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Abstract

We analyse the structure of a regular extension Jf »-i,v Q of a von Neumann algebra Jf by
an action (modulo inner automorphisms) 7 of a discrete group Q, and a non-abelian 2-cycle
v for -y, under the assumption that the "action" 7 of Q is cocycle conjugate to an "action"
a which leaves globally invariant a Cartan subalgebra 1? of Jf. We show that Jl ~*-i,v Q is
isomorphic with the algebra of the left regular projective representation of a certain discrete,
non-principal groupoid 91 V Q determined by the action of Q on the given Cartan subalgebra,
where 91 is the Takesaki relation associated to the pair (Jt,W). We apply this description to
give a decomposition of the regular representation of a group G into irreducibles, where G is
a split extension of a type / group if by an abelian group Q, and work out the details of the
author's earlier abstract Plancherel theorem in the case when K is abelian.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 L 10, 22 D 25.

1. Introduction

In an earlier paper, [15], this author has given a Plancherel formula for locally
compact second countable groups G whose regular representation pG is such
that pG(G)' contains a Cartan subalgebra in the sense of [6]—this includes all
solvable or connected groups, since for such groups, pG(G)" is semifinite, [4], and
injective, [2]. The formula is expressed in terms of data derived from irreducible
representations of G rather than factor representations occuring in the central
decomposition of pG as has been the case with most "non-type I" Plancherel
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250 Colin E. Sutherland [2]

formulae. In order to apply the Plancherel formula of [15], it is necessary to
have at hand an explicit decomposition,

f

JxIX

of pG, with the diagonal subalgebra 2 of the decomposition being a Cartan
subalgebra of pG{G)'\ for G solvable, connected, or discrete amenable, such a
subalgebra exists and is unique up to automorphisms of pG(G)'.

This paper is an attempt, only partially successful, to construct such an al-
gebra and decomposition when G is an extension of a normal subgroup K by
a discrete group Q, and a suitable subalgebra of pK(K)' is known. As is to be
expected, this program is intimately related to that of [11], and its extension
in [12] to the non-smooth case, which seeks to describe all of the irreducible
representations of G in terms of those in K and the action of G on this space.
Our goal is more limited—we seek only sufficiently many irreducibles of G to
decompose pG. Our point of view is also somewhat different from that of [11]
or [12]; rather than work with the space K of equivalence classes of irreducible
representation of K, we work with (a part of) the category lrr(K) of concrete
irreducible representations of K, with intertwiners as morphisms, together with
the natural action of G.

In order to perform our analysis, we need to make some assumptions on the
action of G on Jf = pK(K)"; roughly speaking we need to assume the existence
of an action a of G on • # conjugate to the natural action, and which leaves
some Cartan subalgebra It? of Jf globally invariant—the precise requirement,
given in Assumption 3.1, is somewhat weaker than this, and applies whenever G
is discrete amenable, or Q is discrete amenable, 1—* K —* G —* Q —• 1 is split,
and pK(K)" is injective and semifinite, using results of [17].

For us, the main virtue of working with decompositions over Cartan subalge-
bras is that such a decomposition leads to a description of the algebra in question
as an algebra of "coherent sections" (or "random operator fields" in the termi-
nology of [1]). More precisely if Jf is a von Neumann algebra in standard form
on a Hilbert space %? and 2 C ^tf' is any maximal abelian subalgebra, and if
j / C ^ is any <r-weakly dense separable C*-subalgebra, then the decomposition
of the self-representation i& of s/ over 2,

r

=

Jxx
gives rise to an equivalence relation J o n X denned by (x, y) G 3? if and only
if irx ~ wy, where ~ denotes unitary equivalence. According to [18], 31 is (effec-
tively) independent of the choice of S?. In addition, by [13], if we choose uni-
taries v(x, y) such that Ad v(x, y) o iry = TTX for (x, y) e J%, then v(x, y)v(y, z) =
f(x, y, z)v{x, z) for some 2-cocycle / € Z2(£l, T) on 31. The results of [13] also
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tell us tha t if 3 is a Car tan subalgebra, 31 is a countable non-singular equiv-
alence relation as defined in [6], and the Hilbert space of irx may be identified
with I2{3l{x) = {y: (i,y) 6 31}); furthermore we may take v(x,y) = Z/(z,y)
where {L*{x,y)£){z) = f{z,x,y)£{z), and the algebra ^ is unitarily equiva-
lent to the algebra r£°(Ad Z/) of essentially bounded measurable operator fields
i e J f - . T{x) € B{l2{3Z{x))) which satisfy Lf{x,y)T{y) = T(x)Lf(x, y) a.e. on
31 (where we identify fields which agree a.e.)- It is this description of ^ which
allows our analysis to proceed.

The organization of the paper is as follows; §2 is preparatory, and shows
how to synthesise a measured groupoid {31 V Q, fi) out of measured discrete
equivalence relation {31, n) and a discrete group Q acting, modulo inner auto-
morphisms, on {31 ,\i). We also provide a description of the cohomology group
H2 {31 V Q; T) needed in the subsequent analysis. In §3, we analyze regular ex-
tensions, [14], ^# ~Aa,u Q of a von-Neumann algebra • # by an action a (modulo
inner automorphisms) of Q and a (non-abelian) 2-cocycle w, under the assump-
tion that Q admits an invariant Cartan subalgebra %'. Using the results of [6,
13] described above (see also [9]), we know that in this case Jf = r£°(Adl/);
we prove, in Theorem 3.8 that Jf xOiW Q = rf? {Ad Lf) for some explicitly
determined / € Hl{R V Q, T).

The groupoid 31 V Q is not in general principal, that is, not an equivalence
relation. Indeed, it has isotropy groups Qx = {s € Q: irx oa s ~ irx} where {TTX}
are as above (the decomposition being over 31 = J&J, where J is a modular
involution for JH'. The algebra F£(AdZ/) may then be described as the algebra
of bounded measurable operator fields x 6 X —> T{x) € B{l%x ® 12{QX)), where
<%x is the Hilbert space of irx, which commute with 1 <8> AC*(QX), and which are
"coherent" with respect to a natural action of the underlying equivalence relation
5? of 31 V Q; here XCx is the left regular projective representation of Qx for a
certain multiplier cx ofQx derived from / . This is accomplished in §4. In §5, we
apply our results to exact sequences 1-+K—>G—•Q-*lof locally compact
second countable groups, with Q discrete, and for which the associated "action"
of Q on pK{K)" satisfies Assumption 3.1. Our conclusion, Theorem 5.3, is that
there is a decomposition pK = f® px dfi{x) of pK into irreducibles such that if
Gx = {g € G: px o Ad g ~ px) and ipx = Ind£* px then

(i) if fj)x = J® ^x,udiix{u) is any decomposition of i/)x into irreducibles,

ff? Ind£yx V'I.U dnx{u) is a decomposition of px = Ind^ px into irreducibles;
(ii) all irreducible decompositions of px arize in the manner described in i).
The commutant of ipx is identified explicitly as being isomorphic with

*Cx{Qx)", where Qx = Gx/K, and cx is identified with the (Mackey) multi-
plier naturally attached to the representation px of K. Thus in specific instances
we can, in principal, find irreducible decompositions of pG; §5 also presents some
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(non-type I) examples where this procedure can be made explicit, and computes
the data necessary for application of the Plancherel Theorem of [15].

