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On some generic very cuspidal representations

Stephen DeBacker and Mark Reeder

Abstract

Let G be a reductive p-adic group. Given a compact-mod-center maximal torus S ⊂G
and sufficiently regular character χ of S, one can define, following Adler, Yu and others, a
supercuspidal representation π(S, χ) of G. For S unramified, we determine when π(S, χ)
is generic, and which generic characters it contains.
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1. Introduction

Let k be a finite extension of the p-adic numbers Qp for some prime p. A connected reductive
k-group G is called unramified if it is quasi-split over k and split over an unramified extension
of k. We let G denote the group of k-rational point of G; this convention applies to all algebraic
k-groups.

Let G be an unramified k-group with center Z. Given an unramified maximal k-torus S⊂G
such that S/Z is anisotropic, and a sufficiently regular character χ : S→ C×, one can construct
(cf. [Adl98, Car84, Ger75, How77, Yu01]) an irreducible supercuspidal representation π(S, χ) of
G; these are examples of very cuspidal representations and are the representations we consider
in this paper. We have

π(S, χ) = indGKx κ(S, χ),

(smooth compact induction) where x= x(S) is the unique [Tit79, § 3.6.1] fixed point of S in the
reduced Bruhat–Tits building of G, Kx is an open subgroup of G that fixes x and has compact
image in G/Z, and κ(S, χ) is a finite-dimensional representation of Kx constructed from the pair
(S, χ).
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Let B⊂G be a Borel subgroup defined over k. Fix a maximal k-torus T⊂B, and let U be
the unipotent radical of B. A character ψ : U → C× is called generic if the stabilizer of ψ in T
is exactly the center Z. An irreducible admissible representation π of G is called generic if there
exists a generic character ψ of U such that HomU (π, ψ) is non-zero (in which case, we say ψ
occurs in π(S, χ)). For any representation π, one may ask the following questions.

(i) Is π generic?

(ii) If π is generic, which generic characters occur in π?

The purpose of this paper is to answer both questions for the very cuspidal representation
π(S, χ). The answer to question (i) is as follows.

Theorem 1.1. The very cuspidal representation π(S, χ) is generic if and only if x(S) is a
hyperspecial vertex in the reduced Bruhat–Tits building of G.

The second question is a bit more subtle. We now assume (as we may) that x= x(S) is a
hyperspecial vertex in the apartment of T in the reduced building of G. Let r (a positive integer)
be the depth of χ, and let

Gx,r, Ux,r :=Gx,r ∩ U, Tr

be the Moy–Prasad filtration subgroups, with similar groups for r+. We say that a character
ψ of U has generic depth r at x if the restriction of ψ to Ux,r+ is trivial, giving a character ψr
of Ux,r/Ux,r+ , and if the stabilizer in T0 of ψr is contained in Z · T0+ . Here, T0 is the parahoric
subgroup of T and T0+ is the pro-unipotent radical of T0. Since x is hyperspecial, a character of
generic depth r at x is indeed generic, as defined previously. One answer to question (ii) is as
follows.

Theorem 1.2. Let π = π(S, χ) as above have depth r (see § 2.5). Assume that x(S) is
hyperspecial. Then HomU (π, ψ) 6= 0 if and only if the T -orbit of ψ contains a character of generic
depth r at x(S).

To give a quantitative answer to question (ii), let H1(k, L) denote the Galois cohomology of
an algebraic k-group L, and given an inclusion of k-groups L⊂M, let

ker1(L,M) := ker[H1(k, L)→H1(k,M)]

denote the kernel of the map on cohomology induced by the inclusion. The group ker1(Z,G)
acts simply–transitively on T -orbits of generic characters of U .

Let π(S, χ) be a very cuspidal representation of the type considered in this paper and assume
that x(S) is hyperspecial.

Theorem 1.3. The subgroup ker1(Z, S) of ker1(Z,G) acts simply–transitively on the T -orbits
of generic characters which occur in π(S, χ).

The final section of the paper relates this result to the L-packets of supercuspidal
representation constructed recently in [DR09, Ree08]. Roughly speaking, we show that
Theorem 1.3 is compatible with the internal parametrization of the generic part of our L-packets.
See § 7 for more details.
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2. Some general results

We begin with minimal hypotheses that will be strengthened as we proceed. Let k be a locally
compact field, complete with respect to a discrete valuation val : k×→ Z. Denote by p the prime
ideal in the ring of integers o of k.

Let G= G(k) be the group of k-rational points of a connected reductive k-group G. Let
B(G) denote the reduced Bruhat–Tits building of G. For x ∈ B(G) and s ∈ R>0, let Gx,s and
Gx,s+ denote the Moy–Prasad filtration subgroups of G, as defined in [MP94].

2.1 A structure result
Given two points x, y ∈ B(G), let [x, y] denote the geodesic in B(G) from x to y. There exists an
apartment A in B(G) containing both x and y; the geodesic [x, y] is the straight line segment
from x to y in the affine space A.

Lemma 2.1. Suppose x, y ∈ B(G) and z ∈ [x, y]. Then we have:

(1) Gz,s+ = (Gx,s+ ∩Gz,s+) · (Gz,s+ ∩Gy,s+) for all s > 0;

(2) Gz,s = (Gx,s ∩Gz,s) · (Gz,s ∩Gy,s) for all s > 0.

Proof. We prove statement (2). Statement (1) can be obtained by substituting ‘s+’ for ‘s’ in the
following.

Let A be an apartment in B(G) containing both x and y. Let A be the maximal k-split torus
of G corresponding to A. Then A is a homogeneous space for the vector group V :=X∗(A)⊗ R,
and there is v ∈ V such that y = x+ v.

