of copies of

x can be converted into the same number of copies of y in G. Second, ovsQ(G) contains

additional resource objects which behave like formal nth parts or nth fractions of the

resource objects in G.

If we start with an ordered commutative monoid A, then we can combine the two

regularization procedures and obtain an ordered Q-vector space ovsQ(oag(A)), which we

also denote by ovsQ(A) for brevity. By doing this, both the catalytic and the many-

copy regularizations have been performed. This may facilitate many conversions between

resource objects that were impossible originally. At the mathematical level, we are now

dealing with a vector space rather than a monoid, and hence the well-understood tools

of linear algebra and functional analysis can be applied. The price to pay is that our

two regularizations have lost some information about the original ordered commutative

monoid A, and in particular about the original plain convertibility relation.

In Section 6, a third step of regularization V �→ aovsQ(V ) takes us from an ordered

Q-vector space V to an Archimedean ordered Q-vector space aovsQ(V ), again satisfying

a universal property analogous to the previous two. And again, an Archimedean ordered

Q-vector space is an ordered Q-vector space which is well-behaved in a certain technical

sense. The resource-theoretic interpretation is that in addition to allowing catalysis and

many-copy conversions, we now also allow the use of seeds, i.e. the consumption of an

arbitrarily small amount of a resource object which may facilitate a desired conversion.

At this point, we finally find an answer to Question 3.24 in the form of Theorem 6.15,

which can be rephrased as saying that x � y holds in an Archimedean ordered Q-vector

space W if and only if f(x) � f(y) for all functionals f : W → R. In Theorem 6.18, we

lift this result to a complete answer to Question 3.24 for ordered commutative monoids

with a generating pair.
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Fig. 2. The main kinds of structures considered in this paper and their relationships. Every box is a

category, every arrow is a functor, and the left-pointing arrows indicate inclusions of full

subcategories. Each pair of arrows denotes an adjunction, so that all these subcategories are

reflective. In down-to-earth terms, this means that we can read the first left-pointing arrow as

‘ordered abelian groups are just ordered commutative monoids, but with extra properties,’ while

the first right-pointing arrow says ‘Every ordered commutative monoid can be regularized to an

ordered abelian group in a universal manner,’ and similarly for the other arrows.

Figure 2 provides an overview of the three regularization procedures that we perform

between ordered commutative monoids and the three well-behaved subclasses of ordered

commutative monoids that have been mentioned.

In Section 7, we look abstractly at the collection of all functionals on an ordered

commutative monoid, with particular emphasis on those ordered commutative monoids

which have a generating pair. For this case, we prove in Corollary 7.9, roughly speaking,

that every functional is a nonnegative linear combination of extremal functionals (possibly

infinite, i.e. an integral).

In Section 8, we consider the resource-theoretic notion of rate and formalize it in

our framework. Rates are concerned with the scaling of how many copies of a resource

object y one can extract from many copies of a resource object x. We propose a precise

definition of rate and prove various properties. Since this notion of rate still turns out

to have some technical deficits, we also propose a notion of regularized rate which

applies to ordered commutative monoids with a generating pair. We derive a multitude

of results on regularized rates, some of which are straightforward to show, while others

seem surprisingly deep. Our probably most useful result is Theorem 8.24, which provides

a formula for maximal regularized rates,

Rreg
max(x → y) = inf

f

f(x)

f(y)
.

Here, f ranges over all functionals with f(y) �= 0, and it is assumed that x, y � 0. This

results in a new formula (8.25) for the Shannon capacity of a graph, which is a graph

invariant that is notoriously hard to compute. As speculated in Example 8.26, the rate

formula may also have immediate applicability to the resource theories which have been

investigated in quantum information theory.

Section 9 investigates when an ordered commutative monoid A embeds into R, which

means that there exists a functional f : A → R such that x � y is equivalent to f(x) � f(y).

In resource-theoretic terms, this property means that there is an essentially unique way of

assigning a value or price to every resource object. Using our earlier results, we provide

conditions for when this happens in Theorem 9.4. This result is closely related to the

utility theorem of von Neumann and Morgenstern in decision theory and economics, and

also to a theorem of Lieb and Yngvason in the foundations of thermodynamics. While
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it is an extremely strong requirement for A itself to embed into R, it is a much weaker

requirement for the regularization aovsQ(A) to embed into R, and Theorem 9.9 provides

a characterization for when this happens. For technical reasons, we formulate and prove

this result only for those ordered commutative monoids A which have a generating pair

and satisfy x � 0 for all x ∈ A.

In Section 10, we briefly compare our approach to other approaches for mathematic-

ally formalizing resources and their convertibility. This comprises Girard’s linear logic,

Deutsch’s constructor theory, and some works which are more or less general approaches

to resource theories in quantum information theory.

Appendix A proves the standard Hahn–Banach extension theorem for Q-vector spaces,

which we use in Sections 6 and 8.

Finally, Appendix B explains how parts of the main text can be regarded as special cases

of certain pieces of category theory. The reason that this is interesting and relevant is that

using the more general setup of category theory could help us answer resource-theoretic

questions of a different flavour than c–c, such as: if x can be converted into y, then how

does one achieve such a conversion?

1.3. Terminology and notation

We have followed three guiding principle in choosing our terminology:

• The mathematical terms should be separate and independent from their resource-

theoretic interpretation. One reason for this is that the mathematical structures that

we investigate here also come up in other contexts, such as the K-theory of operator

algebras (Rørdam et al. 2000; Blackadar and Rørdam 1992). One exception where we

have not followed this principle is with the notion of rate investigated in Section 8.

• The various terms used should nicely match up with each other. For example, we use

the adjective ‘ordered’ all the way from ordered commutative monoids to Archimedean

ordered Q-vector spaces.

• Many concepts from algebra in an unordered setting have a similar flavour in our

ordered setting, and hence we find it useful to employ the same terminology. This

applies to the definitions of annihilators (Remark 3.5), cancellativity (Definition 4.3),

homomorphisms (Definition 3.9) and torsion-freeness (Definition 5.1).

In some cases, this means that our mathematical terminology and notation clashes with

some other mathematical literature, but the benefits of a consistent terminology following

these principles should be higher than the cost.

Concerning the mathematical notation, we have tried not to overload the same symbol

with different meanings. The following table provides an overview of most of our notation,

roughly in order of appearance:

j, k, l, m, n : natural number coefficients in N (including 0) or N>0.

α, β, ε, κ, λ, μ : rational coefficients in Q, Q�0 or Q>0, even when not explicitly designated

as rational.

r, s, t : real coefficients in R, R�0 or R>0.
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A : an ordered commutative monoid (Definition 3.1), in Section 2 an ordered

set (Definition 2.1).

x, y, z, w : elements of an ordered commutative monoid.

G,H : graphs (Example 3.7).

f : a functional (Definition 3.15) or more general kind of homomorphism

(Definition 3.9).

(g+, g−) : a generating pair in an ordered commutative monoid (Definition 3.18).

Kn : the complete graph on n vertices (Example 3.20).

G : an ordered abelian group (Definition 4.6).

g : a generator in an ordered abelian group (Definition 4.11).

V : an ordered Q-vector space (Definition 5.7).

W : an Archimedean ordered Q-vector space (Definition 6.4).

U : an absolutely convex absorbent set (Definition 6.1).

Rmin, Rmax : minimal and maximal rate (defined in (8.6) and (8.3)).

R
reg
min, R

reg
max : minimal and maximal regularized rates (Remark 8.21).

p : a sublinear function (Theorem A.1).

Last but not least, we try to harness the power of category theory as an organizing

language whenever this seems possible, while also trying to explain matters in a way

which will hopefully be comprehensible to those who have not yet come to appreciate the

‘joy of cats’ (Adámek et al. 1990; Leinster 2014).

1.4. A disclaimer

Due to the wide span of phenomena and situations which our general formalism is built

to capture, we cannot be certain that our definitions will necessarily apply to all different

kinds of resource theories that are of relevance to applications. In fact, as Remark 2.6

shows, it is already clear that there are resource theories with high relevance to probability

theory and information theory which cannot be described in our framework. We hope to

address this important issue in future work.

Furthermore, there is evidence that the technical details of even our current limited

framework have not yet reached their final form. In particular, we see two main issues:

a. Many of our results assume the existence of a generator or generating pair. We suspect

that this can mostly be avoided at the cost of higher complexity in the definitions and

theorem statements: Lemma 6.12 shows that the existence of a generator in an ordered

Q-vector space V simplifies the construction of aovsQ(A) significantly as compared

to the general case. It would be better for the presentation of our results to either

assume the existence of a generating pair throughout, or to do away with it completely.

Since we know neither whether we can expect a generating pair to exist in (almost) all
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applications of interest, nor how much more complicated the general definitions and

theorems would be, we have left this tension unresolved for now.

b. The catalytic regularization of Section 4 and the many-copy regularization of Section 5

are qualitatively different from the seed regularization of Section 6: the former two do

not only modify the ordering or convertibility relation, but also complete the collection

of resource objects by throwing in new ‘imaginary’ objects like formal negatives or

formal fractions; the latter regularization only regularizes the ordering without adding

new elements. It turns out that one can perform this third step in a manner which

also adds new elements and thereby completes an Archimedean ordered Q-vector

space further to an Archimedean ordered R-vector space; see Remark 6.14. However,

an Archimedean ordered R-vector space is more than just an ordered commutative

monoid with special properties: the scalar multiplication by arbitrary reals really does

add additional structure. Since we try to focus on ordered commutative monoids in

this work, we do not consider this additional step. We rather work with Archimedean

ordered Q-vector spaces, since these still are ordered commutative monoids with extra

properties but no extra structure.

Finally, since this paper touches on many different areas and brings them together, it

is only natural that many of our methods and results are not new or even completely

standard. We have tried to explain this in all cases in which we are aware of this, but

it is hard to guarantee that all non-original ideas are properly designated as such. For

this reason, we do not want to claim any particular one of our ideas to be original, but

nevertheless hope that some of them are novel and interesting.

2. Preliminaries on ordered sets

Before embarking on the journey to resource theories with both a notion of convertibility

and a notion of combining resource objects, we set the stage by considering the structure

of resource convertibility only. This allows for a simple mathematical treatment in which

we can still make some essential observations. We hope that grasping these points will

help the reader understand the upcoming main part of this work.

So what is a notion of convertibility? For any two resource objects x and y, either x is

convertible into y, which we denote x � y, or x is not convertible into y, for which we

write x �� y. The way that we think about the convertibility x � y is that if we have x,

then we can turn it into y, and x gets consumed in doing so.

Which mathematical properties should this convertibility relation have? Clearly, any x

should be convertible into itself, e.g. by doing nothing. Furthermore, if x is convertible into

y and y into z, then x should also be convertible into z, e.g. by composing a conversion of

x into y and a conversion of y into z. In this way, we find that the collection of resource

objects forms an ordered set:

Definition 2.1. An ordered set A is a set equipped with a binary relation � satisfying

• reflexivity,

x � x.

https://doi.org/10.1017/S0960129515000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000444


T. Fritz 860

• transitivity,

x � y, y � z =⇒ x � z.

• antisymmetry,

x � y, y � x =⇒ x = y.

The way that we think about the antisymmetry axiom is not as an additional axiom,

but rather as the definition of equality in terms of the ordering:

x = y :⇐⇒ x � y and y � x. (2.1)

In other words, two resource objects can be considered the same for the purpose of

resource theories as soon as they are mutually interconvertible. This is the relevant notion

of being ‘the same’ in our context, and hence we might as well use the equality symbol for

it and call it ‘equality,’ instead of introducing another term like ‘equivalence.’ So here and

in all of the following sections, we work with (2.1), even when not mentioned explicitly.

This means that whenever we define a binary relation ‘�’ which satisfies reflexivity and

transitivity, we automatically regard two elements of the underlying set as equal as soon

as they are ordered both ways, i.e. we automatically take the quotient of the underlying

set such that the antisymmetry axiom holds as well.

Example 2.2. Another reason to adopt Equation (2.1) as the definition of equality is that

in some resource theories, it is not even clear what other notions of equality there are.

For example, consider a resource theory in which a resource object is a finite probability

space, i.e. a finite set equipped with a probability distribution. Then when should two such

resource objects be considered equal? Do the underlying sets of these distributions have

to contain exactly the same elements? Or is it sufficient to have a bijection between the

outcome sets which preserves the individual elements’ probabilities? This second notion of

equality would be much coarser than the first. In particular, it would make two ‘different’

distributions on the same set equal as soon as the set’s elements can be permuted so that

the probabilities match up. But not only is the notion of equality of these probability

spaces conventional; as far as the resource theory is concerned, it is also irrelevant.

Remark 2.3. For us, an unordered set is an ordered set in which the ordering relation is

symmetric, i.e. in which x � y holds if and only if y � x holds. This clearly means that

x � y holds if and only if x = y. Along these lines, we may also think of an ordering

relation � as a notion of equality in which the assumption of symmetry of equality is

dropped.

Remark 2.4. Instead of interpreting x � y as ‘x can be converted into y,’ we can also take

it to mean ‘x can substitute for y.’ For example, consider a company and two of their

employees, say Alice and Bob. Say that Alice can substitute for Bob when Bob is away,

but Bob cannot stand in for Alice when she is off work. This results in a ‘substitutivity’

relation which is very similar in spirit to a convertibility relation, but the interpretation

is slightly different. In particular, Alice can trivially substitute for herself, which leads

to reflexivity; and if Alice can substitute for Bob and Bob for Charlie, then Alice can

also substitute for Charlie (not necessarily at the same time), which leads to transitivity.
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Substitutivity is not symmetric in general, and therefore not an equivalence relation. This

has previously been found to be important by the philosopher Brandom, who discusses

the issue of symmetry of substitutivity in the context of inferentialism in Brandom (2000,

Chapter 4).

The difference between a convertibility relation and a substitutivity relation is that in

convertibility, it is the objects themselves which become different; in substitutivity, the

objects stay the same, and it is only the way in which they can be used which changes. This

is very similar to the distinction between active transformations and passive transformations

in physics. Since the mathematics of convertibility relations and substitutivity relations is

the same, for us there is no need to distinguish between convertibility and substitutivity.

In particular, all of our results also apply to substitutivity relations.

Yet other possible interpretations in possible. In economics, we may take ‘x � y’ to

mean ‘I prefer x over y,’ so that the preferences of an agent are encoded in an ordered

set (von Neumann and Morgenstern 2007). Another possible interpretation is the ‘financial

accessibility’ of Thess (2011, Section 1.2), where ‘x � y’ is taken to stand for ‘there is a

market in which it is possible to exchange x for y.’

Example 2.5 (The resource theory of chemistry). The resource theory of chemistry forms

a subfield of chemistry known as stoichiometry. Here, the resource objects are collections

of molecules denoted as formal sums such as

CH4, C60 + HCl + C6H6, 2H2O2, 4N2 + O2, . . .

where the coefficients describe the number of molecules of each kind. Hereby, we think

of each molecule in the collection as contained in a separate ‘box,’ so that the collection

really consists of a bunch of boxes containing one molecule each. This will ensure that

an imaginary chemical engineer operating with these molecules has complete control over

what happens to each individual molecule, and can let the different molecules react as

desired. We also make the idealized assumption that while a molecule is contained in its

box, it is guaranteed not to decompose spontaneously.

The convertibility relation is going to be defined in terms of chemical reactions, such as

CH4 + 2O2 −→ CO2 + 2H2O, Zn + 2HCl −→ ZnCl2 + H2. (2.2)

Concretely, we declare a collection of molecules to be ‘greater than or equal to’ another

one if and only if there is a sequence of chemical reactions which can be performed so

as to convert the former collection into the latter. For example, the reactions (2.2) taken

together tell us that

CH4 + 2O2 + Zn + 2HCl � CO2 + 2H2O + ZnCl2 + H2.

Hereby, we imagine that the boxes containing each molecule can be brought together at

will, so that the operator can decide which reactions are to take place in order to convert

which subcollection of molecules into something else. With this in mind, one collection

of molecules becomes convertible into another if and only if there is a sequence of

individual reactions which achieves the conversion, and such that each reaction operates

on a subcollection of the molecules. Following (2.1), two collections of molecules are
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regarded as equal as soon as they are mutually interconvertible. This defines the ordered

set Chem, modulo a certain ambiguity as to which reactions exactly one wants to allow. In

applications to laboratory or industrial chemistry, one can choose all reactions (2.2) that

can be realized with the given equipment.

We will soon consider Chem as an ordered commutative monoid, and this is then the

mathematical structure which formalizes the resource theory of chemistry.

Remark 2.6. In many resource theories of practical interest, there is more mathematical

structure in resource convertibility than just an ordering. The reason is the following: if

a given x cannot be converted into a desired y exactly, then one would like to know how

close one can get to y from x. In other words, one needs to be able to consider approximate

conversion of x into y. This is of central importance for example in Shannon’s resource

theory of communication, which we discuss in Section 3. In such a setup, describing

convertibility as a binary relation with possible values ‘yes, x is convertible into y’ or ‘no,

x is not convertible into y’ is not sufficiently expressive. We intend to tackle this problem

of ‘epsilonification’ Coecke et al. (2014) in future work.

Epsilonification is also relevant for Chem. If one follows the above prescription for

constructing the order, one needs to make a sharp choice on which reactions (2.2) are to

be considered and which ones are not. In an epsilonified setting, it should be possible to

take more quantitative information about the individual reactions into account, such as

the speed at which an individual reaction happens.

Just as with most other mathematical structures, it is not only of interest to consider

individual ordered sets, but also maps between ordered sets.

Definition 2.7. An ordered map between ordered sets A and B is a function f : A → B

such that

x � y =⇒ f(x) � f(y).

Ordered maps automatically respect equality: since x = y means x � y and y � x, this

implies f(x) � f(y) and f(y) � f(x), and therefore f(x) = f(y).

In resource theories, one is often interested in assigning a real number to each resource

object, with the idea being that this number measures the value of the resource object

relative to the other ones. In other words, if A is the ordered set formalizing the resource

theory, then one is interested in ordered maps A → R, where R is an ordered set

in the usual way. Such ordered maps are sometimes known as resource monotones or

just monotones; the terminology possibly originates with Vidal, who introduced resource

monotones in the study of quantum entanglement (Vidal 2000). By definition, a monotone

f preserves the convertibility relation: if x � y, then f(x) � f(y). An important question

is: under what conditions does the converse hold as well? Is there a monotone f which

not only preserves, but also reflects the ordering in the sense that

x � y ⇐⇒ f(x) � f(y)? (2.3)

Such a monotone is extremely useful, as it allows one to decide the convertibility of x

into y unambiguously simply by comparing f(x) with f(y). It is automatically injective:
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f(x) = f(y) means f(x) � f(y) and f(y) � f(x), which implies x � y and y � x

by assumption, and therefore x = y by the definition of equality (2.1). Therefore, the

existence of such a monotone is equivalent to the existence of an embedding of A into R.

More generally, one can ask for the existence of a family of monotones fi indexed by

some i ∈ I such that

x � y ⇐⇒ fi(x) � fi(y) ∀i. (2.4)

Because of the same argument as before, the existence of such a family is equivalent

to an embedding A → RI , where RI is the set of all functions I → R equipped with

the pointwise ordering. It is easy to see that such a family of monotones always exists

if one takes I = A (Coecke et al. 2014, Proposition 5.2), and in fact it is sufficient to

let them take values in the Booleans {0, 1} ⊆ R only instead of all of R. So, proving

the existence of a family of monotones satisfying Equation (2.4) is a very simple matter.

However, in practice it is of interest to find a reasonably small such family such that all its

members are easily computable, and this is typically much more difficult. For example, if

one considers the ordered set of Turing machines with T � S whenever T can simulate S,

then no computable family of monotones with Equation (2.4) can exist, since this would

solve the halting problem.

Remark 2.8. Another interesting kind of monotone f is when −f is also a monotone. Such

a monotone is usually called a conservation law. A function f : A → R is a conservation

law if and only if x � y implies that f(x) = f(y), which means that the value of x is

conserved under any conversion, including conversions that are not reversible.

Example 2.9. In chemistry, the total number of atoms of any given element is a

conservation law. For example, the number of hydrogen atoms is six on both sides

of the reaction

Zn + 2HCl −→ ZnCl2 + H2,

and it is similarly conserved in any other chemical reaction. (For simplicity, we do not

consider nuclear reactions to be part of chemistry.)

3. Resource theories: ordered commutative monoids

Until now, we have only considered the convertibility relation on resource objects. The

mathematics relevant for this is the theory of ordered sets. While ordered sets can be

highly complex in their structure, they have been extensively studied during the 20th

century and we do not have anything new to say about them.

However, the convertibility relation is not the only piece of structure that a resource

theory typically has: there also should exist the possibility of combining resource objects,

in the sense that for any two resource objects x and y, there also is a resource object

x+ y which describes their combination. We think of x+ y as the object which represents

having access to both x and y together and at the same time, and such that both x and

y get consumed in the process of converting x + y into something else. However, other

interpretations are certainly possible: for example, one could also take x+y to represent a

disjunctive combination of resource objects, and all our definitions and results will apply
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just as well, although certain things like functionals (Definition 3.15) will be more difficult

to interpret.

When this additional structure is considered, the mathematics of ordered sets needs to

be replaced by the mathematics of ordered commutative monoids, which turns out to be

considerably richer. We propose that any resource theory (modulo Remark 2.6) should

be mathematically described by an ordered commutative monoid in the following sense:

Definition 3.1. An ordered commutative monoid is an ordered set A equipped with the

following additional pieces of structure:

• a binary operation +,

• a distinguished element 0 ∈ A,

and such that the following axioms hold:

• + is associative and commutative

x+ (y + z) = (x+ y) + z, x+ y = y + x,

• 0 ∈ R is a neutral element

0 + x = x,

• addition respects the ordering

x � y =⇒ x+ z � y + z. (3.1)

Remark 3.2. Up to the discussion on equality in the previous section, this coincides

with our previous definition of a ‘theory of resource convertibility’ (Coecke et al.

2014, Definition 4.1). Also in Lieb and Yngvason’s approach to the foundations of

thermodynamics (Lieb and Yngvason 1999), our definition corresponds to the axioms

‘A1’ to ‘A3’ together with their background assumptions on forming composite systems.

Furthermore, mathematical structures like this or closely related ones have previously

been studied:

• Definition 3.1 coincides with the definition of commutative pomonoid of (Fakhruddin

1986; Raftery and van Alten 2000), the definition of commutative p.o. monoid of Luttik

(2003), and with the definition of partially ordered monoid of Tsinakis and Zhang

(2004)†.

• It also coincides with the notion of partially-ordered semimodule over the partially-

ordered semiring N in the sense of Golan (1999).

• Preordered abelian semigroups (Fuchssteiner and Lusky 1981, Section 1.1) only differ

in using preorders instead of partial orders, i.e. two elements are not necessarily

regarded as equal when they are ordered both ways.

• The positively ordered monoids of Wehrung (1992) and the po+-monoids of Moreira

Dos Santos (2002) differ in addition by also postulating x � 0 for all x.

† The connection to Petri nets made in Tsinakis and Zhang (2004) is especially interesting: a Petri net can be

understood as presentation of an ordered commutative monoid in terms of generators and relations, and this

is what the adjunctions of Tsinakis and Zhang (2004) secretly describe. This should be investigated in more

detail elsewhere.
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• The partially ordered abelian semigroups of Nakada (1951) differ from ordered

commutative monoids only in that there are not required to have a neutral element.

• The preordered semigroups of Blackadar and Rørdam (1992) do neither require a

neutral element nor postulate (2.1).

• Unital commutative quantales (Rosenthal 1990) are ordered commutative monoids in

which the ordering is a complete lattice, and the addition preserves joins.

While the ordering in an ordered commutative monoid formalizes the convertibility

relation and addition describes the possibility of combining resources, it remains to discuss

the meaning of the three axioms in Definition 3.1. First, associativity and commutativity

of ‘+’ say that any finite set of resources can be grouped together in a unique way,

in the sense that any two ways of grouping the resource objects result in mutually

interconvertible composite resource objects. Second, the zero element 0 represents the

void resource object, which when combined with any other resource object results in

something mutually interconvertible with the second. In both cases, we speak about

‘mutually interconvertible,’ since this is how we defined equality in (2.1). There is still no

need to use any other notion of equality on A. Third, the monotonicity of addition (3.1)

means that if x can be converted into y, then we can also convert the composite object

x+ z into the composite object y + z, e.g. by converting x into y and doing nothing to z.