As stated earlier, the final goals of the program are only partially met; even
with abelian groups Q, the algebras XCx(Qx)" may fail to be type I, although
they are always finite, and injective if Q is merely amenable. Thus there is no
known constructive procedure for constructing irreducible decompositions of the
representations ipx above. The machinery needed to obtain the results presented
here is quite elaborate, and the results themselves a little cumbersome; the au-
thor feels that while it may well be possible to generalize the results to include
nondiscrete groups Q, it may be preferable to instead concentrate on specific
(families of) discrete groups, and on constructions of concrete (families of) irre-
ducible representations of them, rather than to pursue the "normal subgroup"
approach used here. The results of this paper are intended more as guidelines
than as models.

2. Extensions of equivalence relations and their cohomology

Throughout, (32, n) will denote an (orbitally) discrete measured equivalence
relation as in [6], r and s denote the range and source maps respectively, X —
32^ the space of units, and 32^> the domain of the composition; 6(x, y) =
dp o r/dfi o s(x, y) denotes the modular homomorphism. H will denote a discrete
group.

DEFINITION 2.1. An action of H on (32, fi) is a Borel action (x,h) € X x
H^xheXofHonX with

(i) n{Eh) = OifECXand //(£) = 0;
(ii) (x, y)&32 if and only if {xh, yh) € 32 for all heH.

Given an action of H on (32, //), we may construct a standard Borel groupoid
& =31 x.sH by declaring

[x,y)E3Z and {y,z)e 31},

and (x, y, h)(yh, zh, g) = (x, z, hg). We have r(x, y, h) = x and s(x, y, h) - yh in
31 xa H, and (x,y, h)'1 = (yh, xh, ft"1). See [1, 6, 12] for further discussion of
groupoids.

Assume now that H acts on (32', y) and that TV is a fixed normal subgroup of
H with the property that (xn, x) €.32 for all n € N; in this case we say that N
acts via inner automorphisms. Define an equivalence relation ~AT on 31 xs H by
(x,y,h) ~jy (xi,y\,hi) if and only if x = x\ and (y\,hx) - (yn,n~lh) for some
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neN. Note that if {(x,y,h), {x',y',h')) <E (32 xs H)W, and if (n.wi.Ai) ~AT
(x,y,h) and (x'^y'^h^) ~JV (z',2/',/*'), then ((zi,yi,/ii), (ziVi.^i)) e ^ x s

#)<2) and (i,y,/i)(x',y',ft') ~N (xu j/i,fti)(a;i,j/i, A'x). Thus the quotient ^ x s

# / ~JV becomes a standard Borel groupoid which we denote by 32 V Q, where
Q = /J/iV. It is largely groupoids of this form which will be of interest in the
remainder of the paper.

There is an alternate description of 32 V Q which will be useful also. If
s € Q -* hs € H is a section for the map p: H —> Q, and [x, y, h] denotes the class
o((x,y,h) &32 xaH'm32vQ, the map [x,y, s) e 31 x Q -»• [x,y,hs] e J ' V Q
provides a Borel isomorphism of the underlying Borel space of <!% V Q with 31 x Q.
Transferring the groupoid structure on 32 V Q to 31 x Q, we obtain a product
on 32 x Q given by

(x,y,s)(yhs,zhs,t) = {x,zhahth~^ ,st).

Thus ^ V Q is to be viewed as a general extension of 32 by <2; note also that if
1—> N -+ H —* Q —» 1 is split and s -+ ha is a homomorphism, then (x, s) —• z/is

provides an action of Q on (32, //) and 32 M Q coincides with 32 xaQ.
For subsequent applications, we will need a description of the cohomology

groups H%(32 V Q; A) and H2(32 xa H;A), where A is a fixed abelian group,
typically the circle group T. Since the groupoids 32 x s H, 32 V Q may fail to
be principal, these cohomology groups do not fall under the discussion of [6], so
we give a brief description of their development.

For ^ = 32 VQ or 32 xaH, let Wn(&) denote the space of equivalence classes
modulo equality a.e. on S?(n\ of Borel functions / : 3?^ _• A with

fill, 72, • • •, 7n) = 0 if any 7, is a unit.

Define successively

l, • • • . 7n+l) = /(72, 73, • • • , 7n+l) + ( - l ) " + 7 (7 l , 72, • • • , 7n)

I> • • • ,7n),

(b) Z £ ( £ \ A) = k e r d n ; BJJ(S?,i4) = I m a g e d n - U and

Note H^(^,A) is well denned as dn+i o 9n = 0, and that our definition agrees
with that of [6] in case is 3? an equivalence relation.

The proper explanation for the analysis of H^(32 xs H;A) which follows un-
doubtedly lies in a spectral sequence for H^(^\A) with the i£2-term
H?(H; H^(32; A)); since the applications we have in mind do not seem to neces-
sitate such machinery, we will not attempt its development here. We will assume
throughout the discussion that the coefficient group A is divisible.
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LEMMA 2 . 1 . Each element of Z*(£lxsH; A) is cohomologous to an element
F eZ%(£? xsH;A) which satisfies

(a) F{i, T1) = 0 for -y G 31 xs H;
(b) F((x, x, h), (xh, yh,e)) = 0 for (x, y)e£2,h<=H.

PROOF, (a) This follows precisely as in [6, Lemma 7.6] since A is (assumed)
divisible.

(b) If FieZ%{£? x9 H;A) is arbitrary, define

a(x, y, h) = Fi ((x, x, h), (xh, yh, e)).

Then if F = Fida,

F({x, x, h), (xh, yh, e)) = Fx((x, x, h), (xh, yh, e)) - a(x, y, h) = 0,

as a(x,x,h) = a(xh,yh,e) = 0. Also, if Fi satisfies the normalization in a), so
does F.

THEOREM 2.2. Let F G Z^(3l xs H;A) be normalized as in Lemma 2.1,
and define for ((x, y), (y, z)) G 3l^> and g,h,ke H,

f(x, y, z) = F((x, y, e), (y, z, e)),

ah(x,y) = -F((x,y,e),(y,y,h)),

cg,h(x) = F((x, x, g), (xg, xg, h)),

A(g, x, y, z) = ag(x, y) + ag(y, z) - ag(x, z) + f(x, y, z) - f(xg, yg, zg),

B(g, h, x, y) = ah(xg, yg) + ag(x, y) - agh(x, y) + cg,h(y) - cg,h(x),

C(g, h, k, x) = ch,k(xg) + cgM(x) - cgh,k(x) - c9th(x).