Let P denote a minimal parabolic k-subgroup containing A. Let Φ denote the set of roots
of A in G and let Φ+ ⊂ Φ be the roots of A in P. Without loss of generality, we may assume
that P is chosen so that

〈α, v〉 > 0 for all α ∈ Φ+.

Let M be the centralizer of A in G and let U be the unipotent radical of P. Then we have
the Levi decomposition P = MU. Let P̄ denote the parabolic k-subgroup which is opposite to P
with respect to M and let Ū denote the unipotent radical of P̄.

Since s > 0 we have, for all w ∈ A, the Iwahori decomposition

Gw,s = (Gw,s ∩ Ū) ·Ms · (Gw,s ∩ U),

where

Ms =
⋂
w′∈A

Gw′,s.

Since

Ms ⊆Gx,s ∩Gy,s ∩Gz,s,
it suffices to show:

(a) (Gz,s ∩ Ū)⊆ (Gx,s ∩Gz,s); and

(b) (Gz,s ∩ U)⊆ (Gz,s ∩Gy,s).

We prove part (b). The proof of part (a) is similar.
Let Ψ denote the set of affine roots of G with respect to A and the valuation on k. If ψ ∈ Φ,

then let ψ̇ ∈ Φ denote the gradient of ψ. To prove part (b) it suffices to show that if ψ ∈Ψ is
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such that ψ(z) > s and 〈ψ̇, v〉 > 0, then ψ(y) > s. But we have z = y − tv for some t > 0, so

ψ(y) = ψ(z + tv) = ψ(z) + t〈ψ̇, v〉 > s+ t〈ψ̇, v〉 > s,

since t〈ψ̇, v〉 > 0. 2

2.2 A result on fixed vectors
Fix a smooth representation (π, V ) of G. For each compact open subgroup K of G, let

[K] : V −→ V K

denote the projection operator, given by

[K]v =
∫
K
π(k)v dk,

where dk is the Haar measure on K for which
∫
K dk = 1.

Lemma 2.2. Suppose x, y ∈ B(G) and s ∈ R>0. If v ∈ V Gy,s+ and [Gx,s+ ]v 6= 0, then V Gz,s+ 6=
{0} for all z ∈ [x, y].

Proof. Fix z ∈ [x, y]. We actually show that [Gz,s+ ]v 6= 0. From Lemma 2.1, we have

[Gx,s+ ][Gz,s+ ]v = [Gx,s+ ][Gx,s+ ∩Gz,s+ ][Gz,s+ ∩Gy,s+ ]v
= [Gx,s+ ][Gx,s+ ∩Gz,s+ ]v
= [Gx,s+ ]v 6= 0,

hence [Gz,s+ ]v 6= 0. 2

2.3 Generalized s-facets
Let g be the set of k-rational points of the Lie algebra of G. We have analogous filtration
subgroups gx,s, gx,s+ , for x ∈ B(G) and s ∈ R. We recall here some basic facts about generalized
s-facets from [DeB02, § 3]. If we assume s > 0, then everything in this section remains valid when
‘g’ is replaced by ‘G’.

If x, y ∈ B(G), we say that x is related to y if

gx,s = gy,s and gx,s+ = gy,s+ .

The equivalence classes in B(G) defined by this relation are called generalized s-facets. If F is a
generalized s-facet and x ∈ F , we set

gF := gx,s and g+
F = gx,s+ .

Suppose that F is a generalized s-facet in B(G). If A is any apartment in B(G) meeting F ,
we let dimA(F ) denote the dimension of the smallest affine subspace of A which contains
A ∩ F . From [DeB02, Corollary 3.2.14], if A′ is another apartment in B(G) meeting F , then
dimA(F ) = dimA′(F ). Therefore, it makes sense to define the dimension of F as

dim(F ) = dimA(F ),

for any apartment A meeting F .
For a generalized s-facet F , we let F̄ denote the closure of F in the natural (metric) topology

on B(G). From [DeB02, 3.2], the boundary

∂F := F̄ − F
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is a disjoint union of a finite number of generalized s-facets, each having dimension strictly less
than that of F .

Lemma 2.3. Let F1, F2 be two generalized s-facets. Then we have

F1 ⊆ F̄2⇔ g+
F1
⊆ g+

F2
⊆ gF2

⊆ gF1
.

Proof. The implication ‘⇒’ is [DeB02, Corollary 3.2.19]. For the other implication, it is enough
to show that for any two points x1, x2, with xi ∈ Fi, we have the half-open segment (x1, x2] :=
[x1, x2]− {x1} contained in F2.

Choose an apartment A containing x1 and x2. Let A be the maximal k-split torus
corresponding to A and let Ψ be the set of affine roots of G with respect to A and the valuation
on k. To prove that (x1, x2]⊆ F2, we must show that for any ψ ∈Ψ, the affine function ψ − s is
always positive, always zero, or always negative on (x1, x2].

If ψ(x1)> s, then since g+
F1
⊆ g+

F2
, we have ψ(x2)> s, so ψ − s is positive on all of [x1, x2]. If

ψ(x1)< s, then since gF2
⊆ gF1

, we have ψ(x2)< s, so ψ − s is negative on all of [x1, x2]. Finally,
if ψ(x1) = s, then either ψ − s≡ 0 on [x1, x2] or x1 is the unique zero of ψ − s on [x1, x2], in
which case ψ − s is always positive or always negative on (x1, x2]. 2

2.4 Cuspidal representations

Let f denote the residue field of k. Let s > 0 and fix a generalized s-facet F . Set

LF :=GF /G
+
F .