We do not assume that x � 0 necessarily holds for all x ∈ A. There are several reasons

for this: first, assuming x � 0 for all x would amount to assuming that any resource

object can be converted into nothing, i.e. can be discarded or be made to vanish at will.

Although this indeed happens in many resource theories that are of interest in practice,

this will not always be the case. For example, one can consider resource theories which

contain objects that cannot just be ignored after their disposal, such as nuclear waste.

Second, a related issue is that if x � 0 for all x ∈ A, then A cannot have any nontrivial

conservation law: any resource theory with a non-trivial conservation law, such as Chem,

will have resource objects x with x �� 0. Third, most of our results do not require the

assumption x � 0; a notable exception is Theorem 8.24. Fourth, imposing x � 0 would

make Definition 3.1 lose the appealing and useful self-duality property that reversing the

ordering in an ordered commutative monoid yields another ordered commutative monoid.

Remark 3.3.

a. We can understand the monotonicity property (3.1) as stating that the map x �→ x+ z

is an ordered map A → A in the sense of Definition 2.7.

b. In particular, this monotonicity property implies that the addition operation respects

equality,

x = y =⇒ x+ z = y + z.

Remark 3.4. Following Remark 2.3, a commutative monoid is an ordered commutative

monoid having the special property that the ordering is symmetric, in the sense that x � y

implies y � x.

Other properties of ordered commutative monoids are as follows:
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• The unit element 0 is unique: if 0′ is another unit element, then we have 0 = 0 + 0′ =

0′ + 0 = 0′.

• The monotonicity (3.1) also holds in a stronger form: if x � y and w � z, then also

x+ w � y + z, since

x+ w
(3.1)

� y + w = w + y
(3.1)

� z + y = y + z.

When A is an ordered commutative monoid, x ∈ A and n ∈ N , then we also write nx

as shorthand for the n-fold sum of x,

nx := x+ · · · + x︸ ︷︷ ︸
n times

.

This turns A into a semimodule over the semiring N , which means nothing other than

that the distributive laws (n + m)x = nx + mx and n(x + y) = nx + ny hold, as well as

1x = x and 0x = 0.

Remark 3.5. Let A be an ordered commutative monoid and x, y ∈ A. Then the set

ann(x, y) := { n ∈ N | nx � ny },

is a subset of N . We call this subset the annihilator, since in the special case of an abelian

group, it coincides with the familiar notion of annihilator in algebra: an abelian group

is trivially ordered, and hence nx � ny is equivalent to nx = ny, and hence also to

n(x − y) = 0. So in this case, our ann(x, y) coincides with the set of all n ∈ N for which

n(x− y) = 0, which is the standard notion of annihilator.

In general, the annihilator ann(x, y) is an ideal in N , in the sense that it contains 0, is

closed under addition, and therefore also closed under multiplication by arbitrary natural

numbers. It is itself a commutative monoid. While we could also regard it as an ordered

commutative monoid with respect to the usual ordering on N , it is not clear to us what

the relevance of considering this particular ordering would be.

We now get to our main examples of ordered commutative monoids and refer to Coecke

et al. (2014) for many more.

Example 3.6 (The ordered commutative monoid of chemistry). In the resource theory of

chemistry from Example 2.5, we can add two collections of molecules by simply joining

them up:

(C60 + 3H2) + (4N2 + O2) := C60 + 3H2 + 4N2 + O2.

By definition of the convertibility relation, this addition preserves the ordering �. We also

have a neutral element for ‘+’ given by the empty collection of molecules, denoted by ‘0.’

Hence, Chem becomes an ordered commutative monoid.

Example 3.7 (The ordered commutative monoid of graphs). Another ordered commutative

monoid that our formalism can be successfully applied to is Grph, the ordered commutative

monoid of graphs. In the upcoming sections, we will achieve a glance of some of its highly

intricate structure.
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Fig. 3. Two graphs together with a graph map between them. The map is specified by taking every

vertex of the source graph to the corresponding vertex of the target graph which carries the same

label.

In order to define Grph, we start with the collection of all finite graphs†. If G,H ∈ Grph,

then we put H � G whenever there exists a graph map m : G → H. Such a map consists

of a function which sends every vertex of G to a vertex of H such that adjacent vertices

get taken to adjacent vertices; Figure 3 shows an example. We think of this as saying

that H can in some sense ‘simulate’ G and is therefore at least as useful as G. By this, we

have basically defined Grph as the preorder reflection (Appendix B) of the category of

graphs. Already as an ordered set, the structure of Grph is highly complex; for example,

it is known that every finite ordered set arises in Grph as an ordered subset. This is a

special case of the results of (Pultr and Trnková 1980, Section 4.3).

Concerning how to combine graphs, there are many different possible ways to do

this: one can take the disjoint union, the disjoint union plus all edges between the two

components (graph join), or one of the many different products of graphs (Imrich and

Klavžar 2000). We suspect that many of these choices will give rise to an interesting

ordered commutative monoid of graphs. But ultimately, the choice of which combination

operation to use has to be determined by the desired application. For our purposes, this

will be the relation to communication channels in Proposition 3.11, and that we want to

ultimately recover some well-known graph invariants in terms of the ordered commutative

monoid structure of Grph, in particular the chromatic number or the Shannon capacity.

This leads us to take the combination of graphs G and H to be given by the disjunctive

product G ∗ H, also known as the co-normal product. The disjunctive product G ∗ H is

defined to be the graph whose vertices are pairs (v, w) with v a vertex of G and w a vertex

of H, and such that (v, w) is adjacent to (v′, w′) if and only if v is adjacent to v′ or w is

adjacent to w′,

(v, w) ∼ (v′, w′) :⇐⇒ v ∼ v′ ∨ w ∼ w′.

† For us, graphs are simple graphs, i.e. undirected graphs that do not have self-loops or parallel edges. We also

require a graph to be nonempty, i.e. to have at least one vertex, while allowing its set of edges to be empty.
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We leave it to the reader to check that the ordering of graphs � together with this binary

operation ∗ results in an ordered commutative monoid whose neutral element is 0 = K1,

the graph on one vertex. We denote this ordered commutative monoid by Grph. We

will use it as our running example of an ordered commutative monoid in the upcoming

sections and also find some (more or less obvious and well-known) relations to important

graph invariants.

Note that we do not claim that the study of resource theories or ordered commutative

monoids to be especially closely linked to graph theory. We rather want to illustrate graph

theory as one particular area in which our language and way of thinking can be useful,

and we hope that there will be plenty of others as well.

Those who are happy with Grph as an example and not particularly interested in

information theory may skip the following example and continue with Definition 3.9.

Example 3.8 (The resource theory of communication (Coecke et al. 2014, Example 2.6)).

We would like to discuss and analyse one particular example of a resource theory of

particular practical relevance: the resource theory of communication, as developed by

Shannon (1948). It is concerned with communication channels, which are mathematical

abstractions of communicating at limited bandwidth and in the presence of potential

transmission errors due to noise. One can use encoding and decoding of messages in

order to simulate a target communication channel – typically the one which models

perfect transmission without error – with the help of a given channel. One can also

combine channels by using them in parallel. Hence, we can describe the resource theory

of communication in terms of an ordered commutative monoid which we denote CommCh.

Again loosely following ideas of Shannon (1956), we will also see that one can study

CommCh in terms of a homomorphism to Grph.

In more detail, a resource object in the theory of communication is a communication

channel P : A → B, consisting of the following pieces of data:

• an input alphabet, which is a finite set A,

• an output alphabet, which is a finite set B,

• for every input symbol a ∈ A, a probability P (b|a) ∈ [0, 1] to get the output symbol

b ∈ B upon sending the input symbol a ∈ A through the channel, so that
∑

b P (b|a) =

1.

In summary, we can understand the probabilities P (b|a) as forming a conditional

probability distribution, i.e. a stochastic map, of type P : A → B†. We think of P as the

mathematical model of a communication link between two distant locations or parties.

This communication link accepts an input symbol a ∈ A and transmits it to the other

end; but due to noise or other modifications possibly afflicted to the symbol, the output

symbol b ∈ B may be totally different and is not a deterministic function of a. We can

† Note that the arrow notation does not mean that P is a function with domain A and codomain B, but we

can interpret P : A → B as stating that P is a morphism in the category of stochastic maps between the

objects A and B.
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only specify the probability of receiving a particular output b, given that a particular

input a has been sent.

The idea now is that we can use such a communication channel in order to simulate

other communication channels, by pre-processing of the input symbol (encoding) and post-

processing of the output symbol (decoding). In other words, we can convert a channel

P : A → B into a channel Q : C → D if and only if there are stochastic maps enc : C → A
and dec : B → D such that

Q = dec ◦P ◦ enc, (3.2)

where the composition of stochastic maps on the right-hand side is given by matrix

multiplication

(dec ◦P ◦ enc)(d|c) =
∑
a,b

dec(d|b)P (b|a) enc(a|c).

We can also write Equation (3.2) pictorially:

We write P � Q if and only if such a conversion of P into Q exists, and this is the

ordering relation in the ordered commutative monoid which models the resource theory

of communication. More permissive convertibility relations between channels can be

considered alternatively, such as allowing shared randomness or quantum entanglement

between the encoding and decoding operations (Cubitt et al. 2011).

We combine two channels P : A → B and Q : C → D to a new channel by using P and

Q in parallel

(P ⊗ Q)(bd|ac) := P (b|a) · Q(d|c).
Or in pictures:

It is not hard to verify that communication channels thereby form an ordered commutative

monoid whose neutral element is the trivial channel between any two one-element sets. We

denote this ordered commutative monoid by CommCh. This is the mathematical structure

which captures the resource theory of communication with respect to exact conversion (as

opposed to approximate). Unfortunately, stating Shannon’s noisy coding theorem would

require us to also consider small errors in the conversion of one channel into another. It

is not currently clear to us how to capture this type of ‘epsilonification’ (Remark 2.6) in

terms of an ordered commutative monoid, but we believe that the best way of doing so

will involve a generalization of Definition 3.1. Since no such generalization has as yet been

found to recover Shannon’s theorem, we disregard for now the possibility of approximate

conversions between resource objects and continue to focus on the exact case.

We now proceed with the general theory and introduce the analogue of Definition 2.7

for ordered commutative monoids.

Definition 3.9. A homomorphism f : A → B of ordered commutative monoids is an

ordered map

x � y =⇒ f(x) � f(y),
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which is moreover additive and preserves zero

f(x+ y) = f(x) + f(y), f(0) = 0.

Remark 3.10. If B is cancellative (Definition 4.3), the requirement f(0) = 0 is redundant,

since then one can cancel f(0) on both sides of f(0) = f(0 + 0) = f(0) + f(0).

As an example, we construct a homomorphism f : CommCh → Grph. By virtue of this

homomorphism, some results about Grph can be translated into results about CommCh.

On the level of resource objects, every communication channel P : A → B has a

distinguishability graph. Its vertex set is the input alphabet A, and two input symbols

a1, a2 ∈ A are defined to be adjacent if and only if they can be perfectly distinguished,

meaning that for every output symbol b ∈ B, we have P (b|a1) = 0 or P (b|a2) = 0. This

defines the distinguishability graph f(P ) ∈ Grph. The following observation is essentially

due to Shannon (1956):

Proposition 3.11. This assignment P �→ f(P ) defines a homomorphism f : CommCh →
Grph.

Proof. We need to check that f respects both the convertibility relation and the

combination operation, starting with the former. If we have a conversion between

channels (3.2) which witnesses P � Q, then we define a graph map m : f(Q) → f(P ) by

sending each input symbol c ∈ C to some m(c) ∈ A with enc(m(c)|c) > 0; the particular

choice is irrelevant. This preserves adjacency due to the following reasoning: adjacency

in f(Q) for input symbols c1 and c2 means that Q(d|c1) = 0 or Q(d|c2) = 0 for all d. By

Q = dec ◦P ◦ enc, we can write this as∑
a,b

dec(d|b)P (b|a) enc(a|c1) = 0 or
∑
a,b

dec(d|b)P (b|a) enc(a|c2) = 0.

Since all terms in these sums are nonnegative, vanishing of such a sum implies that each

term in the sum must vanish. Hence, we have for all d∑
b

dec(d|b)P (b|m(c1)) = 0 or
∑
b

dec(d|b)P (b|m(c2)) = 0.

Using the same reasoning again

dec(d|b)P (b|m(c1)) = 0 ∀b or dec(d|b)P (b|m(c2)) = 0 ∀b.

If for a given b we choose d with dec(d|b) > 0 arbitrarily, then we find that one of these

products must vanish, and therefore P (b|m(c1)) = 0 or P (b|m(c2)) = 0. This means that

m : f(Q) → f(P ) is indeed a graph map. This finishes the proof of f(P ) � f(Q), which

shows that f respects the ordering.

Proving f(P ⊗Q) = f(P )∗f(Q) is easier: by the definition of equality (2.1), it is sufficient

to show that the graphs f(P ⊗Q) and f(P ) ⊗f(Q) are isomorphic, since then in particular

we have a map of graphs in each direction. First, the set of vertices is the cartesian

product A × C in both cases; second, adjacency of (a1, c1) and (a2, c2) in f(P ⊗ Q) means
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that for all b ∈ B and d ∈ D

P (b|a1)Q(d|c1) = 0 or P (b|a2)Q(d|c2) = 0,

while adjacency in f(P )∗f(Q) means that for all b ∈ B, we have P (b|a1) = 0 or P (b|a2) = 0,

or for all d ∈ D, we have Q(d|c1) = 0 or Q(d|c2) = 0. These conditions are equivalent as

well.

Therefore we can analyse part of the structure of CommCh on the level of graphs. More

concretely, we can make use of f : CommCh → Grph as a witness of non-convertibility: if

we happen to find f(P ) �� f(Q), then we can conclude P �� Q. So we can think of f as a

Grph-valued invariant of communication channels.

Returning to the general theory, ordered commutative monoids and their homomorph-

isms form a category OCM. We can hence apply standard concepts from category theory:

Definition 3.12. An isomorphism between ordered commutative monoids A and B is a

homomorphism f : A → B for which there exists g : B → A such that g(f(x)) = x for all

x ∈ A and f(g(y)) = y for all y ∈ B. If an isomorphism exists, then we say that A and B

are isomorphic.

Proposition 3.13. A homomorphism f : A → B is an isomorphism if and only if

a. f reflects the ordering

f(x) � f(y) =⇒ x � y,

b. and for every z ∈ B there is x ∈ A with f(x) = z.

Condition a means in particular that f is injective, i.e. reflects equality: if f(x) = f(y),

then also x = y.

Proof. If we have an isomorphism as in Definition 3.12, then f reflects the ordering

since f(x) � f(y) implies that

x = g(f(x)) � g(f(y)) = y.

Moreover, for every z ∈ B we have f(g(z)) = z, which is b.

Conversely, suppose that f satisfies the hypotheses of the proposition. Then for every

z ∈ B, we define g(z) by choosing some x ∈ A with f(x) = z. Then f(g(z)) = z holds

by definition, while g(f(x)) = x follows from f(g(f(x))) = f(x) and cancelling the outer

application of f, which we can do since f reflects equality. Finally, it remains to be shown

that g is a homomorphism. First, g preserves the ordering since if we have y � z in B,

then we also have f(g(y)) � f(g(z)), and therefore g(y) � g(z) by a. Similarly, we can

show that

f(g(y + z)) = y + z = f(g(y)) + f(g(z)) = f(g(y) + g(z)),

and therefore g(y + z) = g(y) + g(z).

Next, we will encounter a simple example of an isomorphism. As in Remark 3.4, we

consider a commutative monoid as a special kind of ordered commutative monoid.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 4. An example of a commutative submonoid of N . Starting with 24, it contains all natural

numbers divisible by 3.

Example 3.14. Motivated by Remark 3.5, we may consider general subsets S ⊆ N that

contain 0 and are closed under addition. This is an interesting and non-trivial class of

commutative monoids. As a concrete example, consider the set

{ 0, 9, 15, 18, 24, 27, 30, . . . }, (3.3)

where at 24 and after, the set is defined to contain all multiples of 3; see Figure 4 for an

illustration. This set contains 0 and is closed under addition, and hence forms a commutat-

ive submonoid of N . Those commutative submonoids S ⊆ N for which the elements of S

are coprime, i.e. for which gcd(S) = 1 holds, are known as numerical semigroups (Rosales

and Garcı́a-Sánchez 2009). Possibly surprisingly, the condition gcd(S) = 1 is equivalent to

N \ S being finite (Rosales and Garcı́a-Sánchez 2009, Lemma 2.1). The example (3.3) has

gcd(S) = 3, and hence is not a numerical semigroup.

Any commutative monoid S ⊆ N , and in particular any of the annihilators ann(x, y)

from Remark 3.5, is either trivial, i.e. S ∼= {0}, or isomorphic to a numerical semigroup as

follows. The greatest common divisor of all the elements of S

d := gcd(S),

is a positive integer dividing every element of S . We think of d as the generator of the

principal ideal in Z which is generated by the ideal S ⊆ N . Then

S ′ := { n ∈ N | dn ∈ S },

is a numerical semigroup, since gcd(S ′) = 1 holds by construction. In the example (3.3),

we obtain

S ′ = { 0, 3, 5, 6, 8, 9, 10, . . . },
and now indeed N \ S ′ = {1, 2, 4, 7} is finite. In general, the map

S ′ −→ S, n �−→ dn (3.4)

is an isomorphism of commutative monoids, and hence the S is isomorphic to a numerical

semigroup (Rosales and Garcı́a-Sánchez 2009, Proposition 2.2). In particular, every

annihilator from Remark 3.5,

ann(x, y) := { n ∈ N | nx � ny },

is isomorphic to a numerical semigroup. In this sense, studying the possible behaviours of

the many-copy convertibility relation nx � ny as a function of n is equivalent to studying

numerical semigroups.

The real numbers R form an ordered commutative monoid with respect to the usual

ordering and addition. As indicated at the end of Section 2, we are particularly interested

in homomorphisms of the form A → R, which correspond to consistent assignments of

values or prices to each resource object. Due to this special significance, we introduce an
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abbreviated term for these homomorphisms, indicative of our upcoming considerations

of ordered vector spaces.

Definition 3.15. A functional f on an ordered commutative monoid A is a homomorphism

f : A → R.

In resource-theoretic parlance, the functionals are precisely the additive monotones. In

the resource theories studied in quantum information theory, many additive monotones

are given by quantities closely related to Rényi entropies (Gour 2013). Additivity is a

useful property for a monotone to have, since computing the value of the monotone on a

composite resource object reduces to computing the value of each part. For example, if f

is an additive monotone and x+y � z, then we can conclude f(x)+f(y) � f(z); hence the

latter inequality is a necessary condition for x + y � z. The usefulness of additivity here

lies in the fact that we only need to compute f(x) and f(y) individually, without making

possibly more complicated considerations about composite resource objects (although

these may be relevant for proving additivity in the first place).

Moreover, if we have a functional f which also reflects the ordering as in Equation

(2.3), then we obtain an embedding of our ordered commutative monoid inside R, in the

sense that both the ordering and the addition are given by that of real numbers. A similar

statement applies to families of additive monotones, in a sense analogous to Equation

(2.4). We will get to this in Section 9.

Remark 3.16. It is sometimes advantageous to consider monotones with a multiplicative

rather than additive scaling in the following sense. The positive real numbers R>0 form

an ordered commutative monoid with respect to multiplication and the usual ordering.

Therefore we can also consider multiplicative functionals or multiplicative monotones in

the form of homomorphisms f : A → R>0. Instead of additivity, such an f satisfies the

multiplicativity equation

f(x+ y) = f(x)f(y).

This kind of functional is natural especially in those situations in which the combination

operation ‘+’ itself is of a multiplicative character.

With respect to any base, the logarithm

log : R>0 → R, (3.5)

is an isomorphism of ordered commutative monoids whose inverse is the exponential

function with respect to the same base. We can translate back and forth between additive

and multiplicative functionals using these functions. Due to this correspondence, we focus

on additive functionals and do not consider the multiplicative case separately.

For example in Grph (Example 3.7), the Lovász number ϑ—one of the most widely stud-

ied graph invariants—is essentially a multiplicative functional on Grph. The qualification

‘essentially’ refers to the fact that for technical reasons, we need to work in terms of the

‘complementary Lovász number,’ which is the graph invariant assigning to every graph

G the Lovász number ϑ(G) of its complement graph G. In order to have less confusing

notation, we denote this by ϑ(G).
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Among the various equivalent definitions of ϑ (Lovász 1979; Knuth 1994), we choose

ϑ(G) := max
∑
v

|〈ψ,φv〉|2,

where the maximum is taken over all families of vectors (φv) and ψ in a sufficiently

high-dimensional inner product space with 〈φv, φv〉 � 1 and 〈ψ,ψ〉 � 1, such that the (φv)

are indexed by the vertices v ∈ G and assumed to satisfy the orthogonality constraint

v ∼ w =⇒ 〈φv, φw〉 = 0.

Proposition 3.17. This gives a multiplicative functional ϑ : Grph → R>0 in the sense of

Remark 3.16.

Proof. This is well known. That ϑ is monotone under maps of graphs has been noticed

e.g. in Godsil et al. (2015). The multiplicativity is a standard result, although it is typically

stated without taking complement graphs: the Lovász number of a strong product of

graphs is equal to the product of the individual Lovász numbers (Lovász 1979, Theorem

7), (Knuth 1994, Section 20).

Other multiplicative functionals on Grph include the fractional chromatic number

(Example 8.1) and the projective rank (Roberson and Mančinska 2012). For the fractional

chromatic number, monotonicity is a simple consequence of (Scheinerman and Ullman

2011, Proposition 3.2.1), while multiplicativity is (Scheinerman and Ullman 2011, Corol-

lary 3.4.2). For the projective rank, monotonicity is a special case of (Roberson 2013,

Theorem 6.13.4), while multiplicativity is Cubitt et al. (2014, Theorem 27).

For another bit of general theory, we generalize another standard notion of algebra

from the unordered setting to our ordered setup: the notion of generators of an algebraic

structure.

Definition 3.18. A generating pair (g+, g−) is a pair of elements g+, g− ∈ A with g+ � g−
such that for every x ∈ A there is n ∈ N with

ng+ � x+ ng− and ng+ + x � ng−.

We cannot claim that this is necessarily the only or even the best definition of what

it means to ‘generate’ an ordered commutative monoid. Nevertheless, the existence of

a generating pair is crucial for many of the technical results that we will prove in the

remainder of this paper. We can restate the main condition in an equivalent manner by

postulating that for all x, y ∈ A, there is n ∈ N with

ng+ + x � y + ng−.

From a resource-theoretic perspective, a generating pair is a pair of universal resources

in the sense that every other resource x can both be created, as in ng+ � x+ ng−, and be

absorbed, as in ng+ + x � ng−, using a sufficiently big number of copies of the universal

pair. In many resource theories of practical interest, such a universal pair exists.
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Remark 3.19. It sometimes happens that x � 0 for all x ∈ A (Definition 9.7). In this case,

it is easy to see that if (g+, g−) is a generating pair, then so is (g+, 0). Hence, a generating

pair exists if and only if there is g+ ∈ A such that for every x ∈ A there exists n ∈ N with

ng+ � x.

In this situation, we say that g+ is a generator.

Example 3.20. In Grph, we indeed have x � 0 for all x. There is a generator given by

g+ := K2, the complete graph on two vertices. Every graph G is a subgraph of some

K2n = K∗n
2 = nK2, and with this n we obtain K2n = nK2 � G.

A generating pair often arises as part of an entire family of pairs (gn+, g
n
−) indexed by

a size parameter n ∈ N>0 in such a way that the universal family suitably scales as a

function of n. This is captured by the following definition:

Definition 3.21. A family of generating pairs is a family of pairs (gn+, g
n
−)n∈N>0

with gn+ � gn−,

and

gmn+ = gm+ + gn+, gmn− = gm− + gn−,

and such that for every x there is n ∈ N>0 with

gn+ + x � gn− and gn+ � x+ gn−. (3.6)

Every pair (gn+, g
n
−) in a family of generating pairs is indeed itself a generating pair.