Then(i) feZ^,A) and

F({x, y, g), (yg, zg, h)) = f(xgh, ygh, zgh) + cff,h(i) - ah(xg, yg);

(ii) for all x, y, z, g, h and k,

A(g, x, y, z) = B(g, h, x, y) = C(g, h, k, z) = 0, and

ah(x, y) + ah(y, x) = ag(z, z) = 0;

(iii) if f G Z'faft', A) is given, and we are also given Borel functions ah'- & —•
A, cgy. X -* A satisfying the identities in (ii), then the formula in (i) defines
an element of Z%(& xsH;A).
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PROOF. Let F E Z^(3l xaH;A) be given, and define / , a/,, cg>h as above.
Clearly / e Z*(3?,A), and we calculate

F{(x, y, g), (yg, zg, h)) = /((x, x, g)(xg, yg, e), (yg, zg, h))

= F({x, x, g), (xg, xg, h){xgh, zgh, e))

+ F((xg, yg, e), {yg, yg, h){ygh, zgh, e))

= cg,h{x) - ah(xg, yg) + f(xgh, ygh, zgh),

where we have used the normalization of F in Lemma 2.1(b) and the cocycle
identity for F with the indicated variables at each stage. Thus (i) is verified.

It is clear from the definition that o/,(x,x) = 1; the relation dh(x,y) +
ah(y,x) = 0 follows from Lemma 2.1(a).

To establish the remainder of (ii), and (iii), suppose / € Z^(3l ,A) is given,
and we are given arbitrary Borel functions a/,: J 1 -> i , c9th • X —* A with
ah(x,x) = ah{x,y) + ah{y,x) = 0. Define F: (31 xsH)W -> A by

F((x, y, g), (yg,zg, h) = f(xgh,ygh, zgh) + c9th(x) - ah(xg,yg).

Using the cocycle identity for / with the variables xghk, yghk, zghk and wghk,
we find

(dF)((x, y, g), (yg, zg, h), (zgh, wgh, k))

= B(h, k, xg, yg) + C(g, h, k, x) - A(k, xgh, ygh, zgh).

Thus, if the identities in (ii) are satisfied, F G Z"^(3i xa H;A). Conversely, if
F € Z%(& x3 H;A), and a/,, c9i/, are as defined in (ii) then, using (i) we have

B(h, k, xg, yg) + C(g, h, k, x) - A(k, xgh, ygh, zgh) = 0.

In particular, A(k, xgh, ygh, zgh) is independent of z, and taking z = y, we
obtain A = 0. Similarly, B(h, k, xg, yg) is independent of y and hence zero, and
C = 0.

REMARK 2.3. The concluding argument in the above proof depends crucially
on the diagonal in X x X having positive ^-measure. In addition if H is allowed
to become locally compact and second countable, & x {e} may have measure
zero in 31 xa H so that, for example, / is no longer well defined. Thus any
extension to more general groupoids and groups of Theorem 2.2 is fraught with
measure-theoretic difficulties.

REMARK 2.4. The conditions A = 0, B = 0, C = 0 in Theorem 2.2(ii) may be
rephrased by saying / € H^(3l; A)H for the natural action of H on H*(J%, A),
g —• ag defines an element of Z^(H;H^{3%,A)), and (g,h) —> cff,/, defines an
element of Z2(H; H^(3l; A)). We thus see all the terms expected from spectral
sequences appearing.

https://doi.org/10.1017/S1446788700030160 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030160


256 Colin E. Sutherland [8]

We now turn to a discussion of H^ {3lvQ\ A) where Q = H/N, and TV acts via
inner automorphisms. Let p . 31 xaH —^VQbe the quotient map, and define
p.: Z%(<%VQ;A) - Z*{&xaH;A) by pj = /o(pxp) for / € Z*{XvQ; A).
The range of p* evidently consists of those 2-cycles on&xaH which are invariant
under the (left) action ((x,y,g),(yg,zg,h)) -> ((x^n"1 ,ng),(yg,zgm~l,mh))
of TV x TV on («̂ F x s H)W. It is straight-forward to describe this range in terms
of the description of 2-cycles offered in Theorem 2.2; we leave this to the reader.

PROPOSITION 2 . 5 . p* determines an injection of H%(& V Q;A) into

PROOF. Suppose / i , / 2 e Z*(& V Q,A), and p»/i = Fi, p»/2 = F2 with
Fi = F2 4- 3d. Since Fi, F2 are invariant under the action of TV x {e} we obtain

d{x,y,g) - dix^yn'1 ,ng) =d(x,z,gh) - d(x,zn~1,ngh).

Thus d(x,y,g) — d(x,yn~1 ,ng) is independent of g and of y (with (x,y) € ̂ ") .
Similarly, using invariance under {e} x TV,

d(yg,zg,h) - diyg^gm^,^,^ = d(x,z,gh) - d(x,zgm'1 g~*, gmh),

from which it follows that d(x,y,g) — d(x,yn~l,ng) = bx(n) depends only on n
and the class of x in &. Note that 6̂  is a character on TV, and that, from the
second of the above invariance conditions,

hg(m) — bx^mg'1) for g e H, (x,y)e&.

Thus if s € Q —• ha € H is a section, and

d'(z, j/n"1, n/is) = bx(n) + d{x, yn'1, nha),

d' is TV-invariant and dd = dd'. Since d! — d o p for some d defined on 31 V Q,
fi=f2 + ddas required.

We note that it is possible to analyze Z*(&VQ; A) along the lines of Theorem
2.2. However, this is algebraically very messy indeed, and omitted for lack of
elegance and application—the reader need only examine the 2-cycle on £% V Q
described in Theorem 3.8 to appreciate the complexity of the situation.

3. Regular extensions of algebras of sections

Throughout this section, ^ is a von Neumann algebra acting on a separable
Hilbert space ^", U(Jf) is the unitary group of ̂ f, and Q is a discrete group.
We assume we are given maps s € Q —> 7S € Aut (^ ) and (s, () G Q x Q -*
v(s, t) e U(J?) satisfying

-7S o 7 t = Ad i/(s, t) o lat on Q x Q,
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>(i/(s, t))v(r, st) = i/(r, s)v(rs, t) on Q x Q x Q.

We will be interested in the structure of the regular extension ^ *-,,„ Q as
defined in [14], under a certain assumption concerning the "action" of Q. This
assumption is rather technical in nature and is easiest to state after the following
construction has been made.

Let UQ C U(jf) be the smallest subgroup which contains {v(r, s): r,s € Q}
and is invariant under {-ys: s € Q}; endow H — UQ X Q with product

(u,r)(v,s) = (uir(v)v(r,s),rs),

so that H is a discrete group also. Note there is a homomorphism /?: h G H —>
Ph € A u t ( ^ ) given by

0(ti)f.) = A d u o 7 r .

ASSUMPTION 3 . 1 . Jf? is in standard form, and the action P of H on ^
is cocycle conjugate to an action a of H on Jf for which there is a Cartan
subalgebra %? CJ? invariant under {ah: h € H}.

Here, standard form is as defined in [8], cocycle conjugacy is as discussed in
(for example) [10], and a Cartan subalgebra is as defined in [6]. Despite its some-
what peculiar appearance, Assumption 3.1 is met in many non-trivial cases—for
example, using [17, §5], it holds whenever ^ is semifinite and injective, and H
can be chosen to be amenable. Note that we may take a/, = Adu/, o/3k for some
1-cocycle u € Zp{H,U{^)), since if 6 o Adu/, o 0h o B~x admits an invariant
Cartan subalgebra, so does Adu/, o (5h.