If s= 0, then LF is the group of f-rational points of a connected reductive f-group. If s > 0, then
LF is a finite-dimensional vector space over f.

Suppose that H is a generalized s-facet containing F in its closure. From Lemma 2.3, we
have

G+
F ⊆G

+
H ⊆GH ⊆GF .

Let LHF denote the image of G+
H in LF . A finite-dimensional complex representation (σ, W ) of

LF is said to be cuspidal if for all generalized s-facets H for which F ⊆ ∂H, we have

W LHF = {0}.

Let C(LF ) denote the set of equivalence classes of irreducible cuspidal representations of LF .

If s= 0, then the above definition agrees with the usual definition of a cuspidal representation
of a finite reductive group. If s > 0, then LF is abelian and C(LF ) consists of those characters of
LF which are non-trivial on LHF whenever F ⊆ ∂H.

2.5 A discreteness criterion

Suppose that (π, V ) is an irreducible admissible representation of G of depth s. This means there
is some x ∈ B(G) for which V Gx,s+ 6= {0} and that V Gy,r+ = {0} for any y ∈ B(G) and r < s. The
aim of this section is to give a criterion for the set

X (π) := {x ∈ B(G) | V Gx,s+ 6= {0}}

to be discrete. Note first of all that X (π) is a disjoint union of generalized s-facets, preserved
under the action of G on B(G), and X (π) is closed in B(G), by Lemma 2.3.
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Lemma 2.4. Suppose that F is a generalized s-facet in X (π). The LF -module V G+
F is cuspidal

if and only if F is maximal among the generalized s-facets in X (π).

Proof. The generalized s-facet F is not maximal among the generalized s-facets in X (π) if
and only if there is a generalized s-facet H in X (π) for which F ⊂ ∂H; equivalently, F ⊂ ∂H and
V G+

H 6= {0} or, from Lemma 2.3, F ⊂ ∂H and

(V G+
F )L

H
F = V G+

H 6= {0}.

The lemma follows. 2

Corollary 2.5. Suppose that F is a generalized s-facet in X (π) and the LF -module V G+
F is

cuspidal. If F is a minimal generalized s-facet in B(G), then X (π) is discrete; in fact, we have
X (π) = {gF | g ∈G}.

Proof. A minimal generalized s-facet is a point, so we have F = {x} for some x ∈ B(G). From
Lemma 2.4 it follows that x is isolated in X (π). We choose a non-zero vector v ∈ V Gx,s+ .

Now suppose that y is another point in X (π). By definition we have V Gy,s+ 6= {0}, so that
[Gy,s+ ]V 6= {0}. Since V is irreducible, there is g ∈G such that

[Gy,s+ ]π(g)v 6= 0.

Applying π(g)−1, this means that
[Gg−1y,s+ ]v 6= 0.

By Lemma 2.2, the geodesic [x, g−1y] is contained in X (π). However, x is isolated in X (π), so
x= g−1y and y = gx. Hence, the generalized s-facet containing y is also minimal, so X (π) is
discrete. 2

Remark . The first author and Prasad have shown (unpublished) that any two maximal
generalized s-facets occurring in X (π) must be associate, in the sense of [DeB02, Definition 3.3.4].
Moreover, if X (π) is discrete, then π must be supercuspidal. There exist (non-trivial) examples
of supercuspidal representations for which X (π) is not discrete.

2.6 Very cuspidal representations
We now impose the additional assumptions of [Adl98, 2.1.1] on the residual characteristic p of k.
Namely p > 2 and p does not divide the order of the center of the simply connected cover of the
derived group of G and moreover p 6= 3 if G has a simple factor of type G2. If k has positive
characteristic we also exclude p= 3 (respectively, p= 3, 5) if G has a simple factor of type F4

(respectively, E8).
Under these assumptions, there exists, and we fix, a non-degenerate symmetric Ad(G)-

invariant bilinear form 〈 , 〉 : g× g→ k which restricts to a non-degenerate pairing gx,r/gx,r+ ×
gx,−r/gx,(−r)+ → f for all r ∈ R. Fix also a character Λ : k+→ C× of the additive group of k, with
ker Λ = p.

Let x ∈ B(G) and r > 0. Identifying Gx,r/Gx,r+ = gx,r/gx,r+ , as we may, any element X ∈
gx,−r determines a character

χX :Gx,r/Gx,r+ −→ C×,
by the formula

χX(Y + gx,r+) = Λ〈X, Y 〉.
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The assignment X 7→ χX is a bijection

gx,−r/gx,(−r)+
∼−−→ Irr(Gx,r/Gx,r+).

A semi-simple element X ∈ g has depth −r < 0 if X ∈ gx,−r for some x ∈ B(G) and X /∈
gy,(−r)+ for any y ∈ B(G). As in [Adl98, 2.2.3], a semi-simple element X ∈ g of depth −r is called
good if the centralizer M = CG(X) contains a maximal torus S splitting over a tame extension
E/k, such that valE(dα(X)) =−r for every root of S in G outside of M. Note that r is an
integer if the extension E/k is unramified.

Suppose that X is good of depth −r with centralizer M = CG(X). Let B(M) be the image
of the building of M in B(G). By [KM03, 2.3.1] we have that

B(M) = {x ∈ B(G) |X ∈ gx,−r\gx,(−r)+}. (1)

Assume further that M/Z is anisotropic (we say M is minisotropic). Then B(M) = {x} consists
of the unique point x ∈ B(G) such that X ∈ gx,−r\gx,(−r)+ . For such an element X, Adler’s
construction in [Adl98] produces many finite-dimensional representations κX of the stabilizer
Kx of x in G, with the property that the compactly induced representation

indGKx κX (2)

is irreducible supercuspidal of depth r and contains the character χX upon restriction to Gx,r.
Let ΠX be the set of these representations (2). Each π ∈ΠX is an example of a very cuspidal
representation.