The main interest and usefulness of such families lies in considering the smallest n for

which Equation (3.6) holds, and this n can be understood as a measure of the ‘size’ of

x. In general, one can consider the two parts of (3.6) separately and obtain two kinds of

‘size’ measures. This kind of idea has been used e.g. in nonequilibrium thermodynamics

as the notion of ‘entropy meter’ (Lieb and Yngvason 2014). But we can also apply it in

many other contexts, such as to Grph:

Example 3.22. Grph has a family of generating pairs given by

gn+ := Kn, gn− := 0,

where Kn is the complete graph on n vertices. We have indeed gmn+ = gm+ + gn+ since

Kmn = Km ∗ Kn, and moreover gmn− = 0 = gm− + gn−. But most importantly, every graph

G satisfies K|G| � G + 0, where |G| is the number of vertices of G, and trivially also

K|G| + G � 0.

It is of interest to consider the smallest n for which Kn � G, i.e. the smallest n for which

Kn can ‘simulate’ G in the sense that there exists a graph map G → Kn. In graph-theoretic

parlance, this n is commonly known as the chromatic number of G and denoted χ(G).

Similarly, we may be interested in the largest m ∈ N>0 for which G � Km, or for which G
can ‘simulate’ Km in the sense of a graph map Km → G. In graph-theoretic terminology,

this m is commonly known as the clique number of G and denoted ω(G).
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If χ(G) = ω(G), then we have Kχ(G) � G � Kω(G), and therefore G = Kχ(G) as elements of

Grph, and hence even G = Kχ(G).
† The perfect graphs‡ are an interesting class of graphs

with this property.

In summary, upon considering the structure of Grph as an ordered commutative monoid

together with a family of generating pairs, we have found that two of the most important

graph invariants arise very naturally. While this is a relatively simple and well-known

fact (Roberson 2013), we nevertheless hope that it elucidates the potential of our ideas. For

example, we can now rederive Lovász’s sandwich theorem in an abstract and conceptually

clear manner:

Theorem 3.23 (Lovász (1979); Knuth (1994)). For every graph G ∈ Grph, we have

ω(G) � ϑ(G) � χ(G).

Strictly speaking, this is only a part of the sandwich theorem, which also crucially

comprises a complexity statement. As the proof shows, the theorem also holds with any

other multiplicative functional f in place of ϑ normalized as f(K2) = 2.

Proof. Besides the above definitions of ω and χ, we only need Proposition 3.17 together

with the normalization ϑ(K2) = 2 and the fact that the Kn form a family of generating

pairs as above.

Since ϑ is a multiplicative functional, we have ϑ(Kmn) = ϑ(Km)ϑ(Kn). Together with

monotonicity, this implies that ϑ(Kn) = nr for some constant r ∈ R�0 due to a result of

Erdős (Howe 1986). The normalization condition ϑ(K2) = 2 requires r = 1, and hence

ϑ(Kn) = n (3.7)

for all n. Now, the first inequality follows easily

ω(G) = ϑ(Kω(G)) � ϑ(G).

where the first step is by Equation (3.7) and the second follows from G � Kω(G). The proof

of the other inequality is similar.

From here on, there would be many different routes that our investigations could take.

But for the present work, we would like to focus on the following question as a guiding

principle: if we have

f(x) � f(y) for all functionals f, (3.8)

then does this imply that x � y? The answer to this question will easily be seen to

be negative, and hence we will consider the question in a revised form: what does the

assumption Equation (3.8) tell us about the convertibility of x and y? Is there a suitably

† It may seem strange to write G = Kχ(G), although G itself may not actually be a complete graph. But

conceptually, this is no different from how algebraic expressions can be written in different forms, such as

(x+ y)2 + (x− y)2 = x2 + 2xy + y2 + x2 − 2xy + y2 = 2x2 + 2y2, where we use the equality symbol as a way

of denoting a certain kind of equivalence.
‡ Among several equivalent definitions, G is perfect if neither G itself nor its complement contains an induced

odd cycle (Chudnovsky et al. 2006).
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relaxed or regularized notion of convertibility which can be defined without reference to

functionals and is equivalent to Equation (3.8)? The answer to this revised question will

turn out to be positive.

To summarize, our main question is

Question 3.24. If f(x) � f(y) for all functionals f, what does this tell us about the ordering

of x relative to y?

Next, we will see a simple reason for why the answer is not just ‘it tells us that x � y.’

4. The catalytic regularization: ordered abelian groups

A very common phenomenon in resource theories is that of catalysis: there may be

x, y, z ∈ A such that x �� y, but

x+ z � y + z. (4.1)

In this situation, we say that z is a catalyst for the conversion of x into y. The possibility

of catalysis in chemistry is arguably among the most fundamental insights into chemistry

as a resource theory.

Example 4.1. In chemistry, hydrogen peroxide decomposes into water and oxygen only

rather slowly

2H2O2
slow−→ 2H2O + O2. (4.2)

But in the presence of manganese dioxide, the reaction is much quicker

2H2O2 + MnO2
fast−→ 2H2O + O2 + MnO2.

Hence, manganese dioxide catalyzes the decomposition of hydrogen peroxide into water

and oxygen. So, if we define the ordered commutative monoid Chem such that the second

reaction is considered viable but the first one is not, then manganese dioxide MnO2 is a

catalyst also in the sense of Equation (4.1) for the conversion of hydrogen peroxide into

water and oxygen,

2H2O2 �� 2H2O + O2, 2H2O2 + MnO2 � 2H2O + O2 + MnO2.

In chemistry, there are also inhibitors, which can decrease the rate at which a reaction

happens when added to the reactants. For example, the presence of acetanilide C8H9NO

slows down the above reaction (4.2),

2H2O2 + C8H9NO
very slow

−→ 2H2O + O2 + C8H9NO. (4.3)

Now even if one considers the reaction in Equation (4.2) to be a viable basic conversion

in Chem, but not Equation (4.3), in the ordered commutative monoid Chem we still have

2H2O2 + C8H9NO � 2H2O + O2 + C8H9NO. (4.4)

This is due to our definition of the ordering in Example 2.5: we imagine that the boxes that

contain the molecules can be brought together at will, causing their inhabitants to react

in exactly the way desired by the operator. With this in mind, the conversion Equation

(4.4) can be achieved by taking the two hydrogen peroxide molecules on the left-hand
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side out of their boxes and waiting until they have decomposed into water and oxygen;

the acetanilide inhibitor remains in its box.

Example 4.2. In everyday life, catalysts are usually known as tools. They enable conver-

sions like this:

timber + nails �� table, timber + nails + saw + hammer � table + saw + hammer.

So ‘saw + hammer’ is the catalyst which enables the conversion of ‘timber + nails’ into

‘table.’

On the mathematical level of ordered commutative monoids, catalysis is among the

simplest phenomena concerned with how the ordering relation and the addition operation

interact.

If f is any functional (additive monotone), then (4.1) implies that f(x) + f(z) � f(y) +

f(z), and therefore f(x) � f(y). Hence in order for f(x) � f(y) to hold for all functionals

f, it is sufficient that x is convertible into y catalytically; in particular, it does generally

not mean that x � y. This provides a simple partial answer to Question 3.24 (Gour 2013,

p. 31).

In some resource theories, catalytic convertibility does imply convertibility without a

catalyst, and then genuine catalysis is impossible. In mathematical terms:

Definition 4.3 (cf. Coecke et al. (2014, Definition 4.10)). An ordered commutative monoid

A is cancellative if x+ z � y + z implies x � y.

We have borrowed this term from algebra, where cancellativity of a commutative

monoid means that x+ z = y + z implies x = y. If an ordered commutative monoid A is

cancellative in our sense, then it is also cancellative in this unordered sense: x+ z = y+ z

means that x+z � y+z and y+z � x+z, which yields x � y and y � x by cancellativity,

and therefore x = y. So in light of Remark 3.4, our definition of cancellativity generalizes

the usual notion of cancellativity to the ordered setting. This has been done before

in Kehayopulu and Tsingelis (1998) and Moreira Dos Santos (2002).

Other names for the concept of Definition 4.3 have been used. For example, (Nakada

1951) uses the term ‘strong.’ In Coecke et al. (2014), we have used the term ‘catalysis-free.’

For an example of a resource theory whose ordered commutative monoid turns out to

be cancellative, see Marvian and Spekkens (2013, Theorem 25).

Example 4.4. It is challenging to figure out whether Grph is cancellative. A computer search

using Sage has failed to produce any counterexample. Nevertheless, by anticipating some

of the upcoming theory, we can construct a counterexample of moderate size.

The non-cancellativity follows from the upcoming Example 5.3 together with Lemma

5.4b, where we take the alternative binary operation ∨ on Grph to be given by the graph

join, which is the disjoint union of two graphs together with all edges connecting the two

components. We leave it to the reader to verify that the graph join also makes Grph into

an ordered commutative monoid, and that the disjunctive product ‘+’ distributes over the

join ‘∨.’
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This argument can be turned into a concrete example as follows. Let � denote the

five-cycle, which is the graph that just looks like a pentagon �. Example 5.3 explains that

6� � 2K11, although 3� �� K11. Plugging this into the proof of Lemma 5.4 results in the

catalyst being given by Equation (5.2)

G = 3� ∨ K11,

i.e. the graph which is the graph join of �∗3 := � ∗ � ∗ � with the complete graph on 11

vertices. The proof of Lemma 5.4 then shows that we have 3� + G � K11 + G, although

3� �� K11.

Getting back to the general theory, we can make any ordered commutative monoid

into a cancellative one by introducing a new ordering denoted ‘�’ and defined as

x � y :⇐⇒ ∃z ∈ A, x+ z � y + z.

If A is the ordered commutative monoid describing a resource theory, then ‘�’ is the

catalytic ordering in which x is declared convertible into y if there exists a catalyst which

facilitates the conversion. It is straightforward to show that � is indeed reflexive and

transitive, and that this ordering coincides with the original ‘�’ if A already happened

to be cancellative. Moreover, the addition + is clearly monotone with respect to � as

well. If we write canc(A) for the ordered commutative monoid given by A equipped with

this new ordering, then canc(A) is cancellative: assuming x+ z � y + z means that there

exists w ∈ A with x + z + w � y + z + w in the original ordering, which indeed implies

x � y. There is a canonical homomorphism ηA : A → canc(A) which simply maps every

element to itself, and this has the following universal property: if B is any other ordered

commutative monoid which is cancellative, and f : A → B is any homomorphism, then

there is a unique homomorphism canc(f) : canc(A) → B such that f = canc(f) ◦ ηA,

i.e. such that the diagram

A
ηA ��

f ���
��

��
��

� canc(A)

canc(f)
���
�
�
�
�

B

commutes. In categorical language, this universal property states that the category of

cancellative ordered commutative monoids is a reflective subcategory of OCM.

We refer to Brandão et al. (2013b, Proposition B.3) for an example of a successful

characterization of the catalytic ordering in a concrete resource theory.

Remark 4.5. The induced equality relation on canc(A) may differ from the one on A,

meaning that ηA(x) = ηA(y) may not necessarily imply that x = y. For example, if there

is an element a ∈ A which is absorbing in the sense that x+ a = a for all x ∈ A, then this

equation x + a = a will also hold in canc(A), and cancellativity then results in x = 0 in

canc(A). Therefore, canc(A) is isomorphic to the trivial commutative monoid in which all

elements are equal to 0. A similar thing happens if A is a (semi-)lattice and ‘+’ is given

by the meet or join operation.
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There is a particularly interesting class of ordered commutative monoids that are

automatically cancellative:

Definition 4.6. An ordered abelian group G is an ordered commutative monoid for which

the monoid structure is a group, i.e. such that for every x ∈ G there exists a (−x) ∈ G

with x+ (−x) = 0.

As before, we assume that the equality relation ‘=’ on G is the one induced from the

ordering relation. We are interested in ordered abelian groups at this point because of

the intimate relation to cancellativity. First, every ordered abelian group is automatically

cancellative: x+z � y+z implies x+z+(−z) � y+z+(−z), and therefore x � y (Nakada

1951, Theorem 1).

Moreover, for any x the inverse (−x) is necessarily unique: if there was another

inverse (−x)′, then we would get x + (−x) = 0 = x + (−x)′, and therefore (−x) = (−x)′

by cancellativity. This justifies removal of the brackets and writing −x for the negative

inverse of x, and using the usual rules for how + and − interact. If G is an ordered abelian

group and A any ordered commutative monoid, then any homomorphism f : G → A

preserves negatives in the sense that f(−x) = −f(x), even if A does not have negatives for

all of its elements. This is because f(−x) + f(x) = f(−x+ x) = f(0) = 0, so that f(−x) is

an additive inverse of f(x).

We can turn every cancellative ordered commutative monoid A into an ordered abelian

group oag(A) by formally throwing in negative inverses as follows. We define the elements

of oag(A) to be pairs of elements of A

oag(A) := A× A,

and we think of a pair (x, y) ∈ oag(A) as representing a formal difference x − y. We

declare two pairs (x, y) and (x′, y′) to be ordered (x, y) � (x′, y′) if and only if†

x+ y′ � x′ + y, (4.5)

holds in A. Finally, we define the addition operation on pairs componentwise, so that

(x, y) + (x′, y′) := (x+ x′, y + y′).

It is straightforward to check that this satisfies Definition 4.6 with neutral element

(0, 0) ∈ oag(A) and inverses −(x, y) := (y, x). All of this should be intuitive if one keeps

the intended interpretation of (x, y) as a formal difference x− y in mind.

Cancellativity of A is relevant for proving that the ordering Equation (4.5) is transitive:

the assumption (x1, y1) � (x2, y2) � (x3, y3) means that

x1 + y2 � x2 + y1, x2 + y3 � x3 + y2,

and this implies

x1 + y3 + y2 � x3 + y1 + y2.

† This definition corresponds to the ‘generalized ordering’ of Lieb and Yngvason (1999, p. 23).
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In order to conclude (x1, y1) � (x3, y3), which corresponds to x1 +y3 � x3 +y1, we need to

appeal to cancellativity. The other axioms of an ordered abelian group are straightforward

to verify and do not rely on the cancellativity of A.

There is a canonical homomorphism γA : A → oag(A) which maps every element

x ∈ A to the pair (x, 0) ∈ oag(A), and this homomorphism has the following universal

property: if G is any other ordered abelian group and f : A → G, then there is a unique

oag(f) : oag(A) → G such that oag(f) ◦ γA = f, i.e. such that the diagram

A
γA ��

f ���
��

��
��

� oag(A)

oag(f)
���
�
�
�
�

G

commutes. The uniqueness part follows from

oag(f)((x, y)) = oag(f)((x, 0) − (y, 0)) = oag(f)((x, 0)) − oag(f)((y, 0)) = f(x) − f(y).

A simple computation shows that defining oag(f) by this equation indeed yields a

homomorphism, so this also proves existence. In categorical language, this universal

property states that the category of ordered abelian groups, which we denote OAG, is a

reflective subcategory of the category of cancellative ordered commutative monoids. We

also note that by Equation (4.5), γA automatically reflects the ordering

γA(x) � γA(y) =⇒ x � y,

and in particular γA must be injective. Hence, we can regard A as a submonoid of oag(A)

carrying the induced ordering (Nakada 1951, Theorem 5), (Grillet 2001, Proposition 5.2).

Appendix B explains how this construction is a special case of a standard result of

category theory.

In resource-theoretic terms, we interpret oag(A) as follows. If a resource theory does

not allow genuine catalysis – or has already been regularized such that the convertibility

relation is catalytic convertibility – then we can formally introduce resource objects −x
which stand for ‘borrowing’ the resource object x ∈ A from somewhere else, or for ‘going

into debt’ with respect to x. Since catalysis is impossible, we cannot achieve any additional

conversions by first borrowing x, conducting a resource conversion, and then returning x,

than without having borrowed x in the first place. Hence introducing −x does not modify

the convertibility relation, and we gain the mathematical convenience of working with

a group rather than a monoid. We may think of a formal difference x − y of resource

objects in terms of a bank account: we have a credit of x at our disposal, but also a debt

of y which will eventually have to paid off. But just as having a resource x as credit may

not necessarily be beneficial – as the nuclear waste example shows – having a debt of y

is not necessarily unfavourable.

So if we start with an ordered commutative monoid A which is not necessarily

cancellative, we can make it cancellative first by constructing canc(A), and then turn

canc(A) into an ordered abelian group oag(canc(A)). In resource-theoretic terms, this

ordered abelian group is the catalytic regularization of the original theory. There is

a canonical homomorphism γAηA : A → oag(canc(A)) having the following universal
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property: if G is any ordered abelian group and f : A → G, then there is a unique

homomorphism oag(canc(f)) : oag(canc(A)) → G such that oag(canc(f)) ◦ γAηA = f,

i.e. such that the diagram

A
γAηA ��

f ���
��

��
��

� oag(canc(A))

oag(canc(f))
��� � � � � �

G

commutes. In the unordered setting, this construction of turning a commutative monoid

to an abelian group is commonly known as forming the Grothendieck group†, and is

fundamental e.g. for the development of K-theory (Karoubi 1978, Section 2.1), (Rørdam

et al. 2000, Section 3.1). While the conventional construction of the Grothendieck group

requires taking the quotient of A × A with respect to an equivalence relation, this is

implicit in our ordered setting by the definition of equality in terms of the ordering.

We could as well have performed both steps of this construction in one go by directly

going from the ordered commutative monoid to the ordered abelian group. However, we

find it instructive to split the construction into two separate parts which are simpler to

understand individually. We nevertheless abbreviate oag(canc(A)) by oag(A), in order not

to clutter notation too much.

In category-theoretic terms, we can state the universal property like this:

Theorem 4.7. OAG is a reflective subcategory of OCM, i.e. the canonical inclusion functor

OAG ↪→ OCM has a left adjoint.

The relevance of this result for Question 3.24 is that R is an ordered abelian group,

and therefore any functional on A can be uniquely extended to a functional on oag(A).

In particular, in order to have f(x) � f(y) for all functionals f, it is sufficient that x � y

in oag(A), i.e. that x can be converted into y catalytically. But is x � y in oag(A) also

necessary for f(x) � f(y) for all f? In resource-theoretic terms, do additive monotones

witness catalytic convertibility perfectly? We now know that this is really a question about

ordered abelian groups. By adding or subtracting y on both sides, an inequality of the

form x � y is equivalent to x − y � 0, and hence it is sufficient to consider the case that

the element on the right-hand side is zero:

Question 4.8. If G is an ordered abelian group and f(x) � 0 for all functionals f, then

does this imply that x � 0? If not, what does it tell us?

In the next section, we will see that the answer is again negative for a simple reason,

and another step of regularization will be performed.

There is an alternative definition of ordered abelian group which we find useful. Since

x � y is equivalent to x − y � 0, it is sufficient to specify which elements are � 0 in

order to specify the ordering relation on G completely. We denote this class of elements

by G+ and call it the positive cone of G. We can then also rewrite x � y equivalently as

† Not to be confused with the Grothendieck construction from category theory, which doesn’t have much to do

with it.

https://doi.org/10.1017/S0960129515000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000444


Resource convertibility and ordered commutative monoids 883

x− y ∈ G+, or as x ∈ y + G+, or even as x+ G+ ⊆ y + G+. With this in mind, it is easy

to see that Definition 4.6 is equivalent to (Goodearl 1986, p. 3):

Definition 4.9 (Alternative). An ordered abelian group is a set G equipped with the

following pieces of structure:

• a subset G+ ⊆ G, called the positive cone,

• a binary operation +,

• a distinguished element 0 ∈ G,

and such that the following axioms hold:

• + is associative, commutative, has 0 as a neutral element and inverses,

• 0 ∈ G+,

• G+ + G+ ⊆ G+,

• the positive cone is pointed: if x ∈ G+ and −x ∈ G+, then x = 0.

The positive cone G+ measures the difference between an ordering x � y and an

equality x = y. The cone being pointed encodes (2.1), our definition of equality in terms

of the ordering. With this definition, ordered abelian groups come up e.g. in the K-theory

of operator algebras (Blackadar 1998, Definition 6.2.1).

We sketch how an ordered abelian group in the sense of Definition 4.9 is also an ordered

abelian group in the sense of Definition 4.6, leaving the other direction to the reader. G

becomes an ordered commutative monoid by taking x � y to mean that x− y ∈ G+. This

is transitive thanks to G+ + G+ ⊆ G+: the assumption x � y � z means that x− y ∈ G+

and y − z ∈ G+, which gives

(x− y) + (y − z) = x− z ∈ G+,

and hence x � z. The axiom G+ + G+ ⊆ G+ also results in the monotonicity of

addition Equation (3.1): the assumption x � y means that x− y ∈ G+, and therefore also

(x+ z) − (y + z) ∈ G+,

and hence x+ z � y+ z. The existence of negatives as in Definition 4.6 is by construction.

In the following sections, we will freely confuse this alternative definition of ordered

abelian group with the original one. In particular, we will freely translate between x � y

and x− y ∈ G+.

In resource-theoretic terms, the positive cone G+ consists of all those resource objects

which can be freely disposed of, i.e. which can be converted into nothing. Equivalently,

one can think of an x � 0 as a resource object such that having x is at least as good as

having nothing. Alternatively, it may be more intuitive to think in terms of −G+, which

is exactly the set of all those resource objects which can be freely produced, i.e. which can

be obtained from nothing. In the case G = oag(A), these ‘resource objects’ are pairs (x, y)

consisting of a ‘credit’ x ∈ A and a ‘debt’ y ∈ A as before, together with the additional

property that y + z � x+ z for some z ∈ A.

Example 4.10. As shown in Example 4.4, we have 3� − K11 ∈ oag(Grph)+, although

3� �� K11 in Grph.
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At the level of ordered abelian groups, we can give a simpler version of Definition 3.18:

Definition 4.11. A generator in an ordered abelian group G is an element g ∈ G with

g � 0 such that for every x there is n ∈ N with ng � x.

In particular, this implies that every x ∈ G can be written as a difference ng − (ng − x)

of two elements of the positive cone.

Applying the generator property with −x in place of x shows that there also exists an

m ∈ N with x � −mg, or equivalently mg + x � 0. Choosing n such that both ng � x

and ng + x � 0 hold shows that the pair (g, 0) is a generating pair in the sense of

Definition 3.18. Conversely, if (g+, g−) is a generating pair in an ordered abelian group,

then g+ − g− is a generator. More generally, if A is any ordered commutative monoid

with a generating pair (g+, g−), then g+ − g− is a generator in oag(A), as follows directly

from the definitions.

A generator in an ordered abelian group is also known as an order unit (Goodearl 1986,

p. 4). We have chosen not to follow this terminology, since it does not extend nicely to

the setting of ordered commutative monoids, where we need to consider pairs of elements

as in Definition 3.18.

5. The many-copies regularization: ordered Q-vector spaces

Many resource theories display the phenomenon of economy of scale: it may happen that

the convertibility relation

x+ x � y + y,

holds, even though x �� y. This is another manner in which f(x) � f(y) for all functionals

f does not necessarily imply that x � y, since already x + x � y + y implies that

f(x + x) � f(y + y), and therefore f(x) � f(y) by additivity. More generally, if nx � ny

for some n ∈ N>0, then f(x) � f(y), but this does not necessarily mean that x � y.

In resource-theoretic terms, considering convertibility at the many-copy level may enable

conversions which were impossible before. Modulo epsilonification (Remark 2.6), this is

a central theme in Shannon’s theorems (Shannon 1948). Below, we will show that it also

occurs in Grph, but not in oag(Grph).

Similar as to how the absence of nontrivial catalysis is captured by the mathematical

notion of cancellativity, also the absence of an economy of scale effect is quite natural

mathematically:

Definition 5.1. An ordered commutative monoid A is torsion-free if nx � ny for some

n ∈ N>0 implies x � y.

In Nakada (1951, Definition 6), ordered commutative monoids with this property

are called ‘normal,’ and it is shown that any totally ordered abelian group has this

property.