Note that if we write a9 = a( l j S) , /3S = /?(i,») = 7s and us = U(i}S) for s € Q,
then with u>(s,t) — us/?s(ut)^(s,t)u*t,

aaoat = Adtj(s,t)oaat ouQxQ,

Qr(w(s, t))u(r, st) = u>(r, s)u(rs, t) on Q x Q x Q.

We take the generators of J? x Q W Q on l2(Q;%f) to be

and similarly for ^ xltU Q. Note these are uni tary transforms of the generators

used in [14] by the uni tary (jt)(s) = f ( s ~ x ) .

LEMMA 3 . 2 . (a) The map

pu{s) - na(u'a)p«(S), s e Q,

extends to o unitary equivalence of ^ x<^<v Q with Jf XIQ^ Q.
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(b) If' JH is in standard form, and {as: s G Q} are the canonical unitaries (as
in [8]) implementing {aa: s € Q}, then the commutant of J? xa,uQ is generated
by

(yOOO = »««), ye-*".
(\"(t)£)(s) = at-Mt-1,*)*^), t e Q.

PROOF, (a) The unitary U on 12(Q,^) defined by (U{)(s) = us£(s) imple-
ments the indicated isomorphism.

(b) It is routine to check that y and Xu(t) lie in (Jt xQ]U, Q)' for y € J!'
and t e Q. Conversely, if z € B(12(Q\^)) commutes with {y: y € JP'}, then
z g / x B(/2(Q)), so we can write z = (zr>3) as an ^"-valued matrix. If z also
commutes with Xu(t) for all (, we obtain

Zrs,rt = w(r,s)*af.(2s,t)w(r,0

for all r,s,t€ Q. From this, one now obtains

We now proceed to examine Jf »a,u Q- The following auxiliary construction
will be useful. Note that if N = Uo x {e} CH,Nis normal in ff with H/N = Q;
further, there is a unitary representation n G TV —• fn € U(J?) with a n = Adt n

on iV. Let J / be any separable, er-weakly dense *-subalgebra of Jt which is
a-invariant, and contains both {tn: n € N} and {u/,: h € i f} ; the system
(s/, H, a, f) is now a twisted covariant system in the sense of [7].

Let J be a modular involution for Jf, and set 2 = JWJ C J?'. Let

f=
JxIX

be the decomposition of the identity representation h& of J / with diagonal al-
gebra 3>'. Let 31 be the Takesaki relation on X, [18], so that (x,y) € 31 if
and only if -KX ~ wy where ~ denotes unitary equivalence; let a(x, y) denote the
associated (automorphic) representation of 31, [13], determined by the equation
a(x, y) o 7Ty = wx, and choose a unitary-valued Borel map (x, y) € 32 —• v(x, y)
with a(x,y) = Adv(x,y). The unitaries v(x,y) may be chosen to take a very
special form when 3> C ^f' is a Cartan subalgebra, but this does not concern us
yet; for the moment all we will need is the fact from [13] that J? = Y°£(o), that
is, those essentially bounded operator fields x £ X —* T(x) € B(%*x) satisfying

cr(x, y)(T(y)) = T(x) a.e. on 32

(identified up to null sets), acting on %? in the obvious way. (See also [9].) We
note also that (31, n) may be assumed to be a discrete measured equivalence
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relation, as in [6]. In addition, the unitaries {a^ : h E H} admit descriptions of

the form

where (x, h) E XxH —> xh is a point realization of the action h E H —> ah^ of H
on f, a(x, h): %?xh —• <%x is unitary, and 6(x, h) denotes (as it will, throughout)
the appropriate Radon-Nikodym derivative.

LEMMA 3.3. We may assume that

ifx ° <*h — Ad a(x, y) o wXh on X x H.

PROOF. By [5, 8.2.4], the desired relation holds a.e. in x for each h E H; the
result follows after deletion of a null set from X.

Note that (x,h) —> xh now provides an action of H on (<^ , / J ) as in §2—we
have (x, y) € 31 <=• 7rx ~ 7ry <*• TT̂  O a/, ~ TT,, O a^ o (xh, yh) € ^ for all h€ H.
Further, N acts as inner automorphisms.

We return now to the twisted covariance algebra ($/,H,a,t), introduced
above and let nx denote the induced representation Ind wx of the twisted covari-
ance algebra B = C*(sf ,H,a,t); recall from [7] that nx acts on the Hilbert
space L%(H,%x) of measurable (classes of) functions f: H -* 3% satisfing
£(nh) = xx(tn)Z(h), n € N, and fH,N \t(h)\2 dh < oo, and that the action
is determined by the operators

= *x(<xh(a))Z(h), a € sf,

LEMMA 3.4. For teL2
N(H;%*yh) and(x,y,h)e3?xsH, define

(VN(x, y, h)O(g) = a(x, h)v(xh, yhWh-tg).

Then
(a) VN(x,y,h) is a unitary operator from L2

N(H;£%)h) to I,^(/f;
(b) AdVN(x,y,h)oxyh = itx;
(c) (x,y,h) —> VN{X,y,h) is a projective representation of M xs H;
(d) for n G N, VN(X,XTI~1 ,n) is a scalar.

PROOF, (a) For n e N and f E L%(H\^fyh) we have

(VN(x, y, h)Z)(ng) = a(x, h)v(xh, yh^h^nhh^g)

= a(x, h)v(xh, yh)iryh(th-inh)i{h~lg)

= a{x, h)irxh{th-inh)v{xh, ^

= *x(tn)(VN(x,y,h)t;)(9).
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(b) This follows from routine calculation of AdVjv(x,y,h) o 7ryh(a) and
AdVN(X,y , h) o nyh(g) for a € s/ and g e H.

(c) For ((*, y, g), (yg, zg, h)) E {31 xs G)2 and £ € /&(

= a{x, g)v{xg, yg)a(yg, h)v(ygh,

while (VN{x,zgh)£)(k) — a(x,gh)v(xgh,zgh)£(h~1g~1k). However, both
a(x,g)v(xg,yg)a(yg,h)v(ygh,zgh) and a{x,gh)v{xgh,zgh) implement equiva-
lences between the irreducible representations irzgh and wx oagh, so the assertion
is verified.

(d) For n G N and £ € L%(H;J£), we have

{VN(x, xn'1, n)£)h) = a(x, n)v{xn, x)irx(tn)* Z(h);

however

Ada(x,n)v(xn, x)irx(tn)* 0 ^

= Ada(x, n)v(xn, n) owx oa" 1

= Ada{x,n)oTTxnoa>-1

= Ti°«n o an1 = 'ii

so Vff{x,xn~1,n) is indeed scalar.
In view of the identity (x,yn~1,ng) — (x,xn~1,n)(x,y,g) in 31 xg H, and

Lemma 3.4(c) and (d), there is a unique representation a of the groupoid 32 VQ
of §2 determined by

a o p(x, y, h) = Ad VN(x, y, h).

THEOREM 3.5. The algebrasT™(&) andJ?'Aa^Q are unitarily equivalent.