Lemma 2.6. Let the semi-simple element X ∈ g be good of depth −r, with minisotropic
centralizer M = CG(X) and let π ∈ΠX . Then X (π) is discrete.

Proof. Note first that (1) implies that B(M) = {x} is a generalized (−r)-facet in B(G); we denote
it by F . By [DeB02, Lemma 3.2.5], F is also a generalized r-facet in B(G). Let V be the space
of π. We show that the LF -module V G+

F is cuspidal. The character χX appears in V Gx,r+ . We
first claim that any other character χY of Gx,r which appears in V Gx,r+ is Kx-conjugate to χX .

Since π is irreducible, there is a g ∈G so that

(X + gx,(−r)+) ∩Ad(g)(Y + gx,(−r)+)

is non-empty (see [MP94, 7.2]). This implies that there is Z ∈ gx,(−r)+ such that X + Z ∈ ggx,−r.
Let m be the k-rational points in the Lie algebra of M. From [Adl98, 2.3.2], there is an h ∈Gx,0+

so that

Ad(h)(X + Z) ∈X + mx,(−r)+ .

Moreover, the element Ad(h)(X + Z) is still good of depth −r. However, Ad(h)(X + Z) also
belongs to ghgx,−r. From (1) we have hgx= x. Hence, g ∈Kx, and the claim is proved.

Hence, it is enough to show that χX is cuspidal. If not, there exists a generalized r-facet H
such that F ⊂ ∂H and χX is trivial on LHF . This implies that X ∈ gy,−r for all y ∈H. Using (1)
again, we have H ⊂ {x}, a contradiction.

Since F is a minimal generalized s-facet and V G+
F is cuspidal, it follows from Corollary 2.5

that X (π) is discrete. 2
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3. Generic characters and representations

We now add the assumption that G is unramified. That is, G is quasi-split over k and G splits
over an unramified extension of k. Let U denote the unipotent radical of a k-Borel subgroup B
of G. Let T be a maximal k-torus in B and let A be the maximal k-split subtorus of T. Let
Φ (respectively, Φ+) be the set of roots of A in G (respectively, U) and let Π be the simple
roots in Φ+. For each α ∈ Φ let Uα be the corresponding root group; it is the product of T-root
groups for the roots of T which restrict to α. Then Uα is defined over k and we let Uα = Uα(k).

Let j : G→ Ḡ := G/Z be the adjoint morphism. For any intermediate k-group Z⊂ L⊂G,
we set

L̄ = j(L)' L/Z

and let L̄= L̄(k) denote the group of k-rational points in L̄. For example, B̄ is a k-Borel subgroup
of Ḡ containing the maximal k-torus T̄ of Ḡ.

A character ξ : U → C× is generic if its stabilizer in T̄ is trivial. The group T̄ acts
simply–transitively on the set Ξ of generic characters of U . Hence, the finite group T̄ /j(T )
acts simply–transitively on the set Ξ/T of T -orbits of generic characters.

3.1 Generic representations
We say that an irreducible admissible representation π of G is generic if the set

Ξ(π) := {ξ ∈ Ξ |HomU (π, ξ) 6= 0}

is non-empty.
From now on our representations will have positive integral depth. Let (π, V ) be an irreducible

supercuspidal representation of G of depth r ∈ Z>0, of the form

π = indGKx κ, (3)

where x is a vertex in B(G), Kx is the stabilizer of x in G, and κ is a finite-dimensional
representation of Kx which is trivial on Gx,r+ . In § 2.5 we studied the set

X (π) = {x ∈ B(G) | V Gx,r+ 6= {0}}.

Since G is unramified, the building B(G) contains hyperspecial vertices.

Lemma 3.1. Suppose that π is generic of depth r ∈ Z>0 and X (π) is discrete. Then x is
hyperspecial.

Proof. This proof is very similar to that of [DR09, Lemma 6.1.2]. Let Ψ be the set of affine roots
of A in G with respect to the valuation on k. If ψ ∈Ψ, let ψ̇ ∈ Φ denote its gradient.

Since G is unramified we may choose a hyperspecial vertex o in A. Choose an alcove C in A
so that o ∈ C̄ and

Φ+ = {ψ̇ : ψ(o) = 0 and ψ|C > 0}.
Since we are free to conjugate x by elements of G, we may and do assume that x ∈ C̄.

For each y ∈ C̄, set

Ψy := {ψ ∈Ψ : ψ(y) = 0}, Ψ+
y := {ψ ∈Ψy : ψ|C > 0}.

Then Ψy is a spherical root system and Ψ+
y is a set of positive roots in Ψy. Let Π̃y be the unique

base of Ψy contained in Ψ+
y . Let Φy, Φ+

y ,Πy be the respective sets of gradients of the affine roots
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in Ψy,Ψ+
y , Π̃y. Note that Φ+ = Φ+

o . The roots in Πy form a base of the reduced root system
consisting of the non-divisible roots in Φy.

It follows from the affine Bruhat decomposition that G= UNKy, where N is the normalizer
of A in G and Ky is the stabilizer of y in G. We may choose a set N(y)⊂N of representatives
for the double cosets in U\G/Ky, such that nΦ+

y ⊂ Φ+
o for each n ∈N(y).