In an ordered abelian group G, one can rephrase this definition as the requirement that

nx ∈ G+ for n ∈ N>0 should imply x ∈ G+. Ordered abelian groups with this property

are often called ‘unperforated’ (Blackadar 1998, Definition 6.7.1) or ‘semiclosed’ (Darnel
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1995, Definition 3.2). So it may seem misleading to use the alternative term ‘torsion-free’

for this notion, since torsion-freeness already has an established meaning in algebra: an

abelian group is torsion-free if nx = 0 implies x = 0, and more generally a commutative

monoid is torsion-free if nx = ny implies x = y. However, our definition specializes to

the conventional one in the unordered case (Remark 3.4), similar to how our notion of

cancellativity specializes to the conventional one.

Remark 5.2. A is torsion-free if and only if for every n ∈ N>0, the map x �→ nx reflects

the order in the sense of (2.3).

Example 5.3. Grph is not torsion-free, and we construct an example inspired by Shannon’s

theory of zero-error communication (Shannon 1956). Let us consider the pentagon graph

�, also called the five-cycle, which just looks likewhich just looks like a pentagon �. Some

computation using Sage reveals the clique numbers

ω(� ∗ �) = 5, ω(� ∗ � ∗ �) = 10.

By Example 3.22, this means that 2� � K5 and 3� � K10, and 5 and 10 are the largest

numbers for which these inequalities hold. The first inequality implies 6� � 3K5 = K53 �
K112 = 2K11. Now if Grph was torsion-free, we would be led to conclude that 3� � K11,

which the above shows to be false.

What follows is a powerful result relating torsion-freeness to cancellativity. As far as

we know, it was originally developed in Duan et al. (2005) in the context of the resource

theory of quantum entanglement. See the earlier Example 4.4 for an application.

Lemma 5.4 (Duan et al. (2005)). Let A be an ordered commutative monoid equipped

with an additional binary operation ∨ such that A also is an ordered commutative monoid

with respect to ∨, and such that + distributes over ∨

x+ (y ∨ z) = (x+ y) ∨ (x+ z). (5.1)

Then

a. If there is an n ∈ N>0 with nx � ny in A,† then there also is z ∈ A with x+ z � y + z.

b. If A is cancellative, then it is also torsion-free.

c. oag(A) is torsion-free.

For example, if A has binary joins (as an ordered set), then A is automatically an

ordered commutative monoid with respect to these joins. If the addition additionally

preserves these joins, then the lemma applies. The same holds if A has binary meets. For

a closely related statement on lattice-ordered groups, see Glass (1999, Lemma 2.1.2).

In the original application of Duan et al. (2005), the addition + is the tensor product

of vectors ⊗, while ∨ is the direct sum ⊕. In this case, the distributivity requirement (5.1)

takes a familiar form

x⊗ (y ⊕ z) = (x⊗ y) ⊕ (x⊗ z).

† Here, nx is still shorthand for the n-fold sum x+ · · · + x and does not involve ∨.

https://doi.org/10.1017/S0960129515000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000444


T. Fritz 886

Proof.

a. We take the argument of Duan et al. (2005) and explain it in our notation. For nx � ny

with given n ∈ N>0, define

z :=

n∨
k=1

((k − 1)x+ (n− k)y) . (5.2)

Then we have, by the assumed distributivity

x+ z = x+

n∨
k=1

((k − 1)x+ (n− k)y)
(5.1)
=

n∨
k=1

(kx+ (n− k)y)

=

[
n−1∨
k=1

(kx+ (n− k)y)

]
∨ nx

(∗)

� ny ∨
[
n−1∨
k=1

(kx+ (n− k)y)

]

=

n∨
k=1

((k − 1)x+ (n− k + 1)y)
(5.1)
= y +

n∨
k=1

((k − 1)x+ (n− k)y) = y + z.

Here, the step marked (∗) is where the assumption nx � ny comes in. The subsequent

step also uses a reindexing k �→ k − 1.

b. Assume A to be cancellative. Then a putative inequality nx � ny implies x+ z � y+ z

for some z by part a, and hence x � y by assumption. Therefore, A is torsion-

free.

c. Suppose that we have n(x − y) � 0 for n ∈ N>0 and x − y some generic element of

oag(A) with x, y ∈ A. By definition of the ordering in oag(A), this means that there

is z ∈ A such that nx + z � ny + z holds in A. By adding (n − 1)z on both sides,

we also have n(x + z) � n(y + z). But then by a, we know that there is w ∈ A with

x+ z + w � y + z + w. This results in x− y � 0 in oag(A).

From now on, much of the development in this section will be parallel to the one from

the previous section. For simplicity, we restrict ourselves to the consideration of ordered

abelian groups only. For a resource theory, this means that we assume that the catalytic

regularization has already been performed.

We can make any ordered abelian group G into a torsion-free one by introducing a

new ordering denoted ‘�’ and defined as

x � y :⇐⇒ ∃n ∈ N>0, nx � ny.

If G is the ordered abelian group describing a resource theory (after catalytic regulariz-

ation, if necessary), then this relation is many-copy convertibility. It is straightforward to

show that � is indeed reflexive and transitive, and that this ordering coincides with the

original ‘�’ if G already happened to be torsion-free. Moreover, the addition + is clearly

monotone with respect to � as well. If we write tf(G) for the ordered commutative monoid

given by G equipped with this new ordering, then tf(G) is evidently torsion-free: assuming

nx � 0 means that there exists m ∈ N>0 with mnx � 0 in the original ordering, which

indeed implies x � 0. There is a canonical homomorphism ηG : G → tf(G) which simply

maps every element to itself, and this has the following universal property: if H is any
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other ordered abelian group which is torsion-free, and f : G → H is any homomorphism,

then there is a unique homomorphism tf(f) : tf(G) → H such that f = tf(f) ◦ ηG, i.e. such

that the diagram

G
ηG ��

f ���
��

��
��

� tf(G)

tf(f)���
�
�
�

H

commutes. In categorical language, the category of torsion-free ordered abelian groups is

a reflective subcategory of OAG.

Remark 5.5. The induced equality relation on tf(G) may differ from the one on G, meaning

that ηG(x) = 0 may not necessarily imply that x = 0. For example, if G is a torsion group,

i.e. if for every x ∈ G there exists n ∈ N>0 with nx = 0, then we have 0 � x and x � 0

for all x, resulting in x = 0 in tf(G). Therefore, tf(G) is isomorphic to the trivial group in

which all elements are equal to 0.

Definition 5.6. An ordered commutative monoid A is divisible if for all x ∈ A and n ∈ N>0,

there is y ∈ A with x = ny.

Definition 5.7. An ordered Q-vector space V is an ordered abelian group which is torsion-

free and divisible.

While in the previous section, being an ordered abelian group implied cancellativity, the

analogous statement here is not the case: in general, divisibility does not imply torsion-

freeness. For example, the abelian group Q is divisible, and if we define its positive cone

to consist of 0 together with all rational numbers � 1, then we obtain an ordered abelian

group which is divisible, but not torsion-free.

It may sound a bit funny to use the term ‘vector space’ for an ordered commutative

monoid with extra properties, rather than the extra structure consisting of scalar multiplic-

ation. But it is a basic fact that any ordered Q-vector space – as we defined it – is indeed

a vector space over Q in the conventional sense. The missing piece of structure is scalar

multiplication of any x ∈ V by an arbitrary fraction p
q

∈ Q with p ∈ Z and q ∈ N>0, and

this can be defined as follows: first, we find a y ∈ V with qy = x; by torsion-freeness, this

y is unique. Then we can define p
q

· x := py. It is straightforward to check that this indeed

yields a Q-vector space structure on V in the usual sense.

If V is an ordered Q-vector space, A any torsion-free ordered commutative monoid

and f : V → A any homomorphism, then f( p
q

· x) = p
q
f(x), in the sense that the element

f( p
q

· x) solves the equation qf( p
q

· x) = pf(x), and is necessarily the unique element to do

so by torsion-freeness. In the language of property, structure and stuff (nLab 2014), this

confirms that an ordered Q-vector space is an ordered commutative monoid with extra

properties, but no extra structure or stuff: the forgetful functor from ordered Q-vector

spaces to ordered commutative monoids is fully faithful.

Similarly to how every cancellative ordered commutative monoid embeds into an abelian

group, every torsion-free ordered abelian group G embeds into an ordered Q-vector space

ovsQ(G) in a universal way. We construct ovsQ(G) by taking G and throwing in all formal
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n-th fractions of group elements (which may represent resource objects). More precisely,

ovsQ(G) is defined as the ordered Q-vector space

ovsQ(G) := N>0 × G,

so that the elements of ovsQ(G) are pairs (n, x) consisting of a positive natural number n

and an element x ∈ G. We think of such a pair as the formal 1
n
th multiple or formal nth

part of x. Concerning the ordering, we declare that

(m, x) � (n, y) :⇐⇒ nx � my. (5.3)

Transitivity of this new relation follows from torsion-freeness of �. Since we then have

(n, x) � (mn,mx) � (n, x) for every m ∈ N>0, we also obtain (n, x) = (mn,mx).

The addition of two elements (m, x) and (n, y) in ovsQ(G) is defined by

(m, x) + (n, y) := (mn, nx+ my),

which corresponds to taking fractions with common denominator mn, as one would

expect from the intuitive idea that the pairs represent formal fractions. We take the

neutral element 0 ∈ ovsQ(G) to be given by the pair (1, 0). This yields an ordered

commutative monoid which is torsion-free and divisible by construction, and therefore

forms an ordered Q-vector space.

There is a canonical homomorphism γG : G → ovsQ(G) which maps every element x ∈ G

to the pair (1, x) ∈ ovsQ(G), and this has the following universal property: if V is any other

ordered Q-vector space and f : G → V , then there is a unique ovsQ(f) : ovsQ(G) → V

such that ovsQ(f) ◦ γG = f, i.e. such that the diagram

G
γG ��

f ���
��

��
��

� ovsQ(G)

ovsQ(f)
���
�
�
�
�

V

commutes. The uniqueness part follows from

ovsQ(f)((n, x)) = ovsQ(f)
(

1
n

· (1, x)
)

= 1
n

· ovsQ(f)((1, x)) = 1
n
f(x).

A simple computation shows that this definition also works, which proves existence. We

also note that γG : G → ovsQ(G) clearly reflects the ordering in the sense of Equation

(2.3),

γG(x) � γG(y) =⇒ x � y,

and in particular is injective. Hence, we regard G as a subgroup of ovsQ(G) equipped with

the induced ordering. In this way, we gain the mathematical convenience of working with

a Q-vector space rather than a group. This takes our investigations to the well-trodden

ground of linear algebra, and we will make judicious use of this in the following sections.

In resource-theoretic terms, ovsQ(G) is the many-copy regularization of G.

If we start with an ordered abelian group G which is not necessarily torsion-free, we can

make it torsion-free by constructing tf(G), and then turn it into the ordered Q-vector space

ovsQ(tf(G)). Then, there is a canonical homomorphism γGηG : G → ovsQ(tf(G)) having
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the following universal property: if V is any ordered Q-vector space and f : G → V , then

there is a unique ovsQ(tf(f)) : ovsQ(tf(G)) → V such that ovsQ(tf(f)) ◦ γGηG = f, i.e. such

that the diagram

G
γGηG ��

f ���
��

��
��

� ovsQ(tf(G))

ovsQ(tf(f))
���
�
�
�
�

V

commutes. At least in the setting of unordered abelian groups, this composite construction

of turning an abelian group into a Q-vector space is simply given by taking the tensor

product of Q as abelian groups

ovsQ(tf(G)) = Q ⊗Z G.

We leave open the question to which extent an analogous statement can also be made in

our ordered setting.

Again, we could have performed both steps of the ovsQ(tf(G)) construction at once and

directly go from the ordered abelian group to the ordered Q-vector space, but we find

it instructive to split it into two separate parts which are simpler to grasp individually.

Nevertheless, for the remainder of this paper we abbreviate ovsQ(tf(G)) by ovsQ(G). In

categorical language, we can restate the universal property of ovsQ(G) like this:

Theorem 5.8. OVSQ is a reflective subcategory of OAG.

When A is any old ordered commutative monoid, then we even abbreviate ovsQ(oag(A))

to ovsQ(A). Generally speaking, our notation is such that the outermost functor that we

apply represents the highest degree of regularity, where the degree of regularity increases

to the right in Figure 2, and we omit all the inner functors from the notation. So by

definition of both regularizations, x � y in ovsQ(A) for x, y ∈ A means that there exists

n ∈ N>0 and z ∈ A such that with respect to the ordering in A,

n(x+ z) � n(y + z). (5.4)

Equivalently, this happens whenever there exists w ∈ A with

nx+ w � ny + w, (5.5)

again with respect to the ordering in A.

In resource-theoretic terms, the elements of ovsQ(A) can be understood as all formal

Q-linear combinations of the original resource objects which make up the ordered

commutative monoid A. We may think of such a linear combination as a portfolio

of resource objects†, consisting of credit in some shares of some objects while at the same

time owing some shares of others. The ordering relation on ovsQ(A) is then concerned

with how one can convert such portfolios into each other. A conversion x � y may be

interpreted like this: if one owns a portfolio y and has the option to trade y for another

portfolio x, then x � y means that this trade is guaranteed to be favourable. Equivalently,

† This terminology is due to Rob Spekkens.
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if x − y � 0 holds and one has the chance of acquiring the portfolio x − y for free, then

one should definitely do so.

The relevance of Theorem 5.8 for our revised main question (Question 4.8) is that R
is an ordered Q-vector space, and therefore any functional on an ordered abelian group

G can be uniquely extended to a functional on ovsQ(G). If we start with an ordered

commutative monoid A, then in order to have f(x) � f(y) for all functionals f, it is

therefore sufficient that x � y in ovsQ(A), i.e. that x can be converted into y catalytically

and at the level of many copies. We can now reformulate the question even further:

Question 5.9. If V is an ordered Q-vector space and f(x) � 0 for all functionals f, does

this imply that x � 0? If not, what does it tell us?

So in resource-theoretic terms, we now ask: do additive monotones witness the catalytic

many-copies convertibility relation (5.4)–(5.5) perfectly? As we have shown, this is really

a question about ordered Q-vector spaces. In the next section, we will see that the answer

is again negative, although this is now much less simple to see. A third and final step of

regularization will be performed, this time of a much more analytic rather than algebraic

nature.

There is a standard alternative definition of ordered Q-vector space which we find

useful:

Definition 5.10 (Alternative). An ordered Q-vector space is a set V equipped with the

following additional pieces of structure:

• a subset V+ ⊆ V called the positive cone,

• a binary operation +,

• a scalar multiplication · : Q × V → V ,

• a distinguished element 0 ∈ V ,

and such that the following axioms hold:

• these operations turn V into a Q-vector space,

• V+ is closed under addition and multiplication by nonnegative scalars,

• the positive cone is pointed: if x ∈ V+ and −x ∈ V+, then x = 0.

Again, we think of the last requirement not as an axiom, but rather as the definition of

equality on V .

Getting back to the concept of generators, the following well-known property of points

in an ordered Q-vector space is often of interest:

Lemma 5.11 (See also e.g. Aliprantis and Tourky (2007, Lemma 1.7)). For g � 0 in an

ordered Q-vector space V , the following are equivalent:

a. (g, 0) is a generating pair in the sense of Definition 3.18.

b. g is a generator in the sense of Definition 4.11.

c. g is an order unit, i.e. for every x ∈ V there exists λ ∈ Q such that x+ λg � 0.

d. g is an interior point, i.e. for every x ∈ V there exists† ε > 0 such that g + εx � 0.

† Recall our stipulation that lowercase Greek letters always designate rational numbers.
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So all these seemingly different concepts become simple reformulations of one another

at the level of ordered Q-vector spaces.

Proof. We already know that a and b are equivalent.

b⇒c: For given x, we know that there exists n ∈ N with ng � −x, and hence

x+ ng � 0.

c⇒b: Applying the assumption to −x yields −x+ λg � 0. Together with g � 0, this

implies that �λ�g � x.

c⇒d: In x+λg � 0, we may assume without loss of generality that λ > 0 since g � 0.

Then g + λ−1x � 0.

d⇒c: The assumption g + εx � 0 implies x+ ε−1g � 0.

Many ordered Q-vector spaces that arise in nature come equipped with a distinguished

order unit. Considering such order unit spaces results in a rich mathematical theory, which

is usually developed with R rather than Q as the ground field (Paulsen and Tomforde

2009). For resource theories, there often may exist a canonical choice of generator or

order unit as well – as in Example 3.20.

6. The seed regularization: Archimedean ordered Q-vector spaces

So after having performed the catalytic and many-copy regularizations, does f(x) � f(y)

for all functionals f imply that x � y? Again, the answer is negative, as the following

example shows: consider the ordered Q-vector space V := Q2 with positive cone

V+ := { (0, 0) } ∪ { (α, β) ∈ Q2 | α > 0 }. (6.1)

In this example, we claim that f((0, 1)) = 0 for any functional f, and that therefore (0, 1)

cannot be distinguished from the origin (0, 0) by functionals only. The reason for this is

that (ε, 1) � 0 for any ε > 0, and therefore

f((0, 1)) + εf((1, 0)) = f((ε, 1)) � 0,

which implies f((0, 1)) � 0 upon taking ε → 0. So we have f((0, 1)) � 0 for all functionals

f, although (0, 1) �� 0. Since we must also have f((0,−1)) = −f((0, 1)) � 0 by symmetry,

we can even conclude that f((0, 1)) = 0.

Ordered Q-vector spaces that display this phenomenon may arise from thermodynamic

resource theories as follows. Let the β coordinate be given by a physical quantity which is

additive under combination of systems, such as the volume of a gas. Let α be a quantity

like the negative of the entropy of the system. Then, in a perfectly adiabatic transition, β

can be changed arbitrarily without incurring any cost in α. However, real-world transitions

are never perfectly adiabatic, because realizing adiabatic transitions requires an infinite

amount of time; hence, any actual transition will incur a nonzero but arbitrarily small

cost in α. This leads to a positive cone of the form (6.1). So the considerations of this

section may be of particular relevance to thermodynamics.

We now consider the conditions under which a phenomenon like this is guaranteed not

to occur. This is more intricate than the simple algebraic conditions of cancellativity and
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torsion-freeness of the previous two sections, and we need to deal with some functional

analysis.

Definition 6.1. A subset U ⊆ V of an ordered Q-vector space V is said to be

a. convex if x, y ∈ U and rational λ ∈ [0, 1] gives λx+ (1 − λ)y ∈ U,

b. absolutely convex if it is convex and V+ ⊆ U,

c. absorbent if for every x ∈ V , there exists μ ∈ Q>0 with μx ∈ U.

Part b is again a definition which usually carries that name only in the unordered

setting, in which V+ = {0}, so that the additional condition simply states that 0 ∈ U.

The absolutely convex absorbent sets form a neighbourhood basis of 0 in a topology

on V which turns V into something close to a topological Q-vector space: addition and

multiplication by nonnegative scalars are both continuous, but inversion x �→ −x may

not be.

The resource-theoretic interpretation of a convex set U is that it is a set of portfolios

which is closed under combining portfolios, but only in a way which does not increase

the total amount of content in the portfolios by taking a λth share of the first portfolio

and a (1 − λ)th share of the second. A set of portfolios is absolutely convex if it contains

in addition all those portfolios which are at least as good as the empty portfolio. Finally,

a set of portfolios is absorbent if it contains some (typically small) multiple of every other

portfolio.

Example 6.2. If V is an ordered Q-vector space with a generator g and ε > 0, then the

set

Uε := { x ∈ V | x+ εg � 0 } (6.2)

is absolutely convex absorbent.

Absolutely convex absorbent sets of the form Equation (6.2) have the special property

that they are upwards closed: if y ∈ Uε and x � y, then also x ∈ Uε. Equivalently, we have

Uε + V+ ⊆ Uε. A general absolutely convex absorbent set need not have this property,

but it will at least be very close to doing so:

Lemma 6.3. If U is absolutely convex absorbent, x ∈ U and y � 0, then for every

λ ∈ (0, 1) we have λx+ y ∈ U. In other words, λU + V+ ⊆ U.

This approximates upward closure in the limit λ → 1 and shows that not taking upward

closure as part of the definition of absolutely convex absorbent sets makes little difference.

Proof. We have (1 − λ)−1y � 0 and hence (1 − λ)−1y ∈ U. Therefore, the convex

combination

λ · x+ (1 − λ) · (1 − λ)−1y = λx+ y,

must be in U as well.

We now claim that if x ∈ V is such that x ∈ U for all absolutely convex absorbent U,

then f(x) � 0 for all functionals f. The reason is simple: for every rational ε > 0, the set
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of all y ∈ V with f(y) � −ε is absolutely convex absorbent. This is yet another sufficient

condition which will finally also turn out to be necessary.

Definition 6.4. An ordered Q-vector space W is Archimedean if its positive cone is the

intersection of all absolutely convex absorbent sets

W+ =
⋂

{U absolutely convex absorbent }.

In other words, W is Archimedean if and only if x ∈ U for every U implies that

x ∈ W+.

Remark 6.5. If one develops the theory of locally convex vector spaces over Q in analogy

to that over R, then W is Archimedean if and only if W+ is topologically closed in the

finest locally convex topology on W .

Example 6.6. If W is finite-dimensional, then it is Archimedean if and only if W+ is

topologically closed as a subset of Qdim(W ) in the standard (Euclidean) topology. In

particular, Equation (6.1) is not Archimedean.

For another important class of examples, we have the following criterion:

Proposition 6.7. If an ordered Q-vector space W has a generator g, then it is Archimedean

if and only if x+ εg � 0 for all ε > 0 implies x � 0.

In fact, for order unit spaces, this is generally taken to be the definition of Archimedean-

icity (Paulsen and Tomforde 2009).

Proof. If W is Archimedean, then we need to show that x+ εg � 0 for all ε > 0 implies

x ∈ U for all absolutely convex absorbent U. This follows if every U contains some Uε

of the form Equation (6.2). And indeed, for a given U choose ε > 0 such that −2εg ∈ U.

For any y ∈ Uε, we have y + εg � 0 by definition of Uε. Therefore by Lemma 6.3 with

λ = 1
2
, we conclude y ∈ U. This proves Uε ⊆ U.

Conversely, assume that the implication in the claim holds. Then if x ∈ U for all

absolutely convex absorbent U, we in particular have x ∈ Uε for all ε, and therefore x � 0

by the assumed implication.

Proposition 6.8. If A is an ordered commutative monoid with a generating pair (g+, g−),

then ovsQ(A) is Archimedean if and only if the following implication holds: if for all

ε > 0 there are n, k ∈ N>0 with k � εn and

nx+ kg+ � ny + kg−,

then there are m ∈ N>0 and z ∈ A with

mx+ z � my + z.

Proof. If the criterion of Proposition 6.7 holds for some x, then it will also hold for

every positive scalar multiple of x. Hence among all the formal Q-linear combinations

that make up ovsQ(A), it is sufficient to apply the criterion to all formal integer linear

combinations, i.e. the elements of oag(A). A generic such element is of the form x− y for
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x, y ∈ A. Then x − y � 0 in ovsQ(A) is directly equivalent to the consequent stated, that

there are m ∈ N>0 and z ∈ A with mx+ z � my + z.

On the other hand, we need to translate the antecedent condition of Proposition 6.7,

which is (x − y) + εg � 0 in ovsQ(A) for all ε > 0, into the condition stated in the claim.

First, if the condition in terms of nx+ kg+ � ny + kg− holds, then we certainly also have

nx + nεg+ � ny + nεg−, possibly after multiplying n by a large enough factor such as to

make nε an integer. This leads to (x− y) + ε(g+ − g−) � 0 in ovsQ(A), which is the desired

inequality with g = g+ − g− the generator. We will show the other direction later in the

proof of Theorem 6.18.

Problem 6.9. We do not know whether ovsQ(Grph) is Archimedean. In light of Lemma 5.4c

and the graph join of Example 4.4, the criterion of Proposition 6.8 becomes equivalent

to the following question: if G and H are graphs such that for every ε > 0 there exist

n ∈ N>0 and a graph map H∗n −→ G∗n ∗ K�2nε�, does this imply that there exists a graph

L and a graph map H ∗ L −→ G ∗ L?

Being Archimedean has some nice consequences:

Lemma 6.10. If W is an Archimedean ordered Q-vector space and x, y ∈ W are such

that x+ εny � 0 for a sequence (εn)n∈N with εn → 0, then x � 0.