PROOF. Note first that there is a unitary Ux: L
2

N{H;^X) -> 12{Q;%X) given

by
(Ux)(s) = £(*): (U;V)(ns) = nx(tn)r,(s)

for ^ e L%(H;%x), r\ e 12{Q\^X), and we identify n e N with (n,e) in H, and
5 € Q with (1, s) e H. We let U = f® Ux dp{x), soU: L2

N{H\^T) - / 2 (Q;^") is
unitary; note that AdUxVN(x,y, e)U* = v{x,y) <g> 1. Thus if T ~ T( i ) G r~(CT)
and S = UTU* ~ C/xT(a;)[/;, we have

using [13]. Note also that every element of 31 xs H is a product of elements of
the form (x,y,e), (x,xn~l,n) for n € N, and
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Since, in general a(x, g)a(xg, h) = a(x, gh) on X x H x H, we have

a(x,(l,S-1)-1) = a(x(l,5-1)-1,(l ,S-1)r,

so that if

(VN(s)t)(x) = 6(x, (1, s - 1 ) - 1 ) ^ ^ , x, (1, s - 1 ) " 1 ) ^ ! , s'1)-1),

we have UVN(S)U* = Aw(s) as defined in the proof of Lemma 3.2(b), and
UT?(a)Um =JT® B(12(Q)) n {Aw(s): s G Q}' = J? »OtU Q, by Lemma 3.2(b).

We now seek to realise & as (equivalent, via {Ux}, to) A d / / for a suitable
/ € Z"^{31 V (?), using the full strength of the assumption that ^ is a Cartan
subalgebra. For & = 31, 31 x s H or 31 V Q, and / G ̂ ( ^ ) define operators

and Ktfr): I2(s-Hs(l)) - /2(«"1(r(7)) by

Note that
, 72)^(7172) and

on <^(2). Since ^ is a Cartan subalgebra, we know from [6] that a = Adw =
AdL* for some / e Z%{31) determined, up to cohomology, by the equation
v(x,y)v(y,z) = f(x,y,z)v(x,z) on 3l2. Furthermore,

is a modular involution for JK', and

where (S^£){x, y) - ip{y)£(x,y) and (R^^)(x,y) = ip(x)£(x,y). Also, since
— ah, Ada/, normalises both W and S1 ,̂ so that

*. 2/) = ^(^i

for some Borel functions a / , : ^ - » T . In addition there are Borel maps tn: X
T with

To see this, observe that unitaries wn of the indicated form lie in rjf
and AdWniSf) = Adtn(5^) for all <j> G L°°(X,fi); the desired expression for tn

follows since & is maximal abelian in r
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PROPOSITION 3 .6 . The functions ag, tn satisfy the relations (a.e.)
(a) ag(x, y) = ag(y, x)'1 and ag(x, x) = 1 for g € H;
(b) ag{x,y)ah{xg, yh) = agh(x, y) for g,heH;
(c) (fg • f-l)(x,y,z) = dag(x,y,z) for g € H;
(d) an(x, y) = tn(y)tn(x)-1f(x, xn, yn)f(y, yn, x)'1 for n € N;
(e) tn(xh) — tnhn-i(x)ah{x, xhnh~l) for h&H, n € N.

PROOF, (a) This follows from the identity JagJ = ag and the observation
that ag£o — ^0) where ^o is the characteristic function of the diagonal.

(b) This is a consequence of the identity agah = agh-
(d) Follows from the identity an = tnJtnJ, and the known form of tn-
(e) Recall that otg(tn) = tgng-i\ we thus obtain

ag{x,y)tn(yg)f(yg,ygn,xg)~1ag{x,ygng~1)~1 = tn{y)f{y,ygng~l ,n)~l.

Using (c), (to be proven below), and the skew-symmetry of ag, we obtain

tn{yg)ag{y,y9ng~1)~1 = tn{y)

as claimed.

(c) Observe that the unitaries a(x, g) introduced already are given by

{a(x,g)£){y) = ag(x,y)£(yg).

Note that if b e sf C T ~ ( A d L / ) , then c = agba* is in r j? (AdZ/) , so that

AdLf{x,y)a(y,g)onyg(b) = AdLf{x, y)iry(c) = irx{c)

= Ada{x,g)Lf(xg,yg) o wyg(b).

Since iryg is irreducible, we obtain

Lf(x,y)a(y,g) = dg(x,y)a(x,g)Lf (xg,yg)

for some Borel map dg: 31 —* T. From this we see

f(z, x, y)ag{y, z) = dg{x, y)ag{x, z)f(zg, yg, xg)

a.e. on 3l^\ taking z = x and noting ag(x,x) = 1 = f{x,x,y) - f(xg,xg,yg),
we obtain dg(x, y) — ag(y, x). Thus we have

(f9 • f ' 1 ) ^ , x, y) = ag(y, z)ag{y, x)-xa9(x, z)'1

= ag(z,x)ag{x,y)ag(z,y)-1

Proposition 3.6(a), (b), (c) and Theorem 2.2 together guarantee that the
formula

F{(x, V, 9), {yg, zg, h)) = f{xgh, ygh, zgtya^ixg, yg)

defines an element of Z%(& x s H).
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LEMMA 3.7. (a) (VN{x,y,g)O{z,h) ^ F{{x,z,h)-1,{x,y,g))^{zg,g'-1h) on
L2

N{H;^yg)\
(b) VN{x,xn-\n) = tn{x)~l, nEN.

PROOF, (a) With the notation as already established

{VN{x,y,g)O(z,h) = {a{x,g)Lf{xg,yg)Z)(z,g-1h)

= ag(x, z)(Lf{xg, yg)£){zg, g^h)

= ag{x, z)f(zg, xg, yg)${zg, g^h)

while

F{{x,z,h)-\ {x,y,g)) = F{{zh,xh,h~l), (x,y,g)) = f{zg,xg,yg)ag{z,x)-1.

The conclusion follows, using Proposition 3.6(a).

(b) {VN(x,xn-1,n)^){h) =a(x,n)Lf(xn,x)nx{tn)*l;(h)

as in Lemma 3.4(d). However for r/ € %?x — I2{r~1(x)),

{a(x, n)Lf(xn, x)irx{tn-i)ri)(y) = an(x, y)f(yn, xn, x)tn-i (yn)f{yn, y, x)'1

But tntn-i = 1, so that tn-i(yn) — tn(3/)-1; using also the form given for an in
Proposition 3.6(d), and the cocycle identity for / with the variables yn, y, xn
and x, we conclude

a{x,y)Lf(xn,x)irx{tn)* = tn{x)~\

We thus see, that in the case when N is trivial (so that we had started with
an action of Q on ̂ ) that a — AdLF. Our final conclusion is that F defines
a cocycle / on & V Q, and a is (equivalent to) A d i / . For the purpose of this
proof we use the notation hs = (1, s) € H.

THEOREM 3.8. With the notation already established, the formula

f{(x,y,s),(yh3,zh3,t))

= f{xh~}lhj_\,yh3h~_\, zhsht)ah-i {xh'},, yhg)"1

x f(xh~}lh~\, xh~}la_t, zhsht)'1

xah-\ Axh7-^h7-^ht-ls-^x)th-i h-i h (x)'1

defines an element of Z"^{32 V Q); further, a is equivalent, via the unitaries Ux

of Theorem 3.5, with AdZ/, as automorphic representations of 31 VQ.