Now let ξ ∈ Ξ(π). Then from [Rod73] we have

C'HomG(indGKx κ, IndGU ξ)'HomKx(κ, IndGU ξ). (4)

By Mackey theory, the restriction of IndGU ξ to Kx is a direct sum

(IndGU ξ)|Kx =
⊕

n∈N(x)

IndKxUn∩Kx ξ
n.

From (4) there is a unique n ∈N(x) such that ξn appears in the restriction of κ to Un ∩Kx.
Since κ is trivial on Gx,r+ , we have that ξn is trivial on Un ∩Gx,r+ , so ξ is trivial on U ∩Gnx,r+ .

For r > 0, the Lie algebra Lx is abelian. However, since r is an integer, we can identify Lx and
the Lie algebra of Gx(f) as T(f)-modules. (Here, Gx is the connected reductive f-group associated
with x and T denotes the f-torus in Gx corresponding to T.) Consequently, we can speak of
parabolic, Borel, Levi and nilradical subspaces of Lx, which are defined by the usual root-space
decompositions.

Since nΨ+
x ⊂Ψ+

o , it follows that the image of Un ∩Gx,r in Lx is the nilradical of a Borel
subspace of Lx. Let w = nA be the image of n in the Weyl group N/A. We claim that wΠx ⊂Πo.

Since nΨ+
x ⊂Ψ+

o , have wΠx ⊂ Φ+
o . So suppose β ∈Πx and wβ ∈ Φ+

o −Πo. Then the root
group Uwβ is contained in the commutator subgroup of U , so that ξ is trivial on Uwβ. Hence,
Uβ ⊂ ker ξn. Since β ∈Πx, this implies that ξn is trivial on the nilradical n of the maximal
parabolic subspace of Lx whose Levi subspace contains the β-root space. There is a facet F ⊂A
of positive dimension such that x ∈ F̄ and n is the image of G(k)y,r+ in Lx for any y ∈ F . Hence,
V Gy,r+ 6= {0} for all y ∈ F , contradicting the discreteness of X (π).

We have proved that wΠx ⊂Πo. Since both x and o are vertices in A, we have

|Πx|= |Πo|= dimA,

implying that wΠx = Πo. Hence, for any ψ ∈ Π̃o there is kψ ∈ Z such that n−1ψ(x) = kψ.
Define λ ∈ X̄ by the values 〈λ, β〉= kψ for every absolute root β of T which restricts to ψ̇.

Then λ is Galois-fixed, so the translation tλ preserves the apartment A. For all ψ ∈ Π̃o, we have

ψ(tλ · o) = 〈λ, ψ̇〉= kψ = ψ(n · x).

It follows that n · x= tλ · o is hyperspecial, so x is hyperspecial. 2

Corollary 3.2. Suppose that π ∈ΠX is very cuspidal, as in § 2.6, and generic. Then x is
hyperspecial.

Proof. This is immediate from Lemmas 3.1 and 2.6. 2

3.2 Depth of generic characters
Given r > 0 and a hyperspecial vertex x ∈ A, we say that a character ξ of U has generic depth r
at x if ξ is trivial on U ∩Gx,r+ and the restriction of ξ to U ∩Gx,r has trivial stabilizer in the
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parahoric subgroup T̄0 of T̄ . This makes sense because T̄0 fixes x and preserves the Moy–Prasad
filtration subgroups at x.

Since x is hyperspecial, we have Uα ∩Gx,r+ 6= Uα ∩Gx,r for all α ∈ Φ. It follows that ξ has
generic depth r at x exactly when ξ is trivial on Uα ∩Gx,r+ and non-trivial on Uα ∩Gx,r, for
each α ∈Π. Moreover, characters of generic depth r are generic. Let Ξx,r ⊂ Ξ denote the set of
characters of U having generic depth r at x. It is clear that T̄0 preserves Ξx,r.

Lemma 3.3. The group T̄0 acts simply–transitively on Ξx,r.

Proof. We need only prove transitivity. Let ξ, ξ′ ∈ Ξx,r. We have ξ′ = tξ for some (unique) t ∈ T̄ .
We must show that t ∈ T̄0. We may assume that t ∈ Ā and it suffices to show that |α(t)|= 1 for
every α ∈Π. If |α(t)|> 1, then

Ad(t) · (Uα ∩Gx,r)⊂ Uα ∩Gx,r+ ⊂ ker ξ′ = ker tξ,

so Uα ∩Gx,r ⊂ ker ξ, contradicting the assumption. Interchanging ξ and ξ′, we see that |α(t)|< 1
is also impossible. Hence, |α(t)|= 1, as desired. 2

Lemma 3.4. Suppose that the representation π in (3) is generic and X (π) is discrete, so that x
is hyperspecial, by Lemma 3.1. Then for any ξ ∈ Ξ(π) there exists t ∈ T such that ξt ∈ Ξx,r.
Moreover, if t′ is another element of T with the property that ξt

′ ∈ Ξx,r, then t′ ∈ UtKx.

Proof. In fact, we show that we can choose t ∈A. Recall that N(x)⊂N is a set of representatives
for U\G/Kx. Since x is hyperspecial, the Iwasawa decomposition allows us to choose N(x)⊂A.
If ξ ∈ Ξ(π), then by Mackey theory again, we have

HomU (π, ξ)'
⊕

t∈N(x)

HomU∩Kx(κ, ξt).

Hence, there is a unique coset UtKx such that

HomU∩Kx(κ, ξt) 6= 0.