Proof. First, suppose that εn = 0 for some n. In this case, we already have x � 0 as an

assumption and hence there is nothing to prove. So we assume from now on that all εn
have definite sign.

Second, suppose that the sequence (εn) changes sign somewhere, i.e. that εn > 0 but

εm < 0 for some n, m ∈ N . Then we have x + εny � 0 and x − |εm|y � 0 by assumption.

These inequalities superpose to (|εm| + εn)x � 0, which implies x � 0 as claimed.

Hence the remaining case is that all of the εn’s have the same sign. By replacing y �→ −y
if necessary, we assume without loss of generality that εn > 0 for all n. We then prove that
x
2

∈ U for every absolutely convex absorbent U, which implies x
2

∈ W+ by assumption

and hence also x ∈ W+. Since U is absorbent, we know that −λy ∈ U for some λ ∈ Q>0.

But we also have x+ εny ∈ U by assumption, and therefore the point

εn

εn + λ
(−λy) +

λ

εn + λ
(x+ εny) =

λ

εn + λ
x,

also lies in U by convexity of U. As long as εn � λ, the coefficient in front of x is at least
1
2
, and then we can again use convexity of U and 0 ∈ U to show that x

2
∈ U.

We write AOVSQ for the category of Archimedean ordered Q-vector spaces. If V+ ⊆ V

is the positive cone of an ordered Q-vector space, then we can ‘Archimedeanize’ it by

keeping the underlying set aovsQ(V ) := V and taking the positive cone to be given by

aovsQ(V )+ :=
⋂

{U absolutely convex absorbent }

= { x ∈ V | x ∈ U for every absolutely convex absorbent U } .

This aovsQ(Q) is easily checked to be an ordered Q-vector space as well, and it has the

property that its absolutely convex absorbent sets are the same as the original V ’s: if U
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is absorbent and absolutely convex with respect to V+, then it also contains aovsQ(V )+

by definition of the latter as an intersection in which U occurs. This implies in particular

that aovsQ(V ) itself is indeed Archimedean, as the notation suggests.

Example 6.11. In our initial example (6.1), we have

aovsQ(V )+ = { (α, β) ∈ Q2 | α � 0 }.

Since this contains the whole line {0} ×Q, the resulting notion of equality induced by the

ordering as in Equation (2.1) collapses this entire line to a single point. Hence, aovsQ(V )

actually turns out to be one-dimensional. So also in this third step of regularization, the

resulting notion of equality may change.

The definition of aovsQ(V )+ in terms of absolutely convex absorbent sets is very difficult

to deal with in practice due to the abundance of absolutely convex absorbent sets. Hence,

it is useful to have some other ways of constructing aovsQ(V )+ which apply in certain

situations. For example if V is finite-dimensional, then aovsQ(V )+ is just the closure of

V+ in the standard topology. But since we expect V to be infinite-dimensional in most

situations of interest, this will probably not be very useful.

Motivated by Lemma 6.10, one can try to construct aovsQ(V )+ in general by taking it to

contain all those x for which there exists y and a sequence εn → 0 with x+εny � 0. This res-

ults in the so-called sequential closure of V+, which unfortunately may be significantly smal-

ler than aovsQ(V )+ (Cimprič et al. 2011). But if a generator exists, then everything is fine:

Lemma 6.12 (e.g. Paulsen and Tomforde (2009, Section 2.3)). If V is an ordered Q-vector

space with a generator g (Lemma 5.11), then x ∈ aovsQ(V )+ if and only if x+ εg � 0 for

all ε > 0.

Proof. If one chooses any sequence (εn)n∈N of positive rationals with εn → 0, then the

‘if ’ part is an instance of Lemma 6.10. For the ‘only if’ part, we consider the absolutely

convex absorbent Uε from (6.2). By definition of aovsQ(V )+, every x ∈ aovsQ(V )+ is

contained in all of these.

Replacing V by aovsQ(V )+ is what we call the seed regularization. In the case when

aovsQ(V )+ coincides with the sequential closure, the resource-theoretic interpretation of

this regularization is in terms of seeds. Originating in the field of pseudorandom number

generators, the notion of ‘seed’ refers to the possibility of consuming (or absorbing) a

small amount of a valuable resource object g in order to facilitate the conversion of

some other resource object x into y; with this definition, the seed regularization has been

employed in Bennett et al. (2014) and Brandão et al. (2013a). Its main point is that the

required amount of g is sublinear o(n) in the number of copies being converted, and it

is in this sense that it ‘seeds’ the conversion. For example, g may be a catalyst for the

conversion of x into y. In this case, one only needs a single copy of it in order to convert

arbitrarily many x’s into y’s, since the same catalyst can be used any number of times;

we will make use of this further down.

We can formulate a universal property of aovsQ(V ) analogous to the universal properties

that we encountered in the previous two sections. There is a canonical homomorphism
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ηV : V → aovsQ(V ) given by the identity function on the underlying vector spaces. If

W is any Archimedean ordered Q-vector space and f : V → W , then there is a unique

aovsQ(V ) : aovsQ(V ) → W such that aovsQ(f) ◦ ηV = f, i.e. such that the diagram

V
ηV ��

f ��	
		

		
		

	 aovsQ(V )

aovsQ(f)��
 








W

commutes. To see this, note that uniqueness is clear, since γV is the identity function

on the level of underlying vector spaces. So all that we need to show is that if f is a

homomorphism and x ∈ V lies in all absolutely convex absorbent sets, then f(x) � 0. But

since W is Archimedean, for showing f(x) � 0 it is enough to prove that f(x) lies in any

absolutely convex absorbent set U ⊆ W . Because f−1(U) ⊆ V is also absolutely convex

absorbent and therefore contains x by assumption, we can indeed conclude f(x) ∈ U, as

was to be shown.

So in category-theoretic terms, we have:

Theorem 6.13. AOVSQ is a reflective subcategory of OVSQ.

Remark 6.14. Here and in all of the following, we work with vector spaces over Q. One

can go further and turn aovsQ(V ) into an R-vector space by completing with respect to

the uniform structure that it carries naturally. However, since our current goal is mostly

to give a complete answer to Question 3.24, we leave the investigation of this additional

step to an R-vector space structure to future work.

The following result is a Hahn–Banach theorem which finally enables us to answer the

question as to which elements of an ordered commutative monoid can be distinguished

by functionals (Question 3.24). It will be an important technical tool that we will make

repeatedly make use of in the remainder of this paper.

Theorem 6.15 (Hahn–Banach separation for cones). For an Archimedean ordered Q-vector

space W and x ∈ W , the following are equivalent:

a. x � 0,

b. f(x) � 0 for all functionals f.

Since the Hahn–Banach theorem is among the most basic results of functional analysis

and many variants of it have been proven, we do not expect this result to be original,

although we have not found it anywhere in this precise form (over Q). In the resource-

theoretic interpretation it could be related to an earlier application of the Hahn–Banach

theorem in the foundations of thermodynamics (Feinberg and Lavine 1983).

Proof. Only the direction b⇒a is nontrivial, and we prove its contrapositive: if x �� 0,

then there exists f with f(x) < 0.

The starting situation is that we have the positive cone W+ ⊆ W and x �∈ W+. Due to

Archimedeanicity, we can witness x �∈ W+ by an absolutely convex absorbent set U ⊆ W
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with x �∈ U. Associated to U, we have the Minkowski gauge

p : W −→ R, y �−→ inf{ λ ∈ Q�0 | y ∈ λU }.

Since U is absorbent, the infimum is guaranteed to exist. We also have p(x) � 1 since

x �∈ U. Furthermore, p is positively homogeneous, p(μy) = μp(y) for all μ > 0, and

subadditive, p(y + z) � p(y) + p(z), thanks to convexity of U. On the one-dimensional

subspace Qx, we can define a linear map g : Qx → R by g(μx) := μ, and then we have

g � p on this subspace, which follows for positive μ from p(x) � 1 and for negative μ

from nonnegativity of p. By the Hahn–Banach extension theorem for sublinear functionals

Theorem A.1 from the appendix, this linear map extends to g : W → R such that g(x) = 1

and g � p. For y � 0, we have p(y) = 0, and therefore g(y) � 0. In conclusion, f := −g
is the desired functional with f(x) = −g(x) = −1 < 0.

We can think of the theorem as saying that for every Archimedean ordered Q-vector

space W , there exists a family of functionals fi : W → R indexed by some i ∈ I which

jointly reflects the order, i.e. x � 0 if and only if fi(x) � 0 for all i. Equivalently speaking,

we have an embedding X −→ RI given by x �−→ (i �−→ fi(x)). Or in category-theoretic

terms, we can say that the object R is a cogenerator in AOVSQ.

In order to get a complete answer to Question 3.24, we would now like to translate

Theorem 6.15 back into the world of ordered commutative monoids by traversing all three

regularizations backwards. However, we have not yet found a general and reasonably nice

way to do this; the difficulties are in characterizing the Archimedeanization of an arbitrary

ordered Q-vector space in a clean manner. So we state our results only under the additional

assumption that a generating pair exists, in which case we can resort to Lemma 6.12 for

an appealing description of the Archimedeanization.

Theorem 6.16. Let V be an ordered Q-vector space with generator g ∈ V . Then the

following are equivalent for any x ∈ V :

a. x � 0 in aovsQ(V ).

b. x+ εg � 0 for all ε > 0.

c. f(x) � 0 for all functionals f.

Proof. Combine Theorem 6.15 with Lemma 6.12.

Theorem 6.17. Let G be an ordered abelian group with generator g. Then the following

are equivalent for any x ∈ G:

a. x � 0 in aovsQ(G).

b. For all ε > 0, there exist n, k ∈ N>0 with k � εn and nx+ kg � 0.

c. f(x) � 0 for all functionals f.

Proof.

a⇒b: By Theorem 6.16, we know that x+ εg � 0 holds for all ε > 0 in ovsQ(G). By the

definition of the ordering on ovsQ(G), this implies that there exists an n ∈ N>0 with

nε ∈ N such that nx+ nεg � 0. So it is even possible to take k = nε.

b⇒c: Straightforward.

c⇒a: Theorem 6.15.

https://doi.org/10.1017/S0960129515000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000444


T. Fritz 898

In b, one is allowed to make use of a number of copies of the generator which is

sublinear o(n) in the desired number of conversions n. This also applies at the level of

ordered commutative monoids:

Theorem 6.18. Let A be an ordered commutative monoid with generating pair (g+, g−).

Then the following are equivalent for any x, y ∈ A:

a. x � y in aovsQ(A).

b. For all ε > 0, there exist n ∈ N and k ∈ N with k � εn and nx+ kg+ � ny + kg−.

c. f(x) � f(y) for all functionals f.

Proof.

a⇒b: By Theorem 6.17 and the construction of oag(A), the assumption x � y means that

for all ε > 0, there exist n, k ∈ N with k � ε
2
n and

n(x− y) + k(g+ − g−) � 0,

in oag(A), and we can assume that k � 2 without loss of generality. In terms of A

itself, this means that there exists z ∈ A with

nx+ kg+ + z � ny + kg− + z, (6.3)

and we now need to show that we can get rid of z. Since (g+, g−) is a generating

pair, we have l ∈ N with lg+ +z � lg− and lg+ � z+ lg−. The main trick for getting

rid of z is to apply Equation (6.3) repeatedly: for every j ∈ {1, . . . , l}, Equation (6.3)

tells us that

j(nx+ kg+) + (l − j)(ny + kg−) + z � (j − 1)(nx+ kg+) + (l − j + 1)(ny + kg−) + z,

where the right-hand side is exactly the left-hand side, except that the value of j has

decreased by one. So we can chain all these inequalities together, from the left-hand

side with j = l until the right-hand side with j = 1, and obtain

lnx+ lkg+ + z � lny + lkg− + z. (6.4)

But now since lg+ + z � lg− and lg+ � z + lg−, we also have

lnx+ l(k + 1)g+ � lnx+ lkg+ + z + lg− + lg+

� lny + lkg− + z + lg+ + lg−

� lny + l(k + 2)g−.

Putting n′ := ln and k′ := l(k + 2) therefore yields

n′x+ k′g+ � n′y + k′g−,

which is the desired result thanks to k′ = l(k + 2) � l(k + k) � εln = εn′.

b⇒c: Straightforward.

c⇒a: Theorem 6.15.
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The main step in this proof is the derivation of Equation (6.4) from Equation

(6.3). This part generalizes (Blackadar and Rørdam 1992, Lemma 2.3), and also is

an elaboration on an argument of Lieb and Yngvason (1999, Theorem 2.1) which was

also used independently by Devetak et al. (2008, Lemma 4.6). The interpretation of this

argument is that the catalytic regularization is redundant after one has performed the

seed regularization, since the use of (g+, g−) as a seed lets us buy any catalyst which can

then be used over and over again.

7. Classifying additive monotones: the structure of functionals

The results of the previous section highlight the distinguished role played by functionals.

Theorem 6.18 delineates accurately how much functionals can ‘see’ of the structure of

an ordered commutative monoid with a generating pair. But in practice, how can we

possibly check whether a condition like f(x) � f(y) holds for all functionals f? Doing

so requires a good understanding of the structure of the functionals on the given ordered

commutative monoid. In this section, we develop some basic methods for analyzing this

structure.

Definition 7.1. A functional f is extremal if for any other functional f′ with f � f′, we

have f′ = λf for some constant λ ∈ R�0.

This definition uses the pointwise ordering on functionals, in which f � f′ stands for

f(x) � f′(x) for all x ∈ A. Then f � f′ is equivalent to the statement ‘f−f′ is a functional

itself.’

One can regard the functionals on an ordered commutative monoid A as forming a

convex cone within the space of linear maps aovsQ(A) → R. It is straightforward to show

that a functional is extremal if and only if it spans an extremal ray of this convex cone.

Example 7.2. If W is a finite-dimensional Archimedean ordered Q-vector space for which

W+ ⊆ W is a polyhedral cone, then a functional on f : W → R is extremal if and only if

its kernel is a facet of W+. The reason for this is that the facets correspond precisely to

the extremal rays of the dual cone, which is the convex cone of functionals.

In general, extremal functionals on an Archimedean ordered Q-vector space need not

exist. For example, if W is an Archimedean ordered Q-vector space of dimension � 1

and with trivial positive cone W+ = {0}, then no functional is extremal. However, we will

see that if W has a generator, then sufficiently many extremal functionals exist to span

all other functionals in a suitable sense. For now, we work on an Archimedean ordered

Q-vector space W with generator g, and later lift our results to the world of ordered

commutative monoids.

Definition 7.3. On an Archimedean ordered Q-vector space with generator g, a functional

f is normalized if f(g) = 1.

For every functional f, we have either f(g) = 0, which implies f = 0 since g is

a generator, or f(g) > 0, which implies that f is a scalar multiple of a normalized

functional.
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The set of normalized functionals is a convex subset of the set of all functionals. We

equip the set of all functionals and the set of normalized functionals with the weakest

topology which makes all evaluation maps

f �−→ f(x),

continuous; this is the weak-* topology. Then the set of normalized functionals is compact

by the Banach–Alaoglu theorem. From now on, we also use other standard notions and

results from convex functional analysis (Schaefer and Wolff 1999; Kelley and Namioka

1976).

Lemma 7.4. A normalized functional is extremal if and only if it is an extreme point of

the compact convex set of normalized functionals.

Proof. Suppose f is extremal, and f = tf1 + (1 − t)f2 for normalized functionals f1, f2

and t ∈ [0, 1]. Then in particular f � tf1, and hence by extremality there exists s ∈ R�0

with tf1 = sf. Normalization of f and f1 then implies that s = t, and therefore also

(1 − t)f2 = f − tf1 = (1 − t)f. Thus, f cannot be written as a convex combination of

normalized functionals in a nontrivial manner, which makes it into an extreme point.

Conversely, suppose f is an extreme point and f � f′ for some functional f′. Then

f − f′ is also a functional. We distinguish three cases: first, if f′(g) = 0, then f′ = 0 since

g is a generator, and then there is nothing more to prove. Second, if f′(g) = 1, then also

(f − f′)(g) = 0, and therefore f − f′ = 0 again because g is a generator, and there is

nothing more to be shown. Third, if 0 < f′(g) < 1, then we obtain the equation

f = f′(g) · f′

f′(g)
+ (1 − f′(g)) · f − f′

1 − f′(g)
,

which decomposes f into a convex combination of other normalized functionals. By

assumption, this means that f′

f′(g)
= f, and hence f′ = f′(g) · f. In all cases, we have again

exhibited f′ as a nonnegative scalar multiple of f.

We write ex(W, g) for the closure in the weak-* topology of the set of normalized

extremal functionals on W with respect to the generator g.

Theorem 7.5. For every functional f there exists a regular Borel measure μ on ex(W, g)

such that

f(x) =

∫
f̂(x) dμ(f̂). (7.1)

Roughly speaking, the theorem says that every functional is a nonnegative linear

combination of normalized extremal functionals, where ‘nonnegative linear combination’

in general has to be understood in the sense of an integral. This statement seems closely

related to Choquet theory, which studies points in compact convex sets and how they

can be written as integrals over extreme points or boundary points, but we have not

been able to derive it in this exact form using standard Choquet theory. We also do not

know whether a similar statement holds with respect to the set of normalized extremal

functionals ex(W, g) without taking the closure.
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Proof. We consider the R-vector space C(ex(W, g)) of real-valued continuous functions

on ex(W, g). For every x ∈ W , the evaluation map

evx : ex(W, g) −→ R, f̂ �−→ f̂(x),

is continuous by definition of the topology on ex(W, g), and therefore is an element of

C(ex(W, g)). Moreover, the map which sends every x ∈ W to the associated evaluation

map

W −→ C(ex(W, g)), x �−→ evx, (7.2)

is Q-linear and order-preserving. Here, we equip C(ex(W, g)) with the pointwise ordering,

in which F � 0 if and only if F(f̂) � 0 for all f̂ ∈ ex(W, g). That Equation (7.2) is order-

preserving then means that if x � 0, then evx � 0. We furthermore claim that Equation

(7.2) reflects the order, which means that evx � 0 implies x � 0. The assumption evx � 0

means that f̂(x) � 0 for all f̂ ∈ ex(W, g); but by the Krein–Milman theorem, the closed

convex hull of all these f̂ coincides with the set of all normalized functionals, and therefore

f(x) � 0 for all normalized f, which implies f(x) � 0 for all functionals f. The claim

x � 0 then follows from Theorem 6.15.

Since Equation (7.2) reflects the order, it follows that it also reflects equality, i.e. is

injective. In particular, we can identify W with its image in C(ex(W, g)). We furthermore

equip C(ex(W, g)) with the sublinear function

p(F) := max{ F(f̂) | f̂ ∈ ex(W, g) }, (7.3)

which assigns to every continuous function its maximal value. This behaves like an ordered

version of the supremum norm || · ||∞.

On the subspace W of C(ex(W, g)), we have

p(x) := p(evx) = max{ f̂(x) | f̂ ∈ ex(W, g) } = max{ f(x) | f(g) = 1 }
= inf{ λ ∈ Q | λg � x },

(7.4)

where the last two equations follow again from the Krein–Milman theorem and The-

orem 6.15. Now let us be given an arbitrary normalized functional f. By Equation (7.4),

we have

f(x) � p(x),

and therefore the Hahn–Banach extension theorem in the form of Theorem A.1 allows

us to extend f from a Q-linear map W → R satisfying this inequality to a Q-linear

map C(ex(W, g)) → R satisfying the analogous inequality. By this very inequality, this

extension must automatically be R-linear. Also, the extension maps every F � 0 to a

nonpositive number, and hence every F � 0 to a nonnegative number. Therefore by the

Riesz representation theorem, there exists a regular Borel measure μ on ex(W, g) such

that this linear map is of the form

C(ex(W, g)) −→ R, F �−→
∫
F(f̂) dμ(f̂).

Upon restriction to the subspace W , where we know the linear map to be given by

x �−→ f(x), we therefore obtain the desired Equation (7.1).
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We now extend this result from Archimedean ordered Q-vector spaces to ordered

commutative monoids A with a generating pair (g+, g−).

Definition 7.6. A functional f : A → R is normalized if

f(g+) = f(g−) + 1. (7.5)

In the K-theory of operator algebras, normalized functionals on an ordered abelian

group with a generator are known as states (Blackadar 1998, Definition 6.8.1).

Lemma 7.7. Every nonzero functional f is a scalar multiple of a normalized functional.

Proof. By g+ � g−, we know f(g+) � f(g−). If this is a strict inequality, then we can

rescale f such that the two sides differ by 1 and the resulting functional is normalized.

Otherwise, if equality f(g+) = f(g−) holds, then f is the zero functional: for any x ∈ A we

have n ∈ N with ng+ � x + ng− and ng+ + x � ng−, and applying f to these inequality

results in 0 � f(x) and f(x) � 0.

Similar to before, we equip the convex set of normalized functionals with the weakest

topology which makes the evaluation maps

f �−→ f(x),

continuous for all x ∈ A. Again this is the weak-* topology, and it coincides with the

weak-* topology which one obtains by uniquely extending every functional to aovsQ(A)

and equipping the normalized functionals with the weak-* topology there:

Lemma 7.8. For every y ∈ aovsQ(A), also the evaluation map

f �−→ f(y),

is continuous.

Proof. We first prove the statement for oag(A). In this case, a generic element is given

by x− y for x, y ∈ A. The associated evaluation map is

f �−→ f(x− y) = f(x) − f(y),

which is continuous since f �→ f(x) and f �→ f(y) are.

Now for ovsQ(A), every element is of the form 1
n

· z for z ∈ oag(A) and n ∈ N>0. The

associated evaluation map is

f �−→ f
(

1
n

· z
)

= 1
n

· f(z),

which is continuous since f �→ f(z) is.

Finally since the elements of aovsQ(A) are precisely the elements of ovsQ(A), the claim

follows.

In conclusion, this means that we have an equality of topological spaces

ex(A, g+, g−) = ex(aovsQ(A), g+ − g−).
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If we now apply Theorem 7.5 to aovsQ(A), we obtain its generalization to ordered

commutative monoids:

Corollary 7.9. For every functional f, there exists a regular Borel measure μ on

ex(A, g+, g−) such that

f(x) =

∫
f̂(x) dμ(f̂).

Again, we think of this as roughly saying that every functional is a nonnegative linear

combination of extremal functionals.

Example 7.10. There is another ordered commutative monoid of relevance to quantum

information theory: ProbMajor, the ordered commutative monoid of finite probability

spaces ordered by majorization. The elements of ProbMajor are finite probability spaces,

which are pairs (A, P ) consisting of a finite set A and a probability distribution P :

A → [0, 1]. For two finite probability spaces (A, P ) and (B, Q), we take their combination

(A, P ) + (B, Q) to be given by the product space

(A × B, P × Q),

which corresponds to sampling from P and Q independently. We write n := max(|A|, |B|)
and sort the individual probabilities in nonincreasing order

P1 � P2 � · · · � Pn, Q1 � Q2 � · · · � Qn,

where the distribution on the smaller set needs to be appended by zeroes. Then we put

(A, P ) � (B, Q) whenever
k∑
j=1

Pj �
k∑
j=1

Qj,

holds for all k = 1, . . . , n. This defines the ordered commutative monoid ProbMajor. In

the case of equal cardinality |A| = |B|, the ordering of ProbMajor is the majorization

order (Marshall and Olkin 1979). Extending to the case of unequal cardinality by

appending zeroes is a natural choice, and it is precisely in this form that majorization

comes up in quantum entanglement theory: ProbMajor is the ordered commutative

monoid describing the resource theory of two-party pure state entanglement (Nielsen

1999).

ProbMajor has a generating pair given by g+ := 0 and taking g− to be given by

a two-element set, such as {heads, tails}, equipped with the uniform distribution which

assigns probability 1
2

to each outcome. For every parameter value t ∈ [0,∞], the Rényi

entropy Ht : ProbMajor → R is a functional given by†

Ht((A, P )) :=
1

1 − t
log2

(∑
a∈A

P (a)t

)
.

† The Rényi entropies with parameter t < 0 are not functionals, since they take infinite values on distributions

of non-full support and therefore are not even maps of the form ProbMajor → R. If desired, one could try

to fix this by only allowing distributions with full support as resource objects.
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The deep results of Klimesh (2007) and Aubrun and Nechita (2008) suggest that the

following might be true:

• All Rényi entropies Ht are normalized extremal functionals.