PROOF. Note the map (x,y, s) € 31 V Q -* (x, yhshg-^hj}^ € 31 xs H
provides a section for the quotient map & xs H —* 31 \l Q. Since VN is a
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projective representation with multiplier F (Lemma 3.7(a)), we have

VN(x, yhaha-i, hj^ )VN(yha, zhshtht-i, h~\)

= F((x,yhshs-i,h'^), (yhazhahtht-i,h~_\).

VN (X, zhshtht-i ha-i, h~_, ft~_!)

= F{(x, yhaha-i, ftj-
1,), (yh9, zhahs-i, /»7_\))

x VN(x,zhahtht-ia-i, h~}la_!),

where we have used the identity

(a;, zhshtht-iha-i, h~}t h~}t)

= {x, xh'^^iht-ihs-i, h^ h~}j ht-ia-i), {x, zhahtht-ia-i, h~\s_1)

and Lemma 3.7(b), with n — h^h^ht-is-i- However, the above coefficient
of VN(X, xhahtht-ia-i, V - ^ s - i ) i s precisely f((x,y,s), (yha,zha, t)) as defined is

the s ta tement of the theorem, so tha t / € Z"^{& V Q)—the masochistic reader

may also check this by direct calculation.

Note tha t by definition we have

y.ah-x(z,x)-lah-x {zh^h^uzh^t^^-i h

If Ux is as in the proof of Theorem 3.5,

(uxvN (x, yhshs- •, h;}, )u;ha o (t)

= a(x, hj}t W(xh;.\, yha)(U;hs t)(h.-*hth;}ltha-u)

= a(x,hj}l)L
f(xha-}l,yh,)irvh.(<jj(8-1,t))Z{8-1t);

for f G %*yh, we have

(a(x, hj_\ )Lf(xh;.\, yhs)iryh. (u(S-\t))s)(z)

= ah-i (x,z)f{zh~}l,yha)tu{s-itt){zhj}1)

x f{zh~s\, zhth;}H, yha)-\{zhth-s}H).

However, using the fact that t^^-i^^^^zht)'1 = th-i^ h^-iht^K^K-n^
and Proposition 3.6(e) with x = zh~liha-it, g = h~}lt and n = ha-ihth~}lt,
this last expression reduces to f({x, z, i), (x,y, a))g(zhth~}lt).

We thus have the desirable, but not unexpected, result that ^ xa>u Q =
Tjf (Adi/) for some specifically determined / € Z%{&VQ). The author believes
that this fact should have a much more simple proof than the one given here;
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despite many a t tempts , even in the presence of some simplifying assumptions, a

simple, "conceptual" proof has not been found.

Another important feature of the analysis so far is tha t the generators w(a),

TT(S), for a 6 $f and s e Q, of the representation I n d i of & — C* {s/, H, a, t)

admit explicit decomposition over 2 ® 1 of the form

)> s e Q-
Here, we have realized the representations itx of the discussion preceding Lemma
3.4 on 12{Q;3%C) via the unitary Ux. We shall further analyze these representa-
tions in the next section.

4. Analysis of the representations tx

In general the representations nx are not irreducible, we seek here information
as to the precise extent to which this irreducibility fails.

We consider, as in §3, the twisted covariance system (s/,H,ot,t); we define
Hx = {h€H:wxoak~ irx}, and Qx = Hx/N C Q. Let </>x = Ind$x wx be the
induced representation of the twisted covariance algebra 3§x = C*{stf ,Hx,a, t),

acting on L'ftl(H2,<%x). Unfortunately, Green's notion of induced representation

does not allow us to consider I n d ^ z (f>x, since Hx may fail to be normal in H.

Even so, one may consider the Hilbert space L2
Hx{H;L2

N{Gx,^'x)) as a space of

appropriately invariant ^ - v a l u e d functions on H x Gx, where the action on H

is via the induced representation, and this Hilbert space is unitarily equivalent

to L j y ( . / / ; ^ ) via the uni tary Px defined (formally) by

for £ e L2
Hx(H;L2

N{Hx;XZ)) and r, € L2
N{H;jrx). Also, if T e 4>X{BX)' on

2 ) , we define

where f acts on L2
Hz{H;L%{Hs,Jti)) via (ffl(A) = T£{h) for h € H. It is

routine to check that*KX{T) € nx{B)' on L%{H;^

THEOREM 4.1 . For almost all x, KX is an isomorphism.

The proof is given in the sequence of lemmas which follow.
For s € Qx, we choose a unitary vs on ^ with

Adi>s OTTX =irx oa s ;

note v3vt = cx(s,t)TTx(oj(s,t))vst on Qx x Qx, where cx(s,t) € T. Clearly cx e
Z2(HX;T).
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LEMMA 4 . 2 . Define Vx on 12{QX\K) by (Vx$){s) = v*${s). Then Advxo
<t>x{&x)' is generated by {1 <g> XCx(s): s € Qx}, where XCx is the left regular cx-
representation ofQx, defined by

(\c*(s)v)(t) = cs(a-1,«)-1»?(«-1<), v e \

PROOF. With <f>x realized on 12{QX;^X) we have, for a e

{xtx{);a){) ; o T x o a .

and

Thus AdVx o <t>x{£Bx) is generated on %?x ® /2(QX) by {^(a) ® 1: a € J / } , and
{wf ig) pCx (t): t £ Q}, and the assertion follows.

LEMMA 4.3. irx(&y is generated on L2
N(H;^X) by {VOv^x^- i ,^ 1 , )} ,

where ha is as in Theorem 3.8.

PROOF. Transform L2
N(H\^X) to / 2 ( Q X ; ^ ) as usual, so

and (Vjvtaj.xfca-i.V-MOW = d*(«,*)f(«~1O. w h e r e

dx{s,t) = a(x,/i7_1
1

is a unitary which conjugates nx o aa-it to TTX O at.
Now if T € B(12(Q;^X)) commutes with the above generators, write T —

(TtjS) as a B(^)-valued matrix, and we see that
(a) Tt<a^x{as(a)) = irx(at(a))Tt,a, a € sf, from which it follows, by irre-

ducibility of nx, that
Tt>s-it = iP(s,t)dx{s,t)

for some tp(s,t) e T. In addition, for r EQX,
(b) Ttr,ar=*xWt,r))'Tt,s1Cx(u(8,r)).

To prove our assertion, it is enough to show that il>(s, t) is independent of t. But
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so that , to show ip(s, t) = tp(s, tr) it is enough to show

(c) TttS-itTrx{uj(s-1,t)y=Ttr!a-HrTrx(<Jj(s-\tr)y.
Using (b) above, the right hand side of (c) becomes

Applying (a) and the identity as-i(w(t,r))w(s~1,tr) = ^(s'1 ,t)w(s~1t,r), the
desired identity (c) is established.

COMPLETION OF PROOF OF THEOREM 4.1. It suffices to show that

*x{v;\c* (S)vx) = vN(x, xha^, hj}t).