It is immediate that ξt is trivial on U ∩Gx,r+ . The argument in the proof of Lemma 3.1 shows
that ξt cannot be trivial on U ∩Gx,r. Hence, ξt has generic depth r at x, as claimed. 2

Corollary 3.5. Suppose that the representation π in (3) is generic and X (π) is discrete, so
that x is hyperspecial. Then every T -orbit in Ξ(π) meets Ξx,r in a single T0-orbit. The group
T̄0/j(T0) acts simply–transitively on Ξ(π)/T .

Proof. The argument in the proof of Lemma 3.3, using instead t ∈ T , shows that if two characters
in Ξx,r are T -conjugate, then they are T0-conjugate. Hence, we have an injection on orbit spaces:

Ξx,r/T0 ↪→ Ξ/T. (5)

Lemma 3.4 shows every T -orbit in Ξ(π) meets Ξx,r. Hence, every T -orbit in Ξ(π) meets Ξx,r in
a single T0-orbit. The last assertion follows from Lemma 3.3 itself. 2

4. Local expansions

In Lemma 3.1 we proved one direction of Theorem 1.1; in this section we prove the other direction.
We now assume that k has characteristic zero. Until we reach Corollary 4.8, we require only that
G be quasi-split over k. We use some results on Galois cohomology, whose proofs are deferred
to § 5.
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4.1 Regular nilpotent elements
Let g denote the Lie algebra of G. An element Y ∈ g is regular if its centralizer CG(Y ) has
smallest possible dimension, namely dim CG(Y ) = dim T. The regular nilpotent elements in g

form a single G-orbit and the centralizer CG(F ) of a regular nilpotent element F ∈ g is the
product of its unipotent radical and the center Z of G.

A reductive group is quasi-split over k exactly when its Lie algebra contains regular nilpotent
elements rational over k. Since G is quasi-split by assumption, the set Nreg of k-rational regular
nilpotent elements in g is non-empty.

Any two elements of Nreg are G-conjugate, but they need not be G-conjugate. The G-orbits
in Nreg are parametrized by the first Galois cohomology set H1(k, CG(F )), for any F ∈Nreg. By
Hilbert’s Theorem 90 and a simple exact sequence argument, the first Galois cohomology set
of a unipotent group is trivial. It follows that if F ∈Nreg, then H1(k, CG(F ))'H1(k, Z). This
means that any two elements in Nreg are conjugate by an element g ∈G for which γ(g)−1g ∈ Z
for all γ ∈Gal(k̄/k). It follows that the group Ḡ acts transitively on the elements of Nreg, and
the finite group Ḡ/j(G) acts simply–transitively on the set of G-orbits in Nreg.

Let v be the span of the negative simple root spaces for T in g and let v = v(k). An element
F ∈ v belongs to Nreg precisely when the coefficient of every root vector in F is non-zero. Since
X∗(T̄) has a basis dual to the roots in v, it follows that T̄ acts transitively on v ∩Nreg.

Lemma 4.1. Every G-orbit in Nreg meets v in a single T -orbit. This gives a bijection between
the set of G-orbits in Nreg and the set of T -orbits in v ∩Nreg.

Proof. Given F ∈Nreg, choose g ∈ Ḡ such that Ad(g)F ∈ v. By Lemma 5.1, we can write
g = t · j(h), with t ∈ T̄ and h ∈G. Then

Ad(h)F = Ad(t−1g)F ∈ v ∩Nreg.

Now suppose that F, F ′ belong to v ∩Nreg and that there is h ∈G such that Ad(h)F = F ′.
Choose t ∈ T̄ such that Ad(t)F ′ = F . Then t · j(h) is a k-rational point in the centralizer CḠ(F ).
Since j maps the unipotent radical of CG(F ) bijectively onto CḠ(F ), there is a k-rational
element ` ∈ CG(F ) such that t · j(h) = j(`). Hence, t ∈ T̄ ∩ j(G) = j(T ), so that F and F ′ are
T -conjugate. 2

4.2 Regular semi-simple orbital integrals
Let O′ be an arbitrary nilpotent G-orbit in g. By [Ran72], the G(k)-invariant measure on O′
(which is uniquely determined by our choices of the pairing 〈 , 〉 and additive character Λ) may
be uniquely extended to a distribution µO′ on g which vanishes on elements of C∞c (g) whose
support does not meet O′.

Let X be a regular semi-simple element in g. By [Har99, Theorem 5.11], there exists a lattice
L= L(X)⊂ g and complex constants cO′(X), indexed by the nilpotent G-orbits O′ ⊂ g, such
that the orbital integral µX over the G-orbit of X has the expansion

µX(f) =
∑
O′

cO′(X)µO′(f), (6)

for all f ∈ Cc(g/L), where the sum runs over all nilpotent G-orbits in g.
A result of Shelstad [She89] gives necessary and sufficient conditions for the non-vanishing of

cO(X), when O is a regular nilpotent G-orbit. (In fact, Shelstad computes an exact formula
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for cO(X), but we do not need this.) Kottwitz [Kot95] has recast Shelstad’s non-vanishing
criterion in terms of Kostant sections. In the next section we review Kostant sections, and
then give Kottwitz’ formulation of Shelstad’s non-vanishing result.

4.3 Kostant sections

Let O be a regular nilpotent G-orbit in g. Choose F ∈ O. A Kostant section for O (at F ) is
an affine subspace V ⊂ g obtained as follows [Kos77]. Choose, as we may, elements H, E ∈ g,
satisfying the sl2-relations

[H, E] = 2E, [H, F ] =−2F, [E, F ] =H,

and let

V = F + Cg (E).