• There are no other normalized extremal functionals besides the Rényi entropies.

• Moreover, the set of Rényi entropies is closed in the weak-* topology.

Taken together, these three statements would imply that ex(ProbMajor, g+, g−) coincides

with the set of Rényi entropies. If this turns out to be true, then Corollary 7.9 shows that

every functional f : ProbMajor → R is of the form

f(x) =

∫ ∞

0

Ht(x) dμ(t),

for some regular Borel measure μ on the extended half-line [0,∞]. Here, the topology on

[0,∞] would a priori be the weak-* topology introduced earlier; but if the above is true,

then it seems reasonable to expect this topology to coincide with the usual topology on

[0,∞], which is the one-point compactification of R�0 = [0,∞).

Majorization is also highly relevant in the resource theories studied in the context of

thermodynamics (Gour 2013; Brandão et al. 2013b). However, the ordered commutative

monoid there is slightly different, and the difference lies in how the ordering is defined

in the case of unequal cardinality |A| �= |B|. Nevertheless, it might be possible to make

an analogous conjecture here as for ProbMajor, the only difference being that the Rényi

entropies Ht should be replaced by the Rényi divergences Dt relative to the uniform

distribution (on the same sample space as the distribution under consideration).

Example 7.11. For Grph, we have certain examples of multiplicative functionals like the

complementary Lovász number from Proposition 3.17, the fractional chromatic number

from Example 8.1 and the projective rank, and their logarithms are genuine additive

functionals. Since e.g. the complementary Lovász number and the fractional chromatic

number coincide on complete graphs but differ on some other graphs, such as the

pentagon graph �, at least two of these functionals are linearly independent. Hence the

cone of functionals is at least two-dimensional, and therefore aovsQ(Grph) is at least

two-dimensional as well.

We do not know anything else about the structure of functionals on Grph. In particular,

we do not have any other bounds on these dimensions and we also do not know whether

either of these functionals is extremal.

8. Rates and the rate formula: the structure of two-dimensional slices

In many situations, it is not just of interest to try to convert one copy of x into one copy

of y

x
?
� y,

but one would like to obtain as many copies of y from x as possible

sup { m ∈ N | x � my } = ? (8.1)
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Similarly, one may be interested in the minimal number of copies of x that are required

for producing one copy of y

inf { n ∈ N | nx � y } = ? (8.2)

In a mass production setting, these two questions become subsumed by a third one of a

similar flavour. In this case, one has many copies of x available and tries to turn these

into as many copies of y as possible. So, then the problem is to maximize the ratio m
n

for

which nx � my

Rmax(x → y) := sup
{ m

n

∣∣∣ nx � my
}
. (8.3)

Here, the supremum ranges over all m, n ∈ N , and we use the conventions m
0

:= ∞ for

m > 0 and 0
0

:= 0, where the latter ensures that m = n = 0 does not contribute to

the supremum. This quantity is the maximal rate of converting x into y. It represents

the average number of y’s which one can maximally extract from one copy of x. If no

number of copies of x can be converted to any number of copies of y, then we have

Rmax(x → y) = 0; this will typically happen e.g. for x = 0. On the other hand, the fractions
m
n

with nx � my may also be unbounded, in which case we have Rmax(x → y) = ∞. This

arises either because there is some n such that nx can be converted into any number of

copies of y, e.g. if x � 0 � y, or for the weaker reason that the maximal number of y’s

that can be extracted from nx grows superlinearly in n. The latter can also be phrased as

saying that the number of x’s that is necessary for producing my grows sublinearly in m.

Roughly speaking, a rate maximization of the form Equation (8.3) is what Shannon’s

noisy coding theorem (Shannon 1948) in the resource theory of communication is about:

it gives a concrete answer to the question of how many copies of the noiseless channel

which communicates one bit perfectly one can obtain from many copies of a given

channel. However, due to the lack of a suitable way to deal with the ‘epsilons’ in the noisy

coding theorem, this is currently still a non-example for us (Remark 2.6). But there are

interesting examples that do fit our definition:

Example 8.1. In Grph, let x = G be any graph and y = K2 be the complete graph on two

vertices. Then the rate Rmax(G → K2) is the supremum over all fractions m
n

for which there

exists a graph map K2m → G∗n. In terms of the clique number ω from Example 3.22, for

a given n the maximal feasible m is precisely

m = �log2 ω(G∗n)�,

and hence the maximal rate is

Rmax(G → K2) = sup
n

�log2 ω(G∗n)�
n

= lim
n→∞

�log2 ω(G∗n)�
n

,

where the supremum coincides with the limit due to Fekete’s lemma. Since omitting the

flooring �·� makes a difference of at most 1
n
, and as such preserves both convergence and

the limit of the sequence, we can omit the flooring and write

Rmax(G → K2) = lim
n→∞

log2 ω(G∗n)

n
= log2 lim

n→∞
n
√
ω(G∗n) = log2 Θ(G).
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The right-hand side is precisely the logarithm of the graph invariant known as the Shannon

capacity Θ of the complement graph G. In this way, we have recovered another famous

graph invariant, at least up to the trivial transformations of taking the complement and

the logarithm.

Also the rate Rmax(K2 → G) turns out to recover a well-studied graph invariant. Similar

to above, it is the supremum over all fractions m
n

for which there exists a graph map

G∗m → K2n . In terms of the chromatic number χ from Example 3.22, this means that for

a given m, the minimal feasible n is precisely

n = �log2 χ(G∗m)�,

and hence the maximal rate is

Rmax(K2 → G) = lim
m→∞

m

�log2 χ(G∗m)� =

(
lim
m→∞

�log2 χ(G∗m)�
m

)−1

.

Similar to before, we can omit the ceiling �·� and write

Rmax(K2 → G) =

(
lim
m→∞

log2 χ(G∗m)

m

)−1

=
(

log2 lim
m→∞

m
√
χ(G∗m)

)−1

.

This shows that this maximal rate is also an incarnation of a famous graph invariant: it is

the reciprocal of the logarithm of the fractional chromatic number of G (Scheinerman and

Ullman 2011, Corollary 3.4.3). Of course, all of this also holds with any other complete

graph in place of K2, and only the base of the logarithm changes.

As opposed to Equations (8.1) and (8.2), we might alternatively be interested in turning

x into as few copies of y as possible

inf { m ∈ N | x � my } = ? (8.4)

or similarly in absorbing as many copies of x as possible into y

sup { n ∈ N | nx � y } = ? (8.5)

These are relevant questions when x is a resource object which is considered undesirable

and we try to get rid of instances of x by turning them into y’s. Correspondingly, there is

a minimal rate at which x’s can be converted into y’s

Rmin(x → y) := inf
{ m

n

∣∣∣ nx � my
}
. (8.6)

Here we use the conventions m
0

:= ∞ for m > 0 and also 0
0

:= ∞, where the latter ensures

that m = n = 0 does not contribute to the infimum. Just as the maximal rate can be 0

or ∞ in certain cases, we have Rmin(x → y) = ∞ if no number of copies of x can be

converted to any number of copies of y. Similarly, Rmin(x → y) = 0 if already a finite

number of y’s is sufficient for absorbing any number of x’s, or if the number of x’s that

can be absorbed by my grows superlinearly in m, or equivalently if the number of y’s

required for absorbing nx grows sublinearly in n.

Remark 8.2. There is an intuitive geometrical interpretation of both maximal and minimal

rates as follows. Generalizing Remark 3.5, we may consider all pairs (n, m) ∈ N2 for which
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x

y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4
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6
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12

13

14

15

Fig. 5. An example of what a commutative submonoid of N2 may look like. The maximal and

minimal rates are the slopes of the upper and lower bounding rays, respectively.

nx � my. This set of pairs forms a submonoid of N2 under addition; see Figure 5 for

what this may look like. For nx � my, the corresponding fraction m
n

is then the slope

of the line or ray connecting the origin to the point (n, m) ∈ N2, which is an element

of the submonoid. So the maximal rate, as the supremum over all such slopes, can be

identified with the ray tightly bounding the submonoid from above, and similarly the

minimal rate corresponds to the ray tightly bounding the submonoid from below. All of

this is determined by the ordered commutative submonoid spanned by the elements x

and y under consideration, and we think of this submonoid as a ‘two-dimensional slice.’

Remark 8.3. Due to certain technical issues that we encounter below, we need to point out

that these definitions of maximal and minimal rate may not yet be the most appropriate

ones, and we investigate an improved definition below. So while this section provides the

results and methods expected of a basic theory of rates, the precise technical details of

the definitions and results may be subject to revision in future work.

In cases when the arguments x and y are clear from the context, we omit their mention

and simply write Rmax and Rmin for the maximal and minimal rates. Here are some basic

observations on these rates with our present definitions.

https://doi.org/10.1017/S0960129515000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000444


T. Fritz 908

Lemma 8.4. For every x, y, z ∈ A, we have

Rmax(x → z) � Rmax(x → y)Rmax(y → z),

Rmin(x → z) � Rmin(x → y)Rmin(y → z),
(8.7)

Proof. We only prove the first inequality since the second is analogous.

For ε > 0, we choose n, m ∈ N such that m
n

� Rmax(x → y) − ε and nx � my; and

similarly, we choose n′, m′ ∈ N with m′

n′ � Rmax(y → z) − ε and n′y � m′z. Thereby, we also

obtain

n′nx � n′my = mn′y � mm′z,

and hence

Rmax(x → z) �
mm′

n′n
=
m

n
· m

′

n′ � (Rmax(x → y) − ε) · (Rmax(y → z) − ε) .

This yields the claim in the limit ε → 0.

Lemma 8.5. For every x ∈ A, we have either Rmax(x → x) = 1 or Rmax(x → x) = ∞.

Similarly, either Rmin(x → x) = 1 or Rmin(x → x) = 0.

Proof. We only prove the first part since the second is analogous.

We certainly have Rmax � 1 thanks to x � x. Furthermore, plugging in z = y = x

in Equation (8.7) shows that we necessarily must have Rmax � R2
max. With Rmax � 1, this

implies Rmax = 1 or Rmax = ∞.

Putting the previous two lemmas together yields immediately:

Corollary 8.6. If all rates in A are finite, then

Rmax(x → y) · Rmax(y → x) � 1. (8.8)

If all rates are strictly positive, then

Rmin(x → y) · Rmin(y → x) � 1. (8.9)

This is reminiscent of ‘Carnot-style’ reasoning in thermodynamics: composing a con-

version of x’s into y’s with a conversion of y’s into x’s cannot lead to an impossible

multiplication of x’s into more x’s. In thermodynamics, an x could stand for the

combination of a hot and a cold reservoir of a certain finite size, while y would correspond

to the same two reservoirs in equilibrium together with a certain amount of extracted

work.

Lemma 8.7.

a. For every n ∈ N>0,

Rmax(nx → y) = 1
n

· Rmax(x → y), Rmin(nx → y) = 1
n

· Rmax(x → y).

b. For every m ∈ N>0,

Rmax(x → my) = m · Rmax(x → y), Rmin(x → my) = m · Rmin(x → y).
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Proof. Straightforward.

The concepts of maximal and minimal rates are special cases of a general notion of

rate. The definition is this:

Definition 8.8.

a. A nonnegative extended real number r ∈ R�0 ∪ {∞} is a rate from x to y if every

neighbourhood of r contains a fraction m
n

with nx � my.

b. The set of all rates is the rate region.

Here and in the following, when we speak of a fraction m
n

, we refer to a pair of natural

numbers m, n ∈ N , not both of which are zero. This terminology seems appropriate in our

current context, where we want m
n

to be interpreted as the rational number (or ∞) which

it denotes. In all cases, it is permitted for one of m or n to be zero. Sometimes we want

to require both m > 0 and n > 0; we then speak of a finite fraction.

Remark 8.9.

a. An equivalent definition of rate would be that a rate is a number r ∈ R�0 ∪ {∞} for

which there exists a sequence of fractions
(
mj
nj

)
j∈N

which converges to r and such that

njx � mjy for all j.

b. The rate region is also determined by the two-dimensional slice of Remark 8.2, and

the rates are exactly those slopes of rays in Figure 5 which can be approximated

arbitrarily closely by rays through points in the submonoid.

c. If the only case in which nx � my holds is with n = m = 0, then no rate exists. This

is an unpleasant special case in which our current definitions do not play together so

well: Rmax = 0 and Rmin = ∞ are still well-defined values, although no rate exists.

Due to the following observation, to compute rates it is sufficient to compute the

minimal and maximal rates:

Proposition 8.10. The rate region is the closed interval [Rmin, Rmax].

Proof. Due to the definition of rate, every rate is bounded below by the minimal rate

and bounded above by the maximal rate. Hence, it only needs to be shown that every

r ∈ [Rmin, Rmax] is indeed a rate. Having such an r requires Rmin � Rmax, so that there is

at least one fraction m
n

with nx � my. Then if r = Rmin or r = Rmax, the claim follows

from the definition of minimal and maximal rate.

Otherwise, we have Rmin < r < Rmax, so that there exist finite fractions m−
n−

< r and
m+

n+
> r such that

n−x � m−y, n+x � m+y. (8.10)

We now take the unique t ∈ [0, 1] with

r = t
m−
n−

+ (1 − t)
m+

n+
, (8.11)
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and approximate t by a finite fraction k
l

� 1 with∣∣∣∣t− k

l

∣∣∣∣ � ε.

By adding the kn+th multiple of the first inequality in (8.10) to the (l − k)n−th multiple

of the second, we obtain

kn+n−x+ (l − k)n+n−x � kn+m−y + (l − k)n−m+y,

and hence we know that the number

kn+m− + (l − k)n−m+

kn+n− + (l − k)n+n−
=
k

l
· m−
n−

+

(
1 − k

l

)
· m+

n+
,

is a rate as well. As ε → 0, this indeed converges to r as desired.

Lemma 8.11. If r is a rate from x to y, then for all functionals f,

f(x) � rf(y), (8.12)

In the case r = ∞, this inequality is to be interpreted as 0 � f(y).

Proof. If r is a rate, then in every neighbourhood of r we can find a fraction m
n

with

nx � my. Then we also have nf(x) � mf(y). For n > 0, this implies the conclusion upon

dividing by n and letting m
n

tend to r. For n = 0, we must have m > 0, since otherwise m
n

would not be a fraction. So also in this case, we conclude the expected 0 � f(y).

The first part of the argument also shows how rates behave under homomorphisms:

Lemma 8.12. If f : A → B is a homomorphism and r is a rate from x to y in A, then r is

also a rate from f(x) to f(y) in B.

In an ordered Q-vector space, we can rewrite the definition of maximal rate in a form

which looks closer to Equations (8.1) and (8.2)

Rmax(x → y) = sup { β ∈ Q�0 | x � βy } =
(
inf { α ∈ Q�0 | αx � y }

)−1
, (8.13)

where one needs to understand the supremum of an empty set as being 0, in order to

correctly cover the case when nx � my holds only when n = 0. Similarly, we can rewrite

the definition of minimal rate as

Rmin(x → y) = inf { β ∈ Q�0 | x � βy } =
(
sup { α ∈ Q�0 | αx � y }

)−1
, (8.14)

where again the supremum of the empty set is declared to be 0. The idea behind these

expressions is that in an ordered Q-vector space, one can rewrite the minimal and

maximal rates in a form similar to Equations (8.1)–(8.2) and Equations (8.4)–(8.5). We

will encounter this kind of expression also in Equation (9.2).

In the light of Theorem 6.15, these definitions suggest that Lemma 8.11 should also

have a converse in the case of an Archimedean ordered Q-vector space. If this was the

case, then Lemma 8.11 would not only yield useful upper bounds on maximal rates and

lower bounds on minimal rates, but the converse would even prove these bounds to be
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tight. However, with our current definition of rate, such a converse does not exist even in

the well-behaved case of finite r:

Example 8.13. Let W = Q3 be the Archimedean ordered Q-vector space in which

(α, β, γ) � 0 if and only if

|
√

2α+ β| � γ.

Since this condition can be written as two separate linear inequalities, it defines a poly-

hedral cone, which is automatically topologically closed in Q3 and therefore Archimedean

(Example 6.6).

On the (α, β, 0)-plane, the ordering is trivial: (α, β, 0) � 0 would require
√

2α + β = 0,

which is impossible with α, β ∈ Q. In particular, there is no rate from e1 = (1, 0, 0) to

e2 = (0, 1, 0). On the other hand, we claim that

f(e1) =
√

2f(e2), (8.15)

holds for all functionals f, thereby showing that the converse of Lemma 8.11 is not true

even for Archimedean ordered Q-vector spaces. To see this, we choose an ε > 0 and an

ε-approximation λ ∈ Q to
√

2
√

2 − ε � λ �
√

2 + ε.

By definition of the positive cone, we have

e1 − λe2 + εe3 = (1,−λ, ε) � 0, −e1 + λe2 + εe3 = (−1, λ, ε) � 0.

Hence for any functional f

f(e1) − λf(e2) � −εf(e3), f(e1) − λf(e2) � εf(e3).

The claim (8.15) follows in the limit ε → 0.

However, the converse to Lemma 8.11 does hold for Archimedean ordered Q-vector

spaces under the additional assumption y � 0:

Proposition 8.14. If W is an Archimedean ordered Q-vector space with x, y ∈ W and

y � 0, then r ∈ R�0 ∪ {∞} is a rate from x to y if and only if

f(x) � rf(y), (8.16)

for all functionals f.

In the r = ∞ case, we again interpret the inequality as stating that 0 � f(y) for all

f. However, Theorem 6.15 tells us that this happens if and only if 0 � y, which is an

uninteresting case due to the assumption y � 0.

Proof. The ‘only if’ part is covered by Lemma 8.11. For the ‘if ’ part, we consider a

given r which is not a rate and find a functional f which violates Equation (8.16). Since

y � 0, we have Rmin = 0, and so the only way for r not to be a rate is if r > Rmax. So we

can choose λ ∈ Q with Rmax < λ < r and consider the point x− λy ∈ W . Since λ is not a

rate either, we know that x − λy �� 0. Hence, Theorem 6.15 gives us a functional f with
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f(x− λy) < 0, and therefore

f(x) < λf(y) � rf(y),

where the second inequality uses λ < r and f(y) � 0.

This results in a formula for rates on Archimedean ordered Q-vector spaces:

Theorem 8.15. If W is an Archimedean Q-vector space and x, y � 0 in W , then

Rmin(x → y) = 0, Rmax(x → y) = inf
f

f(x)

f(y)
,

where the infimum ranges over all functionals f with f(y) �= 0.

Proof. Since y � 0, it is clear that Rmin = 0. Concerning Rmax, we know from

Proposition 8.14 that Rmax is the largest number for which f(x) � rf(y) holds for all

functionals f. Since f(x) � 0 and f(y) � 0, this inequality is equivalent to r � f(x)
f(y)

for all

functionals f with f(y) �= 0.

In the case that a generating pair exists, we do have an improved definition of

rate:

Definition 8.16.

a. Let A be an ordered commutative monoid with generating pair (g+, g−). A nonnegative

extended real number r ∈ R�0 ∪ {∞} is a regularized rate from x to y if for every ε > 0

and for every neighbourhood of r there exist a fraction m
n

in the neighbourhood and

k ∈ N such that k � εmax(m, n) and

nx+ kg+ � my + kg−. (8.17)

b. The set of all regularized rates is the regularized rate region.

Every rate is also a regularized rate, since then one can simply take k = 0. However,

not every regularized rate is a rate: in Example 8.13, we have a generating pair given by

g+ = e3 and g− = 0, and we have
√

2 as a regularized rate from e1 to e2 which is not

a rate. As we will see below, whether a number r is a regularized rate or not does not

depend on the particular choice of generating pair.

Fortunately, in many cases there is no difference between rates and regularized

rates:

Proposition 8.17. Let x and y be elements of an ordered commutative monoid with

generating pair (g+, g−). If

Rmax(x → g+) > 0, Rmin(g− → y) < ∞, (8.18)

then r is a regularized rate from x to y if and only if it is a rate from x to y.

Proof. Since any rate is trivially also a regularized rate, we only need to prove that

if r is a regularized rate, then it is also a rate. If r is a regularized rate, then for every

neighbourhood of r and every ε > 0 we have a fraction m
n

in that neighbourhood and
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k � εmax(m, n) with

nx+ kg+ � my + kg−.

By the assumption (8.18), we also have fractions m+

n+
with m+ > 0 and n+x � m+g+, and

m−
n−

with n− > 0 and n−g− � m−y. This implies

(m+n−n+ n+n−k)x � m+n−nx+ m+n−kg+ � m+n−my + m+n−kg− � (m+n−m+ m+m−k)y

Hence x can be converted into y at a rate of

m+n−m+ m+m−k

m+n−n+ n+n−k
=
m+ m−

n−
k

n+ n+

m+
k
.

Since the m± and n± all remain fixed as one takes the limit n → ∞ or m → ∞, this rate

also tends to r as both the original neighbourhood around r and ε get smaller and smaller.

Example 8.18. Continuing Example 8.1, we can also express some regularized rates in Grph

in terms of graph invariants. With g+ = K2 and g− = 0 as before, we indeed have a positive

rate from any graph G with at least one edge to K2, since having an edge guarantees the

existence of a graph map K2 → G and therefore G � K2. Moreover, for any graph H we

trivially have a rate < ∞ for going from H to 0 since H � 0. Hence Proposition 8.17 tells

us that if G is a graph with at least one edge, then R
reg
max(G → H) = Rmax(G → H). So up

to taking the logarithm, complement and the reciprocal, Rreg
max(G → K2) is the Shannon

capacity of G as in Example 8.1, and Rreg
max(K2 → G) is the fractional chromatic number.

Many of the properties of rates also apply to regularized rates, and it is straightforward

to prove the analogues of Lemma 8.4 to Lemma 8.7 for regularized rates. But regularized

rates are better behaved in general, since the analogue of Proposition 8.14 holds even

without the additional assumption y � 0:

Proposition 8.19. In an Archimedean ordered Q-vector space W with a generator g, a

number r ∈ R�0 ∪ {∞} is a regularized rate from x to y if and only if

f(x) � rf(y), (8.19)

for every (extremal) functional f.

Putting ‘extremal’ in brackets means that one can either consider all functionals or the

extremal functionals only; the statement holds in either case.

Proof. For the ‘only if’ part, we need to derive Equation (8.19) from the assumption

that r is a regularized rate. We first consider the case that r can be approximated by

fractions as in Definition 8.16 which are all finite. Then for given ε > 0, we have a finite

fraction m
n

and k ∈ N as in the definition, where we can take g+ = g and g− = 0. Applying

f to Equation (8.17) results in

nf(x) + kf(g) � mf(y),
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which, due to n > 0, can be rearranged to

f(x) +
k

n
f(g) �

m

n
f(y).

In the limit m
n

→ r and ε → 0, this yields the claim (8.19).

The only case in which this argument does not apply is if r = ∞ and the only fractions

which witness this are of the form m
0

. In this case, we start with k � εm and kg � my, and

therefore εg � k
m
g � y, from which 0 � y follows in the limit ε → 0 thanks to Lemma 6.10.

The ‘if ’ part is more complicated. Our earlier results like Theorem 6.15 do not seem to

cover all the cases that come up, and we need to dig a little bit deeper by resorting to

Theorem A.1 directly. We prove that if r is not a regularized rate, then there is a functional

f which violates Equation (8.19). If r = ∞, then the assumption that r is not a regularized

rate is equivalent to 0 �� y again by Lemma 6.10, and we conclude by Theorem 6.15.

Hence, we can focus on the r < ∞ case from now on.

Consider the subspace W0 := linQ{x, y}. We will apply Theorem A.1 to W0 with respect

to the sublinear map

p : W −→ R, z �−→ inf{ μ ∈ Q | μg � z }. (8.20)

Here, the infimum is guaranteed to be finite for two reasons: first, we know that there

exists a μ ∈ Q with μg � z. Second, the set of all such μ is bounded below: choosing

κ ∈ Q with κg � −z yields, for μg � z,

(μ+ κ)g � z − z = 0.