With the unitary Vx as in the proof of Lemma 4.3, and Ux: L2
N{HX\^X) —>

, we have U*VX*{1 <g> Xc'(s))VxUx = Ai(s) , where

The associated operator A(s) on L]lx(H;Ljtf(Hx;^x)) is given by (Ai(s)£)(/i)
= Ai(s)f(/i), and if Px is the unitary identifying L2

Hx{H\L2
N{Hn;^x)) with

^ given in the discussion at the start of §4, then

= a(s, h;_\

since we may choose va = L,f (xhj1, x)*a(x, hj1)*.

REMARK 4.4. The cocycle cx used throughout the proof of Theorem 4.1 is
nothing but the "Mackey obstruction" associated to the representation nx oisrf,
the action a of H on J / and the "little group" Qx. Note that by the proof of
Theorem 4.1, and the fact (cf. Theorem 3.8) that

Lf(x, y, s) = UxVN(x, yhahs-i, h^WX,

that on Qx x Qx, cx(s,t) = /((x^hj1^), (x,xh^ 1,t)); thus all the Mackey
obstructions appear as restrictions to isotropy groups of a single cocycle / €

REMARK 4.5. To obtain a decomposition of the representation f — Indjy IT
of 3S into irreducibles, it is evidently sufficient to choose a maximal abelian
subalgebras of \®\Cz(Qx)" (or more accurately, of {VN{x,xh~ 1,s): s G Qx}')
and to decompose the representations TTX over 3SX. If this can be done in such a
way that

(a) 3lx is a Cartan subalgebra;
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(b) AdVN(x, y, h){2fyh) = Sx on 31 xa H,
the algebra 31 — fx 2lx dfj,(x) is a Cartan subalgebra of TT(B)', and the associ-
ated decomposition is of the desired kind. Regrettably, we know of no method by
which such a "coherent" family of Cartan subalgebras may be found, nor abstract
conditions under which such a family exists, although the existence, individually,
of Cartan subalgebras in XCx(Qx)" is assured if Q is amenable. However, in the
case where XCx {Qx)" is type I, we may use simply the central decomposition and
multiplicity theory to effect the desired decomposition.

5. Applications to group extensions

We consider an exact sequence l - » / f - » G - » Q - » l o f locally compact
second countable groups, withQ discrete. Let •# = pK(K)", where pK is the
right regular representation of K on L2(K). Since G acts on K, it acts on
J[ via an action 7 where lg{pK{k)) — pK{gkg~1). If s G Q —• ga e G is
a section for the surjection G —» Q, and v(s, t) = pK(gagt9s~t1)> t n e n w e n a v e

la°lt = Adi/(s, tfist, and -7,(1/(3, f)i/(r,st) = u(r, s)i/(rs, t), as at the beginning
of §2. We assume that {Jf,^a,i/} satisfies Assumption 3.1 of §3; note that by
the results of [17, §5] this hypothesis is satisfied if G is discrete and amenable
(in which case the group H of §3 may be viewed as a subgroup of G), or if the
sequence l-+K^G—>Q—>lis split and Jf is semifinite and injective, and
Q is amenable.

In order to apply the results of §3 and §4 we need

LEMMA 5 . 1 . (a) The von Neumann algebra df{G) generated by the right
regular representation pG of G is unitarily equivalent with df x-r," Q under the
map taking pG(k) to Tr1{pK{k)) for keK, and pG{gs) to p"{s) for sGQ;

(b) The map ^{x) -> TTQ(Z), forx€J? and pv{s) -> ^0{u*)pw{s) for s€Q
extends to a unitary equivalence of ^ ~*i,u Q with J# »a,u Q-

PROOF, (a) If we identify G with K x Q via kgs —> (fc,s), the associated
unitary (#O(M) = £(*0a) from L2{G) to 12{Q;L2{K)) conjugates pG{k) to
n~i(pK(k)) and pG(gs) to pv{s) for k € K and s € Q.

(b) The map U: 12(Q;L2(K)) -f 12(Q;L2(K)) given by (Ut)(s) = «.{(«)
implements the indicated equivalence.

Now, by Theorem 3.8, pG is (unitarily equivalent with) a representation
which generates r£°(AdZ/); note if C*(G) denotes the group C*-algebra of
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G, both pG(C{G)) and f(B) may be viewed as separable, <r-weakly dense C*-

subalgebras of r j ° ( l / ) , so that if

Jx
PG

IX

is the decomposition of pG over 2 ® 1, then using the arguments of [18], we
may delete a /i-null set from X and assume that pG ~ pG o TTX ~ iry, and that
the intertwining operators between these pairs of representations are precisely
the same—indeed we may choose the auxiliary C*-algebra sf of §3 so that
sf 2 pK{Ct(K)).

We now wish to interpret the results of §3, §4 in terms of K, G, and the Mackey
theory; some care must be taken in this since our results in §3, §4 relate to the
auxiliary twisted covariant system (sf ,H,a,t), whereas we need interpretation
in terms of the system (C*(K),G, 7, r), where the normal subgroup for r is K,
and r{k) = pK{k).

We set Gx = {g e G: px o ig ~ px), and note that Gx/K = Qx since
px ~ py t> nx ~ TTj,; let rpx — Ind^1 px be the (Mackey) induced representation
on L2

K{Gx;%x), and px = Ind^ px, on L^(

PROPOSITION 5.2. The natural map from ipx(Gx)' to px(G)' is an isoomor-
phism for almost all x.

PROOF. We have unitary equivalences

and

of the form already used; the map in question is just the composition of the
corresponding spatial isomorphisms with the map KX of Theorem 4.1, and the
result follows.

THEOREM 5.3. Let 1 —> K —* G —» Q -+ 1 be an exact sequence of locally
compact second countable groups with Q discrete, and either G discrete amenable,
or Q amenable, G a split extension, and pK{K)" semifinite injective. Then there
is a decomposition

r
pK = /

Jx
px

x
of the right regular representation pK of K such that

(i) the diagonal algebra for the decomposition is a Cartan subalgebra of
PK(K)';
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(ii) ifGx = {geG:irxo"tg~ irx), $x = Ind£x px and tpx - / £ V*,u dy,x{u)
is a decomposition of' ipx into irreducibles, then

r®
Ind% nx = / Indg ipx>u dfix(u

Jux

)

is a decomposition of Ind^ irx into irreducibles;
(iii) every decomposition of Ind^- nx into irreducibles arises in the manner

described in (ii).

PROOF. By the hypotheses on the sequence 1—*K—>G—*Q—*1, the sys-
tem {7S, v(s, t);s,t£Q} introduced at the start of §5 satisfies Assumption 3.1;
with the notation already in use, the desired decomposition of pK is the one with
diagonal subalgebra 2'. The assertions (ii) and (iii) follow from the fact (Propo-
sition 5.2) that the natural map, say ex, from Ind^x px(Gx)' to Ind^7rx(G)', is
an isomorphism, and the observation that if ipx = Ind^1 px = fv V'z.u dp.x(u) is
a decompositon of ipx with diagonal algebra ^*, then the diagonal subalgebra for
the decompositon px = Ind^ \px = J® Ind^ Vi,u dfix(u) is ex(i?).