(This is not the most general Kostant section, but it will suffice for our purposes.) Kostant
showed that every regular G-orbit O0 ⊂ g meets V in exactly one point. Since E and F are
k-rational, the Kostant section V is defined over k. Hence, if the regular G-orbit O0 is also
defined over k, the unique point in O0 ∩V must be k-rational. Thus, V determines a k-rational
point in every regular G-orbit which is defined over k.

Any two triples (F, H, E) and (F, H ′, E′), with the same F , are conjugate by the unipotent
radical of CG(F ) (see [Car85, 5.5.10]). Since unipotent groups have trivial Galois cohomology in
degree one, it follows that any two Kostant sections for O are G-conjugate.

4.4 A result of Kottwitz and Shelstad

Proposition 4.2. Let O be a regular nilpotent G-orbit in g, let V be a Kostant section for O
and let X ∈ g be regular semi-simple. Then the constant cO(X) is non-zero exactly when the
G-orbit of X meets V.

In [Kot95] Kottwitz provides a direct proof of Proposition 4.2, based on the fact that the
map G×V→ g, arising from the adjoint action, is a submersion. We offer a slightly different
proof, still based on the ‘submersion principle’. We begin by establishing some notation.

Choose F ∈ O with E, H as in § 4.3, such that V = F + Cg (E). There are unique Borel
subgroups B, B̄ in G, with Lie algebras b, b̄, such that E ∈ b, F ∈ b̄. Let U be the unipotent
radical of B.

Lemma 4.3. The map

B̄×U×V −→ g, (b̄, u, F +A) 7→Ad(b̄u)(F +A) (7)

is a submersion.

Proof. Kostant showed (see [Kot99, 2.4]) that the adjoint action gives a k-isomorphism

U×V ∼−−→ F + b.

Hence, it is enough to show that the map

% : B̄× (F + b)−→ g, (b̄, F +A) 7→Ad(b̄)(F +A) (8)

is a submersion.
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After conjugating, it is enough to show that the differential d% is surjective at (1, F +A), for
all A ∈ b, which is to say that

b + [F +A, b̄] = g, (9)
for all A ∈ b.

For integers i, let gi = {Z ∈ g | [Z, H] = iZ}. Since O is regular, we have gi = 0 for odd i. We
have

b =
⊕
i60

gi, b̄ =
⊕
i>0

gi, ū :=
⊕
i>0

gi

and
[F, gi] = gi+2 if i > 0.

To prove (9), it suffices to show that⊕
i6m

gi ⊆ b + [F +A, b̄]

for all m > 0. We prove this by induction on m. This is obvious for m ∈ {0, 1}. Let m > 2 and let

Y =
∑
i6m

Yi, Yi ∈ gi.

Choose
Z ∈ gm−2 ⊂ b̄

such that [F, Z] = Ym. Note that since A ∈ b, we have

[A, Z] ∈
⊕
i<m

gi.

Hence, we have

Y − [F +A, Z] ∈
⊕
i<m

gi.

By induction, we may assume that

Y − [F +A, Z] ∈ b + [F +A, b̄].

It follows that
Y ∈ b + [F +A, b̄],

as desired. 2

Corollary 4.4. The map G×V→ g given by sending (g, v) to Ad(g)v is a submersion.

Corollary 4.5. The set

U :=
⋃
b̄∈B̄
u∈U

Ad(b̄u)V(k)

is open in g.

Lemma 4.6. For all t ∈ k×, we have t2U = U .

Proof. Let γ be the one-parameter k-subgroup of G such that dγ(1) =−H. Then, for all t ∈ k̄×,
we have

Ad(γ(t))F = t−2F and Ad(γ(t))E = t2E.
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Thus, for all t ∈ k̄×, we have that Ad(γ(t)) normalizes Cg (E) and

Ad(γ(t))V = t2F + Cg (E) = t2(F + Cg (E)) = t2V.

Since γ is defined over k, the lemma now follows from the definition of U in Corollary 4.5. 2

Lemma 4.7. Suppose X ∈V(k) and that LE ⊂ Cg (E) is a lattice so that X ∈ F + LE . Then
for all n ∈ Z>0 the G-orbit of $2nX meets F + LE .

Proof. Let γ be the one-parameter k-subgroup of G such that dγ(1) =−H. Then

Ad(γ($n))F =$−2nF and Ad(γ($n))LE ⊂ LE .

Consequently, Ad(γ($n))($2nX) ∈ F + LE . 2

We are now ready to prove Proposition 4.2.

Proof. Fix a regular semi-simple element X ∈ g. Choose a lattice L= L(X) as at the start of
§ 4.4.

Suppose that (Ad(G)X) meets V. Without loss of generality, we assume X ∈V(k). Choose
a lattice LE ⊂ (Cg (E))(k) so that X ∈ F + LE . Let K be any compact open subgroup of G. The
set

F := {Ad(k)(F +W ) | k ∈K and W ∈ LE}
is compact and, from Corollary 4.4, open in g. Thus, there exists an N ∈ Z such that

F +$2NL= F .

Consequently, [$−2NF ] ∈ Cc(g/L). From Lemma 4.7 we conclude that

0 6= µ$2nX([F ]) = µX([$−2NF ]).

Thus, in the notation of (6)

0 6= µX([$−2NF ]) =
∑
O′

cO′(X)µO′([$−2NF ]).

Since O is the only nilpotent orbit that meets Ad(G)(V(k)), we conclude that cO(X) 6= 0.
Suppose that (Ad(G)X) does not meet V. Consider the function [$−2NF + L] which, from

the above paragraph and Lemma 4.6, belongs to

D := C∞c (Ad(G)V(k)) ∩ Cc(g/L).