So if there is a μ which is less than −κ, then we conclude −g � 0. But if this is the

case, then we have W = 0, in which case there is nothing to prove. Hence we can assume

μ � −κ, which is the desired lower bound making p finite. We think of p as analogous

to Equation (7.3), where p was defined as the maximal value of a continuous function.

The remainder of the proof consists in constructing a linear map f0 : W0 → R which

violates Equation (8.19) and such that f0 is p-dominated. Then it can be extended to a

p-dominated linear map f : W → R by Theorem A.1. The inequality f(z) � p(z) for all

z ∈ W also guarantees that f is a functional, i.e. that f(W+) ⊆ R�0, since z � 0 implies

p(−z) � 0, and hence −f(z) = f(−z) � p(−z) � 0. As an extension of f0, this f also

violates (8.19).

In order to construct f0, we consider the affine line

L := { x− λy | λ ∈ Q },

and distinguish six (not entirely disjoint) cases:

a. L intersects W+ at λ > r, i.e. there exists λ ∈ Q greater than r such that x− λy � 0.

In this case, we choose μ > r with x− μy �� 0, which exists because r is not a rate. We

then obtain an f with f(x − μy) < 0 from Theorem 6.15 directly. Then f(x) < μf(y),

but f(x) � λf(y). Since f is linear along L and r < μ < λ, we conclude f(x) < rf(y),

as desired.

b. L intersects W+ at λ < r. This is analogous to the previous case.
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c. L intersects W+ exactly at λ = r, i.e. x � ry. This can only happen if r is rational, and

is in contradiction with the assumption that r is not a rate.

d. L does not intersect W+, but almost intersects W+ in the λ → ∞ direction. By this we

mean that for every ε ∈ Q>0 there exists λ > r such that x− λy + εg � 0.

In this case, for every n ∈ N we choose λn ∈ Q>0 with x − λny + 1
n
g � 0 and κ ∈ Q

such that κg � x. This results in

−y +
κ+ 1

n

λn
g � 0.

Since λn → ∞ as n → ∞, we conclude −y � 0 from Lemma 6.10, and record this for

later use.

Now we choose a rational μ > r with x− μy �� 0. In particular, we have p(μy− x) > 0

because W is Archimedean. On the one-dimensional subspace Q · (x − μy), we can

specify f0 by taking f0(μy − x) := p(μy − x) and extending linearly. Then, f0 is

p-dominated on this one-dimensional space thanks to positive homogeneity and

f0(μy − x) = p(μy − x), f0(x− μy) = −p(μy − x) � p(x− μy),

where the last inequality is due to subadditivity and p(0) = 0. A first application of

Theorem A.1 then lets us extend this to the desired f0 on W0, and it remains to show

that this extension satisfies f0(x) < rf0(y). To this end, we use −y � 0, which implies

f0(y) � 0 and the claim follows from f0(x) < μf0(y) � rf0(y).

e. L does not intersect W+, but almost intersects W+ in the λ → −∞ direction. This is

analogous to the previous case.

f. L does not intersect W+ at all, not even almost. This means that there exists ε > 0

such that x− λy + εg �� 0 for all λ ∈ Q. We can reformulate this as p(λy − x) � ε for

all λ.

We then claim that p(y) � 0, and also p(−y) � 0. For if we had p(y) < 0, then there

would be κ > 0 such that 0 � y+κg, and hence also −y � γ · (−x) for a certain γ > 0.

This would result in x− γ−1y � 0, in contradiction to the assumption that L does not

intersect W+. The argument for p(−y) � 0 is analogous.

Furthermore, in the present case we also know that x and y must be linearly

independent. Hence, we can specify the linear map f0 : W0 → R by specifying its

value on x and on y, and for these we take

f0(x) := − inf
λ∈Q

p(λy − x), f0(y) := 0.

Here, our current assumption guarantees that the first value is indeed negative, so that

these assignments yield a violation of Equation (8.19).

We still need to check that f0(z) � p(z) for all z ∈ W0, i.e. that −α infλ p(λy − x) �
p(αx + βy) for all α, β ∈ Q. By positive homogeneity of p, it is sufficient to consider

the cases α ∈ {−1, 0,+1}.

i. If α = −1, we need to prove infλ p(λy − x) � p(βy − x), which is trivial.

ii. If α = 0, we need to prove p(βy) � 0 for all β, which follows from p(y) � 0 and

p(−y) � 0 by positive homogeneity.
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iii. If α = +1, we need to prove − infλ p(λy − x) � p(x + βy), which is equivalent

to p(λy − x) + p(βy + x) � 0 for all β and λ. This is due to subadditivity and

p((λ+ β)y) � 0.

In all cases, the desired bound holds, so that f0 has all the required properties.

Finally, the restriction to extremal functionals is not essential, since we can restrict to

normalized functionals without loss of generality and then resort to the Krein–Milman

theorem as in the proof of Theorem 7.5.

Remark 8.20. In light of this result, we hope that if one performs the additional step of

regularization to Archimedean ordered R-vector spaces (Remark 6.14), then the necessary

and sufficient condition for r < ∞ to be a regularized rate is that x � ry. In fact, this

could be a potential future definition of regularized rate, which would differ from the

present one in that it would not be allowed to be infinite, but it would be allowed to be

negative.

Remark 8.21. In particular, Proposition 8.19 implies that the regularized rate region is

a closed interval as well, and we denote its endpoints by R
reg
min and R

reg
max, respectively.

Another consequence is that the regularized rate region does not depend on the choice of

generator, although this could have been derived more easily directly from Definition 8.16.

We also note that Lemma 8.12 applies to regularized rates as well.

This result generalizes to all ordered commutative monoids A with a generating pair if

we can show that the regularized rate region does not change under regularizing A. This

indeed turns out to be the case:

Proposition 8.22 (Generalizes (Blackadar 1998, Corollary 6.8.4)). A number r ∈ R�0∪{∞}
is a regularized rate for x to y in an ordered commutative monoid A with a generating

pair if and only if it is so in aovsQ(A).

The same can clearly not hold for the ‘naive’ notion of rate of Definition 8.8, since A

may not be cancellative, so that already the rate region of oag(A) may be bigger than

that of A itself. But as shown in the proof of Theorem 6.18, allowing the ‘seeds’ kg+ and

kg− in the definition of regularized rate automatically removes that obstruction by taking

catalysis into account.

Proof. If r is a regularized rate in A, then it clearly is one in aovsQ(A) as well.

The main part of the proof consists in showing the converse. We take the generator of

aovsQ(A) to be g+−g−. If r is a regularized rate in aovsQ(A), then for every neighbourhood

of r and every ε > 0 there exist a fraction m
n

and k ∈ N with k � εmax(m, n) and such

that nx+ kg+ � my + kg−. By Theorem 6.18, in terms of A the latter means in particular

that we can find j, l ∈ N>0 with l � εjmax(m, n) and such that

jnx+ (jk + l)g+ � jmy + (jk + l)g−.

Then the fraction jm
jn

still lives in the same neighbourhood of r, and moreover we have

jk + l � εjmax(m, n) + εjmax(m, n) = 2εmax(jm, jn).
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This is all that is required for showing that r is a regularized rate in A.

This result implies immediately:

Corollary 8.23. Proposition 8.19 generalizes to any ordered commutative monoid A with

a generating pair: r is a regularized rate from x to y if and only if

f(x) � rf(y),

holds for all (extremal) functionals f.

This yields another one of our main results, which is a formula for regularized rates:

Theorem 8.24. In an ordered commutative monoid with a generating pair and x, y � 0,

we have

R
reg
min(x → y) = 0, Rreg

max(x → y) = inf
f

f(x)

f(y)
,

where the infimum ranges over all (extremal) functionals f with f(y) �= 0.

Proof. As for Theorem 8.15.

Example 8.25. In Grph, we can apply the rate formula together with Example 8.18 to

yield a formula for the Shannon capacity of a graph:

log2 Θ(G) = Rreg
max(G → K2) = inf

f
f(G),

where the infimum ranges over all (extremal) functionals f : Grph → R which satisfy

the normalization f(K2) = 1. In terms of multiplicative functionals, exponentiating this

equation proves that the Shannon capacity of a graph G is given by

Θ(G) = inf
f
f(G) ,

where the infimum now ranges over all graph invariants that are monotone under graph

maps, multiplicative under disjunctive products, and normalized such that f(K2) = 2.

While the rate formula of Theorem 8.24 is rather unwieldy in general, we hope that it

will provide a useful method to compute rates in some situations:

Example 8.26. If our conjectural characterization of extremal functionals in ProbMajor

(Example 7.10) is correct, then the regularized maximal rates can in this example be

computed as

Rreg
max((A, P ) → (B, Q)) = inf

t∈[0,∞]

Ht(P )

Ht(Q)
.

For given P and Q, this quotient of Rényi entropies is straightforward to evaluate and

minimize.
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9. Notions of one-dimensionality: numerical ordered commutative monoids

It is an interesting question under which conditions the ordering x � y can be completely

characterized by a single functional in the sense that

x � y ⇐⇒ f(x) � f(y). (9.1)

In this section, we study this question abstractly and derive two characterizations. These

are similar to results of von Neumann and Morgenstern in decision theory and of Lieb

and Yngvason in thermodynamics.

Definition 9.1. An ordered commutative monoid A is numerical if there exists f with Equa-

tion (9.1).

We can understand Equation (9.1) as saying that f embeds A into the real line R.

This makes A one-dimensional in a certain sense, and the study of numerical ordered

commutative monoids is equivalent to the study of numerical ordered submonoids of

R. The term ‘numerical’ reflects this idea: the elements of A can be regarded as real

numbers. In resource-theoretic terms, there is a measure of value of a resource object

which completely reflects the convertibility relation, and we can therefore identify every

resource object with its value. This embedding into R is similar to how the numerical

semigroups of Example 3.14 are submonoids of N; the important difference is that we

consider N and hence also any numerical semigroup to carry the trivial ordering, while

here R is equipped with the standard ordering.

For being numerical, it is obviously necessary for A to be totally ordered: for every

x, y ∈ A, we need to have x � y or y � x. For an Archimedean ordered Q-vector space,

this turns out to be sufficient:

Proposition 9.2. Let W be an Archimedean ordered Q-vector space. Then the following

conditions are equivalent:

a. W is numerical.

b. There is f : W → R such that every other functional is a scalar multiple of f.

c. If f : W → R is nonzero, then every other functional is a scalar multiple of f.

d. The complement W \W+ is convex.

e. W is totally ordered, i.e. W+ ∪ (−W+) = W .

Proof.

a⇒b:We start with the case W = R and take f to be the identity functional R → R.

Let f′ : R → R be some other functional. Then we claim that f′(x) = f′(1)x for

all x ∈ R. First, since R is an ordered Q-vector space and every homomorphism of

Q-vector spaces is automatically Q-linear, we conclude f′(x) = f′(1)x for all x ∈ Q.

Then the claim follows from approximating every x ∈ R by a sequence of rational

numbers from above and another sequence from below, using monotonicity of f′.

For general numerical W , let f : W → R be a functional which reflects the order.

Then either W ∼= {0}, or f realizes W as a dense subset of R. In the first case there

is nothing to prove, so we focus on the second. Any other f′ : W → R extends

https://doi.org/10.1017/S0960129515000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000444


Resource convertibility and ordered commutative monoids 919

uniquely to a functional R → R by density, and this we already know to be a

multiple of the identity.

b⇒c:Straightforward.

c⇒d:If W ∼= {0}, then there is nothing to prove. Otherwise, there is x ∈ W with x �� 0,

and hence a functional f : W → R with f(x) < 0 by Theorem 6.15. In particular,

f is nonzero, and hence every other functional is a scalar multiple of f. But then

again by Theorem 6.15, we have W+ = f−1(R�0) and W \W+ = f−1(R \R�0). Now

the claim follows because R \ R�0 is convex, and the inverse image of a convex set

under a Q-linear map is convex too†.

d⇒e:For x ∈ W \ W+ we have −x ∈ W+, for otherwise −x ∈ W \ W+ would imply

0 ∈ W \W+ by convexity.

e⇒a:In case that every x ∈ W+ also satisfies −x ∈ W+, then we have W ∼= {0} and

f : x �→ 0 does the job.

Otherwise, we fix g ∈ W+ with −g �∈ W+. For every x ∈ W , we define

f(x) := inf{ λ ∈ Q | λg � x } = sup{ μ ∈ Q | x � μg }, (9.2)

where the infimum is an expression that we have already met in (8.20). To see the

equality between the infimum and the supremum, the inequality ‘�’ is clear since

λg � x � μg implies (λ − μ)g � 0, and therefore λ − μ � 0 by −g �� 0. Now

suppose that there was a gap between the infimum and the supremum. This gap

would contain some ν ∈ Q, resulting in νg �� x and x �� νg. This contradicts the

assumption that x−νg must lie in either W+ or −W+. Next, we show that f(x) ∈ R,

i.e. that it is neither −∞ nor +∞. That it is not −∞ follows from the definition as

an infimum: if there was a sequence (λn)n∈N with λn � 0 and λn → −∞, then this

would imply that g � 0 by g + |λn|−1x � 0 and Lemma 6.10. That it is not +∞
follows similarly from the supremum characterization. We have shown in passing

that g is a generator.

Hence f : W → R is well-defined, and we claim that it is a homomorphism. First,

f(x) � 0 for x � 0 is clear by the definition as a supremum. Second, f(x + y) �
f(x) + f(y) also follows from the definition as a supremum; the other inequality

direction follows from the infimum characterization. In order to prove Equation

(9.1), it remains to show that f(x) � 0 implies x � 0. But this in turn is another

direct consequence of Lemma 6.10: f(x) � 0 means that there is a sequence (μn)n∈N
with μn � 0 and μn → 0 and such that x+ |μn|g � 0.

We would now like to extend the previous result to the world of ordered commutative

monoids. This is less straightforward: in order for an ordered commutative monoid A

to be numerical, it is not sufficient that the order is total. The reason is that in order

for Equation (9.1) to hold, it is necessary for the canonical homomorphism A → aovsQ(A)

to reflect the order as well, since any functional f factors through aovsQ(A).

† Recall that for us, ‘convex’ always means convex with respect to rational coefficients.
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Example 9.3. Take A := R2 with the usual addition and the lexicographic ordering, in

which the positive cone consists of all those (x, y) which satisfy either x > 0 or x = 0 and

y � 0. Since either (x, y) or −(x, y) satisfy this condition, this A is an ordered Q-vector

space which is totally ordered. However, aovsQ(A)+ also contains all points (x, y) with

x = 0 and y < 0, so that the homomorphism A → aovsQ(A) does not reflect the order.

Thus, A is not numerical.

In the following, we write ‘x > y’ as shorthand for ‘x � y and y �� x.’ Even in a

totally ordered commutative monoid, x1 > y1 and x2 > y2 does not necessarily imply

x1 + x2 > y1 + y2: for example, in the totally ordered commutative monoid consisting of

{0, 1, 2} with its usual order and the usual addition truncated at 2, we have 2 > 1, but

2 + 2 �> 1 + 1. This is the main reason for why we generally prefer to work with ‘�’ rather

than ‘>’; we introduce the latter mainly in order to formulate the following theorem.

Theorem 9.4. Let A be an ordered commutative monoid. Then the following conditions

are equivalent:

a. A is numerical via f : A → R.

b. A is totally ordered, and satisfies the conditions:

(i). if x > y, then x+ z > y + z for all z;

(ii). if x > y > z, then there exists ε ∈ (0, 1) such that for all n, k ∈ N with k � εn,

(n− k)x+ kz > ny > kx+ (n− k)z.

c. A is totally ordered, and if x, y, z+, z− ∈ A are such that for all ε > 0 there exist

n, k ∈ N with k � εn and

nx+ kz+ � ny + kz−,

then x � y.

If these conditions hold, then any functional f′ : A → R is a scalar multiple of the above

f.

Proof.

a⇒b: Straightforward.

b⇒c: In the totally ordered setting, b(i) is the contrapositive of cancellativity: if x+ z �
y + z, then x � y. So we know that A is cancellative. We prove the contrapositive

of the second condition in c by showing that if x < y, then there is ε > 0 such that

for all n, k ∈ N with k � εn, we also have nx+ kz− < ny + kz+.

If z+ � y, then x < y clearly implies (n− k)x+ kz+ < (n− k)y + ky = ny whenever

k < n. If on the other hand z+ > y, then the same inequality (n − k)x + kz+ < ny

follows from b(ii) for suitable ε > 0. So this inequality holds in all cases for all

n, k ∈ N with k � εn. In the same way, we can derive nx < (n− k)y + kz−. Adding

these two inequalities results in (2n− k)x+ kz+ < (2n− k)y + kz−. We can weaken

this to 2nx+ kz+ < 2ny + kz−, which is enough after a suitable adjustment to ε.

c⇒a: By Proposition 9.2, it is enough to prove that the canonical homomorphism A →
aovsQ(A) reflects the order.
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First, we choose g+, g− ∈ A with g+ � g−, but g− �� g+; if such a pair does not

exist, then we have A ∼= {0}, in which case there is nothing to prove. As the notation

suggests, we claim that (g+, g−) is a generating pair. So for given w ∈ A, we need

to show that there exists n ∈ N with ng+ � w + ng−. This is indeed the case,

for by totality we would otherwise have ng+ � w + ng− for all n ∈ N , which by

assumption implies g+ � g−, in contradiction with g− �� g+. Similarly we can show

ng+ + w � ng− for some n ∈ N . The claim that x � y in aovsQ(A) implies x � y in

A now follows from Theorem 6.18 and the assumed implication.

The final claim about f′ : A → R follows from the Proposition 9.2c since f′ factors

uniquely through aovsQ(A).

Example 9.5. Grph is not totally ordered, and therefore not numerical. For example, the

pentagon � and K4 are incomparable.

Example 9.6. In 9.4b, the cancellativity requirement b(i) is essential. Consider A = {0, 1}
with ordering 0 < 1 and addition 1 + 1 = 1. Then A is totally ordered, and b(ii) vacuously

holds since A contains no sequence of three strictly ordered elements. However, A is not

numerical.

9.1. The von Neumann–Morgensterm theorem

We have formulated condition 9.4b such as to bear strong resemblance to the utility

theorem of von Neumann and Morgenstern in decision theory and the foundations of

economics (von Neumann and Morgenstern 2007, Section 3), (Kreps 1988, Chapter 5).

There, an agent’s set of possible outcomes carries a mathematical structure very similar to

an ordered commutative monoid. First, preferring some outcomes over others turns the set

of outcomes into an ordered set. Second, every convex combination of outcomes represents

a ‘lottery’ between outcomes, and this lottery can itself be regarded as an outcome, so that

the set of outcomes comes equipped with a convex combination operation compatible with

the ordering relation. The theorem of von Neumann and Morgenstern provides necessary

and sufficient conditions for such a structure to allow for a convex-linear function to R
which preserves and reflects the order; such a function is a utility function. Although their

axioms are very close to the conditions b, the mathematical setup is a bit different and

it is not immediately clear how to derive the von Neumann–Morgenstern theorem from

our result or vice versa.

We can also interpret our Theorem 9.4 in terms of an agent’s preferences over outcomes.

Instead of combining outcomes via probabilistic mixtures or ‘lotteries,’ our result applies

when one considers actual conjunctive combinations of outcomes, so that one can express

things like ‘I prefer having a car over a bicycle, but I’d rather have a bicycle and a house

instead of only a car.’ The theorem provides necessary and sufficient conditions for the

existence of a utility function in this kind of setup.
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9.2. The Lieb–Yngvason theorem

In the foundations of thermodynamics, Lieb and Yngvason were concerned with the notion

of adiabatic accessibility between states of a physical system. Modulo some inessential

technicalities, their axioms ‘A1’ to ‘A5’ Lieb and Yngvason (1999) say that states in

thermodynamics form an ordered semimodule over the semiring R�0, where the ordering

is given by adiabatic accessibility, addition corresponds to placing two systems side by

side, and scalar multiplication corresponds to scaling the size of a system. The theorem of

Lieb and Yngvason provides necessary and sufficient conditions for such a semimodule

to allow for an affine-linear function to R which preserves and reflects the order; such

a function is an entropy function. At the mathematical level, the theorem of Lieb and

Yngvason is very similar to the earlier result of von Neumann and Morgenstern†; the b⇒c

implication of our proof could indicate how to obtain the Lieb–Yngvason theorem as a

corollary of the von Neumann–Morgenstern theorem.

In thermodynamics, using scalar multiplication by R�0 is an idealization corresponding

to the macroscopic limit, since actual physical systems cannot be divided arbitrarily into

smaller and smaller parts. It should therefore be interesting to investigate Theorem 9.4

as an improved version of the Lieb–Yngvason applicable also to systems of any size. In

fact, we conjecture that thermodynamics with microscopic systems should start with a

plain ordered commutative monoid A, and taking the macroscopic limit then corresponds

to working with the regularization aovsQ(A), at least modulo the issues of Remarks 2.6

and 6.14. It is conceivable that this is precisely how Lieb–Yngvason thermodynamics

arises from the single-shot thermodynamics of Brandão et al. (2013b).

A more detailed investigation on the applicability of our results in thermodynamics

and decision theory and on the relation to the theorems of von Neumann–Morgenstern

and Lieb–Yngvason will have to be performed in dedicated work. The remainder of this

section could also be relevant for these investigations.

While results along the lines of Theorem 9.4 are interesting, we strongly expect them to

be too limited for many purposes. Being numerical is an extremely strong condition on an

ordered commutative monoid, and it is likely to be too strong to hold in many cases of

interest. A more generous but still useful requirement is for aovsQ(A) to be numerical. In

the following, we would like to study in more detail under which conditions this happens.

It turns out to be closely related to the notion of regularized rate from Section 8.

Definition 9.7. An ordered commutative monoid A is positive if x � 0 for all x ∈ A.

If A is positive and numerical, then it embeds into R�0. In resource-theoretic terms,

positivity means that all resource objects are freely disposable. We focus on the positive

case for the sake of technical simplicity, leaving open the question of how the following

considerations generalize to the non-positive case.

† In fact, the Lieb–Yngvason theorem has already been applied in decision theory as well (Engler and

Baumgärtner 2013).
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Lemma 9.8. If A is positive and has a generating pair, then Rreg
max(x → y) = ∞ if and only

if y = 0 in aovsQ(A).

Proof. If Rreg
max = ∞, then every λ ∈ Q�0 is a regularized rate due to positivity. By

Corollary 8.23 and Theorem 6.18, this means that x � λy for all λ ∈ Q in aovsQ(A).

Equivalently −y + εx � 0 for every ε > 0. Hence −y � 0 in aovsQ(A) by Lemma 6.10,

and therefore y = 0 in aovsQ(A) by positivity.

The converse Rreg
max(x → 0) = ∞ follows from nx � 0 for all n ∈ N .

We assume the existence of a resource object $ such that ($, 0) is a generating pair,

meaning that every other resource object can be produced from a certain number of $’s,

and can also be made to disappear for a certain number of $’s. However, if n ∈ N is the

smallest integer for which n$ � x, i.e. so that x can be bought in exchange for n$, it does

not follow that x � n$, i.e. that x can also be sold for n$; in economical terms, there may

be a gap between the buying price and the selling price. However, if our business operates

on a large scale and we have access to all sorts of tools (Example 4.2) and work and the

level of economy of scale (Section 5) and allow even for the use of seeds (Section 6), then

the situation can be different, and the buying price and selling price that applies to us per

copy of x might be the same.

Theorem 9.9. For a positive ordered commutative monoid A with generator $, the

following are equivalent:

a. aovsQ(A) is numerical.

b. There is f : A → R such that every other functional is a scalar multiple of f.

c. If f : A → R is nonzero, then every other functional is a scalar multiple of f.

d. If Rreg
max($ → x) < ∞, then

Rreg
max($ → x) · Rreg

max(x → $) = 1.

e. If Rreg
max(x → y) < ∞ and Rreg

max(y → x) < ∞, then

Rreg
max(x → y) · Rreg

max(y → x) = 1. (9.3)

f. There exists a functional f : A → R�0 such that

x � y ⇐⇒ f(x) � f(y) in aovsQ(A).