We note that in the case K is type I and Q is arbitrary, it follows from [11,
Theorem 8.1] that irreducible representations of Gx restricting to a multiple of
px (such as ipx) induce to irreducible representations of Gx, establishing (more
than) half the result. In the other direction, if K is type I and Q discrete, it
follows from [12] that each irreducible decompositon of px is induced from an
irreducible decomposition of tpx. Note, however, that it suffices to use repre-
sentations induced from genuine subgroups of G rather than being obliged to
use also representations induced from representations (cocycles) of the "virtual
subgroups" of G arising from the action of G on K, as one might expect from
the analysis in [12] of the irreducibles of G.

We should also point out that any generalization of Theorem 5.3 to non-
discrete groups Q will have to contend with the possibility that the groups Qx

need not, in general, be closed. The author believes that if the Qx are (almost)
all closed, Theorem 5.3 should remain true, but no complete proof exists.

Also, we note that the cocycles cx appearing in Lemma 4.2 are precisely the
Mackey obstruction attached to the representation px of K—this follows from
the observation that px o ̂ 3 ~ px if and only if i j o a , ~ nx, and that if
Ad vsonx =nxoas, then Ad waopx — pxo ^a where wa — nx(u*)va; in addition

wawt = irx(u*)irx(a3(ut))vavt

= cx{s, t)Trx(qa(u*)u*auj(s, t))vat

= cx{s,t)px(v(s,t))wat,

so the obstruction to extend PX\K to a representation of Gx is given by cx €
Z2{GX/K,T).
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Finally, we note tha t under the hypothesis of Theorem 5.3, the equivalence

relation {31,n) is hyperfinite by [19] and [3], so tha t H*(&, T ) = 0. In addition,

if H is amenable, 31 xs H is also amenable, (as a groupoid), so tha t so also are

3tVQ and S" = (r, s){3Z V Q), the equivalence relation generated by 31 and

the action of H. The analysis of [16, §2] now yields a homomorphism from

S* —» 31 V Q, and a decomposition J ' V Q = ^ f x s y where ($ denotes the
Borel functor x € X —» Sx = Qx with the natural action of S?. The description
of W^{3i V Q) approached in §2 may now be completed via the exact sequence

0 -» H^f; Hli<S, A)) - Hl{& V Q; A) - #£(<?, A) -> 0.

We turn now to some examples. Since discrete groups are never type I unless
they have an abelian subgroup of finite index, and since being type I for a
nontrivial multiplier is even more rare, we restrict attention to the case where
Q is abelian.

Note that if 0 —> A -+ G —* Q —* 0 is exact, with A abelian, and 9 is the
multiplier associated to the extension, then the Mackey multiplier cx associated
to the character i e i i s just

cx{s,t) = (x-1,0{s,t)) on QxxQx.

If cx is trivial, the corresponding representation ipx — Ind^1 x of Gx has com-
mutant which is isomorphic to \{QX)', and ipx admits a decomposition

-L pdxp,

where Gx denotes the group of all characters of Gx which extend x on A (which is
isomorphic to Qx) and dxp denotes normalized Haar measure on {Qx transferred
to) Gx. Note that P = UGX carries a standard Borel structure for which the
natural action of G by conjugation is Borel, using the results of [16]; in this case,
one may also check that x —• dxp provides a Borel field of measure on Gx.

We know from the previous results of this section that

/ / .
Jx JG

xpdxpdfi{x)
Gx

provides a decomposition of pG with Cartan diagonal algebra. We will need
a concrete realization of this fact, as follows. Let 5? denote the equivalence
relation on UGX coming from the action of G; for each (p, q) € 5?, we may
choose g = qp<q G G with p o Ad gp>q = q. Note

9p,q9q,r = h{p, Q, r)gp<r for some h{p, q, r) G GP\A

and that (p, q, r) —* h{p, q, r) is a 2-cycle on S" with values in {Gx: x G X}. Since
<5" is hyperfinite, by [3], h is a coboundary and we may assume that gp,qgq,r = Qp,r
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on 5^(2\ Let Lp(G) denote the space of the representation Indgx p = p, and
note that for f e L2

q{G) and h € Gq\A

Z(9q,ph9 9q,p) = Z(9q,Ph9q,l9q,p99q,l)

= qo Ad gqtP(h)Z{gq,pgg~l)

so that (£/p,gf)(ff) = *i(9q,p99q,p) defines a unitary from L\(G) to LjiG). Also

so that p(gq,p)Up,q is an intertwiner between q and p. In addition, if Vv: L2(G)
is defined by (Vp£)(r) = t(gp,r), we have

(Vpp(gq,p)Up,qV;t)(r) = (Up,q

Thus the representations pp = AdFpop have the property that AdL(p, q) opq —
pg, where L is the left regular representation of the equivalence relation S?. It
now follows from [13] the diagonal algebra of fx fa ppdxpdp,{x) is a Cartan
subalgebra.

We now compute the data necessary for the Plancherel formula of [15], using
the representations pp; lq denotes the characteristic function of q € UGX, viewed
as an element of I2(r~l(p)) for any p with (p,q) € S*. Observe that in our
situation, the groups Gx are normal in G and hence constant, Gx = Go, at
least on ergodic components of the action of G on X. Also, we have gp,r9p,s =
hp{r,s)gPtrgpa for some hp(r,s) € GP\A — Go; in fact hp may be viewed as the
2-cycle naturally attached to the extension

1 —• GP\A -+ G —> G/GP\A -* 1-

for each p. We compute

(Pp(gnq)(r) = (VPp(g)V;iq)(r) = (V;i,)fo,,rff).

Thus, when g = h € Go, we have

{pP{h)lq){r)=p(gp,rhg-l)lq(r) = (q(h)lq)(r),

and

(pp(9PM(r) = (V;iq)(hp(r,S)gp<rgpt.)

= p{hp{r,s))lq(rgPta).

= p(hp(qga,p,8))lqg,iP(r).
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Thus for f € ^ ( G ) n 12{G). We have

where (p,sf)A(g) is, by definiton, Z ) h e G o $(9P,sh)q{h), since

$(h9p,s)q9s,P{h) = E
heG0

heG0

Thus ||pp(f)lg||2 = Z)s~g l(p,sf)A(9)|2i s m c e t o e vectors lgg, p are orthogonal as
s varies, and p is a character. Note that in fact this quantity is independent of
p with (p, q) € «^, and hence

and the Plancherel formula of [15] for G takes the form

E iu..f)A(?)ia

for f € lx{G) D / 2 (G) . To the author ' s knowledge, formulae of this type have not

appeared before.

We note finally tha t in a t tempt ing to apply the analysis of §§2, 3, 4 to exten-

sions of the type

where Qi is discrete abelian, and G is of the type already considered, tha t

is, an extension 1—* A —* G -* Q —»1 with A and Q discrete abelian, one

encounters the problem tha t the decomposition of pG already displayed might

not have suitable invariance properties under the action of Gi—certainly if G\

leaves A invariant, it will conjugate the isotropy groups Gx appropriately, and

the analysis carries through. Details are left to the reader. However, in other

situations, we must modify the action of Gy by a cocycle which is very difficult

to find explicitly, and the formalism becomes much more difficult to control.
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