Proof. Since the functionals A → R are in bijective correspondence with functionals

aovsQ(A) → R, we already know the equivalence of a–c from Proposition 9.2. And

condition f is just a restatement of a, so we ignore f.

c⇒d:If aovsQ(A) ∼= {0}, then the condition Rmax($ → x) < ∞ is never satisfied due to

Lemma 9.8, and hence there is nothing to be shown. Therefore, we assume that

there is at least some y ∈ A with y > 0 in aovsQ(A), and then Theorem 6.15 yields

a functional f with f(y) > 0, to which we can apply the assumption.

For Rreg
max($ → x) < ∞, we know that x > 0 in aovsQ(A). By assumption, every

functional is a scalar multiple of f; hence we can compute regularizedrates as in
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Theorem 8.24 without the infimum, i.e. as a simple quotient of values of f. This

results in

Rreg
max($ → x) · Rreg

max(x → $) =
f($)

f(x)
· f(x)

f($)
= 1,

as was to be shown.

d⇒e:Together with positivity, the two finiteness assumptions in e guarantee that x > 0

and y > 0 in aovsQ(A) by Lemma 9.8. But then also R
reg
max($ → x) < ∞ and

R
reg
max($ → y) < ∞, so that d is applicable. We also obtain R

reg
max(x → x) = 1 and

R
reg
max(y → y) = 1 from the analogue of Lemma 8.5 for regularized rates. Thanks to

the corresponding analogue of Equation (8.7), this results in

Rreg
max(x → y) · Rreg

max(y → x) � 1.

It remains to prove the other direction of this inequality. To this end, the regularized

rates analogue of Equation (8.7) is useful again

Rreg
max(x → y) � Rreg

max(x → $) · Rreg
max($ → y),

Rreg
max(y → x) � Rreg

max(y → $) · Rreg
max($ → x).

These two inequalities can be multiplied to

Rreg
max(x → y) · Rreg

max(y → x) � Rreg
max(x → $) · Rreg

max($ → y) · Rreg
max(y → $)︸ ︷︷ ︸

=1

·Rreg
max($ → x)

= Rreg
max(x → $) · Rreg

max($ → x)

= 1.

e⇒a:By Proposition 9.2, we need to prove that aovsQ(A) is totally ordered. To this end,

it is enough to show that A itself is totally ordered in the ordering induced from

aovsQ(A). For given x, y ∈ A, we distinguish two cases:

• If Rreg
max(x → y) � 1, then Corollary 8.23 and R

reg
min = 0 guarantee that f(x) � f(y)

for all functionals f. Together with Theorem 6.18, this shows x � y in aovsQ(A).

• If Rreg
max(x → y) < 1, then we have y > 0 by Lemma 9.8. But then also R

reg
max(y →

y) < ∞, which necessitates Rreg
max(y → y) = 1 by the regularized rate analogue of

Lemma 8.5. Hence, the analogues of inequalities (8.7) tell us

Rreg
max(x → y) · Rreg

max(y → x) � 1,

which is relevant because it lets us conclude Rreg
max(y → x) < ∞. Then the assumption

applies, and the inequality is saturated. Therefore Rreg
max(y → x) = R

reg
max(x → y)−1 >

1, which takes us back to the first case with x and y swapped, and we conclude

y � x.

So in each case, we have x � y or y � x, as was to be shown.

The resource-theoretic interpretation of this is that if A satisfies the conditions of the

theorem, then it enjoys a kind of perfect asymptotic interconvertibility: all resource objects
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are interchangeable at the many-copy level and with the seed regularization. Exchanging

one for another may incur a small overhead which grows sublinearly in the number of

copies that are being converted. But up to this, all conversions are reversible and can be

undone.

Ordered commutative monoids which satisfy the properties of Theorem 9.9 are quite

well-behaved. For example, as we have used in the proof, maximal regularized rates can

be computed as a simple quotient

Rreg
max(x → y) =

f(x)

f(y)
, (9.4)

where f is an arbitrary nonzero functional. This closely matches some rate formulas

which have previously been derived in quantum information theory (Horodecki and

Oppenheim 2013; Brandão and Gour 2015), although these live within an epsilonified

setting (Remark 2.6). While these kinds of rate formulas are certainly useful, we expect

that resource theories satisfying perfect asymptotic interconvertibility are still quite rare,

although less so than resource theories whose ordered commutative monoids are numerical

‘on the nose.’ In general, one will need to use the regularized rate formula of our

Theorem 8.24 or variants of it, since Equation (9.4) only applies under the conditions of

Theorem 9.9.

Example 9.10. Grph has at least two linearly independent functionals (Examples 7.11).

Therefore aovsQ(Grph) is not numerical either.

10. Comparison to other mathematical theories of resources

Now that our framework has been presented, we discuss some of the other approaches

to a general mathematical theory of resources that have been developed or are under

development.

10.1. Linear logic

Mathematical logic is the study of rules of inference, natural deduction, mathematical

proof and provability. While the formal logical system describing conventional ‘classical’

reasoning is classical sequent calculus, many other kinds of logics and formal systems

have been proposed. Of most interest in our context is linear logic (Girard 1987), which

is often described as ‘resource-conscious,’ or as ‘if traditional logic is about truth, then

linear logic is about food.’ We will now try to restate our approach in logical terms and

thereby relate it to linear logic.

If we rewrite the convertibility relation as entailment ‘�’ instead of ‘�,’ then we can

express Definition 3.1 as a set of inference rules for a logic of resource convertibility. The

following list of rules loosely follows the notation of Di Cosmo and Miller (2006–2015)

and blends it with ours. The structural rules of our logic are
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x � x (init)
Δ � x,Γ Δ′, x � Γ′

Δ,Δ′ � Γ,Γ′ (cut)

Δ, y, x,Δ′ � Γ

Δ, x, y,Δ′ � Γ
(left exchange)

Δ � Γ, y, x,Γ′

Δ � Γ, x, y,Γ′ (right exchange)

Here, x and y denote individual resource objects, while the symbols Δ,Γ, . . . denote

collections (lists) of resource objects of which one can consider the union by simply

writing them next to each other with a comma in between. Each inference rule consists of

a set of assumed convertibility relations – above the horizontal line – and one concluded

convertibility relation written below the line. The first rule means that any resource object

x is convertible into itself. The second rule states that if Δ is convertible into x plus Γ,

and Δ′ plus x is convertible into Γ′, then also Δ plus Δ′ is convertible into Γ plus Γ′. The

exchange rules logically implement the commutativity of ordered commutative monoids;

these rules are not always stated explicitly in texts on linear logic.

The non-structural rules are those which concern the combination operation ‘+,’ which

now becomes a logical connective, as well as the neutral element ‘0.’ These correspond to

the multiplicative rules of Di Cosmo and Miller (2006–2015), where both tensor ‘⊗’ and

par ‘`’ are identified† with our ‘+’, and both ‘1’ and ‘⊥’ are identified with our ‘0.’

Δ � Γ
Δ, 0 � Γ

(1L) � 0
(1R)

Δ, x, y � Γ

Δ, x+ y � Γ
(⊗L)

Δ � x,Γ Δ′ � y,Γ′

Δ,Δ′ � x+ y,Γ,Γ′ (⊗R)

0 � (⊥L)
Δ � Γ

Δ � 0,Γ
(⊥R)

Δ, x � Γ Δ′, y � Γ′

Δ,Δ′, x+ y � Γ,Γ′ (`L)
Δ � x, y,Γ

Δ � x+ y,Γ
(`R)

In this way, it is possible to reformulate our calculus of resources as a kind of logic. As

a small fragment of linear logic with two connectives identified, this logic seems quite

impoverished. Linear logic is much more expressive than this and capable of capturing

other aspects of resources that ordered commutative monoids may not, such as the game-

theoretic aspect of ‘choices’ being made either by the resource-handling agent himself or

by an adversary, which behave quite differently. Nevertheless, we hope to have shown in

the main part of this paper how one can use tools from algebra and functional analysis

in order to transcend the purely logical aspect of resources and derive nontrivial and

relevant results about resource theories.

† This observation is due to an anonymous referee.
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A slightly more expressive logic is the sequent calculus for compact closed categor-

ies (Shirahata 1996), which also includes negation. Due to the relation between compact

closed categories and ordered abelian groups (Appendix B), this is the logic which governs

ordered abelian groups. It might be interesting to investigate what kinds of logics describe

ordered Q-vector spaces and Archimedean ordered Q-vector spaces.

10.2. Constructor theory

As recently proposed by Deutsch (2013), constructor theory refers to the idea of developing

fundamental laws of physics in terms of which transformations can be caused to happen,

and which ones are impossible, together with explanations for why this is so. While

Deutsch’s discussion is relatively informal, a semi-rigorous version of constructor theory

can be found in the work of Deutsch and Marletto on the constructor theory of

information Deutsch and Marletto (2014), which Marletto has applied to evolutionary

theory (Marletto 2015). Roughly, the idea is that a constructor is an entity which can

cause the transformation of one object x into another object y

x
constructor−−−−−−→ y. (10.1)

In the language of Deutsch and Marletto (2014), the term ‘object’ is to be interpreted as

‘substrate having certain attributes,’ where a ‘substrate’ refers to any object which may

have attributes. So the transformation really looks like this:

input attributes of the substrate(s)
constructor−−−−−−→ output attributes of the substrate(s). (10.2)

Here, it is assumed that the constructor takes part in the transformation, but remains

unchanged in its ability to cause the transformation again. It can therefore perform

x → y over and over again on new instances of x. All of this is closely related

to our considerations, since we are also precisely concerned with questions of which

transformations are possible and which ones are not. If one uses our framework as a basis

for constructor theory, the constructor in Equation (10.1) should itself be considered a

resource object just like x and y, and it enables the conversion of x into y as a catalyst

or tool (Example 4.2). This achieves a higher degree of unification at the mathematical

level. This point of view is corroborated by the statement that ‘constructor theory is the

ultimate generalisation of the idea of catalysis’ (Deutsch 2013). Also the notion of task

of Deutsch (2013), as the most important basic concept in constructor theory, can be

formulated straightforwardly in the language of ordered commutative monoids: a task

is a set of transformations x → y that are to be achieved; so for us, they correspond to

basic orderings x � y which generate an ordering relation on a commutative monoid.

There are more close parallels between constructor theory and our framework. For

example, our Remark 2.6 essentially coincides with (Deutsch 2013, Section 3.14). Further-

more, there is a notion of universal constructor, which is supposed to be a programmable

constructor capable of emulating all other programmable constructors (Deutsch 2013,

Section 3.8). This seems similar to our notion of generating pair (Definition 3.18), which

consists of two resource objects g+ and g− from which any desired resource object can be

extracted and into which any desired resource object can be absorbed, given a sufficient
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number of copies of g+ and the possibility to dispose of the same number of copies of

g−.

All this suggests that our framework could be an elegant mathematical formalization

of constructor theory. However, the latter also seems to be intended to have aspects

which are not covered by our definitions. Concretely, the notion of substrate of (10.2)

is intentionally not covered by our framework, since this turns out to be unnecessary

for our purposes (those of the introduction). We have arrived at the notion of ordered

commutative monoid by following the principle that a mathematical formalization should

accurately capture all the relevant structures and ignore all the irrelevant ones†, and

substrates belong to the latter class.

Nevertheless, it is not hard to imagine that for other purposes—possibly including

those of constructor theory—substrates could play an essential role. We suspect that if

one wants to incorporate substrates into our formalism, one can introduce them elegantly

by working with a ‘relative’ analogue of ordered commutative monoids, roughly as follows.

Instead of a plain ordered commutative monoid A, one can consider either of two things:

• a homomorphism A → B to a fixed base ordered commutative monoid B modelling

the substrates, or

• an ordered commutative monoid A which is indexed by a symmetric monoidal category

B in the sense of a Grothendieck fibration.

The difference between these two approaches would be that the first does not distinguish

between different ways of how one substrate can evolve into another, while the second

retains a genuine category of substrates and maps between substrates.

Finally, the close relation between our work and constructor theory does not mean that

we subscribe to Deutsch’s idea that the fundamental laws of physics should be formulated

in terms of ‘what can and what cannot be caused to happen,’ thereby renouncing the

mainstream view that physics is concerned with ‘what happens.’ As in the introduction,

we regard the framework of resource theories and ordered commutative monoids as a

piece of mathematics for engineering, but we do not exclude applications to fundamental

physics.

For an earlier attempt towards a framework for theories of physics based on what is

possible and what is impossible, see Fritz (2009).

10.3. General approaches to resource theories in quantum information theory

As explained in the introduction, the idea of resource theories originates in quantum

information theory, and in particular in entanglement theory. Hence many of the concepts

of this paper have previously been considered there in a less general form. While we have

tried to provide references on this throughout the paper, it may help to give a separate

rough outline of what has been done in quantum information theory so far. Since the

focus of this paper is on the general theory, we only discuss other works which also have

† Compare the ‘principle of least power’ in software design (World Wide Web Consortium 2006).
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looked at more than just one individual resource theory or helped clarify the mathematical

structure of resource theories in general.

The selection of the following references is somewhat arbitrary, and we do not intend

to assess scientific priority or give an accurate outline of the history. Instead, our goal

is merely to illustrate which resource-theoretic ideas have been developed in quantum

information theory and provide some references for further study.

• A close conceptual predecessor to our approach is the idea of ‘resource inequalities’

developed in Devetak, Harrow and Winter Devetak et al. (2008). These resource

inequalities are precisely inequalities in an ordered commutative monoid, and one

can consider the present work as being concerned with extending some of the ideas

of Devetak et al. (2008) from the quantum information theory context into a general

framework. For example, the quantum teleportation protocol leads to the resource

inequality

[qq] + 2 · [c → c] � [q → q],

where [qq] denotes a maximally entangled quantum state of two qubits, [c → c]

stands for one bit of classical communication, and [q → q] is one qubit of quantum

communication. So the teleportation protocol lets us convert a maximally entangled

state plus two bits of classical communication into one qubit of quantum commu-

nication. More generally, Devetak, Harrow and Winter study two-party quantum

information processing from this resource-theoretic perspective. In doing so, they

develop definitions and theorems some of which are similar to ours, while others are

slightly different. For example, (Devetak et al. 2008, Section 3.3) develops a notion

of asymptotic resource which achieves a result similar to our many-copy and seed

regularizations together. It should be investigated whether a definition of asymptotic

resource along these lines makes sense in our general context, e.g. for any ordered

commutative monoid with a generating pair, and whether it could be of use for

obtaining an elegant solution for the problem discussed in Remark 6.14. Furthermore,

the resulting (Devetak et al. 2008, Theorem 3.29) is very close to our definition of

ordered commutative monoid, and (Devetak et al. 2008, Section 4) goes along the

lines of the equivalence of a and b in our Theorem 6.18. Finally, we would like to

understand better how Devetak, Harrow and Winter have dealt with the problem of

epsilonification (Remark 2.6) in their (Devetak et al. 2008, Section 3.3), and whether

their solution would be amenable to generalization.

The formalism of resource inequalities has been used for example in Abeyesinghe

et al. (2009), Hsieh and Wilde (2010a), Hsieh and Wilde (2010b) and Datta and Hsieh

(2011) and further developed in Harrow (2010).

• In quantum information theory, a resource theory is typically specified in terms of

a class of free operations, which are those quantum operations that are so simple

and ‘cheap’ to implement that their cost is considered negligible compared to all

other operations. The free operations can be used to convert between quantum states

or even between other (non-free) quantum operations, which defines the resource

ordering. An early reference for this idea is Horodecki et al. (2003), although the main

goal of that work is to introduce a particular resource theory: Horodecki, Horodecki
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and Oppenheim investigate the resource theory of quantum states with conversions

generated by arbitrary unitaries, introducing new systems in totally mixed states, and

discarding subsystems. Subsequently, this resource theory has become known as the

theory of informational nonequilibrium or nonuniformity theory Gour (2013).

• In (Gour and Spekkens 2008), Gour and Spekkens describe the free operations

paradigm in more detail and advocate its use. Specifically, they define and investigate

a family of resource theories in which the free operations are given by those quantum

operations that respect the given action of a symmetry group. This is relevant e.g. for

the problem of aligning reference frames between distant observers. This family of

resource theories has subsequently been studied extensively in works such as Marvian

and Spekkens (2013, 2014).

• In Horodecki and Oppenheim (2013), Horodecki and Oppenheim review resource

theories defined in terms of a class of free operations. They propose a canonical

additive monotone based on relative entropy for resource theories of this kind and

study its properties, and they derive Equation (9.4) in their setting.

• The free operations paradigm has been made rigorous and generalized beyond the

quantum information context in Coecke et al. (2014) using category theory as a

general framework for theories of processes. The main focus in that paper was the

construction of the ordered commutative monoids that formalize the resource theories

under consideration. In the present work, we have started to develop a toolbox for

working with ordered commutative monoids and mostly ignored the question of how

to construct them in situations of interest. Hence, (Coecke et al. 2014) complements

the present work.

• In Halpern (2014) and Halpern and Renes (2014), Yunger Halpern and Renes have

defined and investigated resource theories in thermodynamics quite generally, where

one can consider different kinds of ‘baths,’ like heat baths, particle baths, etc., and this

leads to an entire family of resource theories for thermodynamics.

• Finally, very recent work by Brandão and Gour (2015) has considered the paradigm

in which resource objects are quantum states which can be converted into each other

through the use of free operations as explained above. Under a certain assumption

on the free operations, they derive that all states are perfectly asymptotically inter-

convertible. Roughly, this is a result along the lines of Theorem 9.9; the difference is

that Brandão and Gour work in an epsilonified setting (Remark 2.6). However, the

assumption that any operation which takes free states to free states should itself be

a free operation seems so restrictive that the result is unlikely to be of use for most

operationally meaningful resource theories.
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Appendix A. The Hahn–Banach Extension Theorem

Our main results rely crucially on the Hahn–Banach extension theorem for sublinear

maps. This is one of the most basic results in functional analysis; but since we need it for

vector spaces over Q whereas the standard formulation is concerned with vector spaces

over R (or C), we record the statement and proof here for completeness.

Theorem A.1. Let V be a Q-vector space and p : V → R a map which is sublinear in the

sense that

p(x+ y) � p(x) + p(y), p(λx) = λp(x),

for all x, y ∈ V and λ ∈ Q�0. Let U ⊆ V be a subspace and f : U → R a linear map

which is p-dominated in the sense that

f(x) � p(x),

for all x ∈ U. Then there exists a linear map f̂ : V → R which extends f and is

p-dominated on all of V .

Here and in the following proof, the term ‘linear’ always means ‘Q-linear,’ and similarly

for ‘subspace.’

Proof. We consider pairs (Û, f̂) consisting of a subspace Û ⊆ V which contains U and

a linear map f̂ : Û → R which extends f and is p-dominated. The set of all these pairs is

naturally partially ordered via (Û, f̂) � (Û ′, f̂′) if and only if Û ⊆ Û ′ and f̂′ extends f̂.

This partially ordered set has the property that every totally ordered subset has an upper

bound. Therefore by Zorn’s lemma, it also has a maximal element (Û, f̂).

We claim that Û = V , since otherwise (Û, f̂) could not be maximal. We will see this

by showing that if Û � V , then we can choose y ∈ V \ Û and extend f̂ to the bigger

subspace Û + Qy. Such an extension is uniquely determined by linearity and its value on

y; if we denote this to-be-determined value by v, then the extension takes the form

Û + Qy −→ R, x+ λy �−→ f̂(x) + λv.

We need to make sure that v can be chosen in such a way that the extension is p-dominated

as well. Hence, we need to guarantee the inequality

f̂(x) + λv � p(x+ λy),

holds for all x ∈ Û and λ ∈ Q. By homogeneity under rescaling by positive numbers, it

is sufficient to consider the two cases λ = +1 and λ = −1, in which case we get the two
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conditions

v � p(x+ y) − f̂(x), f̂(x) − p(x− y) � v. (A.1)

We can find a v satisfying all these inequalities if and only if all these lower bounds are

less than or equal to all these upper bounds, which means

f̂(x) − p(x− y) � p(x′ + y) − f̂(x′). (A.2)

This in turn follows from the assumption that f̂ is p-dominated on Û together with

subadditivity of p

f̂(x+ x′) � p(x+ x′) � p(x− y) + p(x′ + y).

Since this proof is precisely the conventional one, we have found that it is of no

relevance that the field of coefficients is Q rather than R. However, it is of paramount

importance that the codomain of f̂ is allowed to be R, since otherwise checking (A.2)

would not be enough to guarantee the existence of a solution to (A.1): it may happen that

there are infinitely many lower bounds and infinitely many upper bounds with only one

number in between, and this number may be irrational, even if all the bounds are rational.

Appendix B. Ordered Commutative Monoids as Symmetric Monoidal Categories

In the main text, we have developed a toolbox for investigating questions of resource

convertibility. All of these questions were variants of one basic question: is it possible

to convert a resource object x into a resource object y? While this type of question is

undoubtedly important, answering it in the positive does not tell us how to convert x into

y. Trying to answer it means that we should consider the collection of resource objects

not as an ordered set, where x � y represents the convertibility, but as an entire category

in which the morphisms x → y are the conversions of x into y (Coecke et al. 2014,

Section 3). In closely related interpretations, the morphisms x → y may be the different

ways in which y can simulate x, or the different protocols available for turning x into y.

Any category becomes an ordered set by putting x � y for objects x and y if and

only if there exists a morphism x → y. This is a standard construction called the

preorder reflection†. In our interpretation, the preorder reflection remembers which objects

can be converted into which other ones, but it forgets how these conversions can be

realized (Coecke et al. 2014, Section 4).

By regarding an ordered set as a thin category, which is a category in which any two

parallel morphisms are equal, the if -type questions become special cases of the how -type

ones. It turns out that certain well-known pieces of category theory can be interpreted

as providing answers to the how -type questions in a way which parallels and generalizes

part of the toolbox developed in the main text:

• Symmetric monoidal categories generalize ordered commutative monoids (Coecke

et al. 2014, Section 3).

† The convention for drawing the direction of the arrows is usually opposite, as in Example 3.7.
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• Strong symmetric monoidal functors generalize homomorphisms of ordered commut-

ative monoids.

• Full faithfulness of functors generalizes Property (2.3) of homomorphisms to reflect

the order.

• Symmetric monoidal equivalences generalize isomorphisms of ordered commutative

monoids.

• A strong symmetric monoidal functor is an equivalence if and only if it is fully faithful

and essentially surjective, and this generalizes Proposition 3.13.

• Traced symmetric monoidal categories generalize cancellative ordered commutative

monoids†.

• Compact closed categories generalize ordered abelian groups (Shirahata 1996).

• The Int construction (Joyal et al. 1996), which freely embeds a traced symmetric

monoidal category in a compact closed category, generalizes the embedding of a

cancellative ordered commutative monoid A into oag(A).

Moreover, the preorder reflection takes us from symmetric monoidal categories down

to ordered commutative monoids, and similarly for traced and compact closed categories.

So far, we do not know how to generalize ordered Q-vector spaces or even Archimedean

ordered Q-vector spaces in a similar manner.

We can consider commutative monoids as ordered commutative monoids in which

the ordering is symmetric. This results in analogous correspondences between unordered

algebraic structures and symmetric monoidal dagger categories.

Example B.1. Dagger compact categories generalize ordered abelian groups, and the

preorder reflection assigns to every dagger compact category an abelian group. For

example in topology, manifolds with boundary are morphisms in the cobordism category

interpolating between one part of the boundary and another (Kock 2004, Section 1.2).

Since this is a dagger compact category, its preorder reflection yields an abelian group

known as the cobordism group (Kock 2004, Section 1.2.19).

Enriched category theory (Kelly 2005) provides yet another perspective on thin categor-

ies. With B = {0, 1} denoting the Booleans, considered as a symmetric monoidal category

with one non-identity morphism 0 → 1 and multiplication as the monoidal product,

thin categories are ‘the same thing as’ B-categories: every thin category is automatically

B-enriched, and conversely every B-category has an underlying category (Kelly 2005,

Section 1.3) which is thin, and these two constructions are inverses of each other. The

preorder reflection can be understood as the canonical change of base from the category

of sets to the Booleans.

It is of interest to consider other base categories for the enrichment as well. A

particularly relevant example should be R�0, considered as a thin category. R�0-categories

are a variant of metric spaces (Lawvere 2002), and therefore developing an R�0-enriched

theory analogous to the main text is one way to address Remark 2.6.

† This observation is due to David Spivak (personal communication).
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