For all f ∈D, we have

0 = µX(f) = cO(X)µO(f).

Since µO([$−2NF + L]) 6= 0, we conclude that cO(X) = 0. 2

Let ∆ be an index set for the regular nilpotent G-orbits, so that

Nreg =
∐
δ∈∆

Oδ

is the partition of Nreg into G-orbits. By Lemma 5.1, the group T̄ /j(T ) acts simply–transitively
on {Oδ | δ ∈∆}. If X ∈ g is regular semi-simple, we abbreviate cδ(X) = cOδ(X) for the coefficient
of µOδ in (6).
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Corollary 4.8. Suppose that the centralizer of X in G is an unramified anisotropic
torus S whose unique fixed point in B(G) is a hyperspecial point. Then T̄0 preserves the set
{Oδ | cδ(X) 6= 0}.

Proof. If cδ(X) 6= 0, then by Proposition 4.2 there is a Kostant section Vδ for Oδ such that X ∈
Vδ. In Proposition 5.2 (which requires S to be unramified), it follows that Ad(t)X ∈Ad(G)X,
for all t ∈ T̄0. Hence, Ad(t)Vδ is a Kostant section for Ad(t)Oδ which meets Ad(G)X. The result
follows from another application of Proposition 4.2. 2

4.5 Local character expansions

Given a generic character ξ of U , there is a regular nilpotent element Fξ ∈ v defined by the
condition

Λ(〈X, Fξ〉) = ξ(expX) (10)

for all X ∈ u. The assignment ξ 7→ Fξ is a T̄ -equivariant bijection between the set of generic
characters of U and the set of regular nilpotent elements in v.

For any irreducible admissible representation π of G, let Θπ be the character of π, viewed as
a function on the set Grss of regular semi-simple elements in G. There is a neighborhood V of
the identity in G such that on V ∩Grss we have the identity

Θπ(γ) =
∑
O′

cO′(π)µ̂O′(log γ), (11)

where, as in (6), O′ runs over the set of nilpotent G-orbits in g, µ̂O′ is the Fourier transform
of the orbital integral over O′, and the complex numbers cO′(π) are uniquely determined, given
our choices of Λ and 〈 , 〉. The following is a special case of the main result in [MW87].

Proposition 4.9. We have ξ ∈ Ξ(π) if and only if cO(π) 6= 0, where O is the G-orbit of Fξ.

4.6 Regular very cuspidal characters

Let π ∈ΠX be a very cuspidal representation, as in § 2.6. Assume now that X is regular, so that
CG(X) is a torus, which we now denote by S. From [AD04, 6.3.1] we have the Murnaghan–
Kirillov formula, valid for regular semi-simple γ in an explicit neighborhood of the identity of G:

Θπ(γ) = deg(π)µ̂X(log γ). (12)

Inserting (6) into (12), comparing with (11) and invoking the uniqueness of the coefficients, we
find that

cO′(π) = deg(π)cO′(X) (13)

for each nilpotent G-orbit O′ in g.

Since π is generic, we may further assume that x is hyperspecial (see Corollary 3.2). Let ξ be
a generic character of U , let Oξ be the G-orbit of Fξ, and choose a Kostant section Vξ for Oξ.
Combining Proposition 4.9, equation (13) and Proposition 4.2, we have the following proposition.

Proposition 4.10. Assume that π ∈ΠX is very cuspidal, where CG(X) = S is a torus such
that B(S) is a hyperspecial point in B(G). Then for any generic character ξ of U , we have
HomU (π, ξ) 6= 0 if and only if the G-orbit of X meets Vξ.
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4.7 Completion of the proof of Theorem 1.1
We must show that if π ∈ΠX is very cuspidal and the centralizer S = CG(X) is an unramified
minisotropic torus whose unique fixed point x in B(G) is hyperspecial, then π is generic.

Let ξ ∈ Ξ be any generic character with corresponding regular nilpotent element Fξ ∈ v and
choose a Kostant section Vξ for the G-orbit of Fξ. Since X is regular, there is g ∈G such that

Ad(g)X ∈Vξ. (14)

Since the G-orbit of X is defined over k, the point Ad(g)X is k-rational, so its centralizer gS
is defined over k. Since S is abelian, it follows that the map Ad(g) : S→ gS is a k-isomorphism.
Since X and Ad(g)X have the same set of root values, the element Ad(g)X is also good, in the
sense of § 2.6. Moreover, gS is also minisotropic and unramified. Hence, we have another very
cuspidal representation

gπ := π(Ad(g)X)

of G. For regular semi-simple γ near the identity in G we have the expansion

Θgπ(γ) = deg(gπ) · µ̂Ad(g)X(log γ).

By (14) and Proposition 4.10, we have

HomU (gπ, ξ) 6= 0. (15)

By the other direction of Theorem 1.1, which was already proved in Lemma 3.1, the unique
fixed point y of gS in B(G) is hyperspecial. By Lemma 5.5, we may adjust g in its coset gS so
that j(g) ∈ Ḡ. By uniqueness of the fixed point, we have y = j(g) · x.

Moreover, Ad(g)−1Fξ is k-rational, so by Lemma 4.1 we may choose h ∈G such that the
regular nilpotent element

F ′ := Ad(hg−1)Fξ
lies in v. Let ξ′ ∈ Ξ be the generic character such that F ′ = Fξ′ , as in (10). Then Ad(h)X is
contained in the Kostant section V′ = Ad(hg−1)Vξ for the G-orbit of F ′. From Proposition 4.10,
we now have

HomU (π, ξ′) 6= 0,

showing that π is generic. This completes the proof of Theorem 1.1.

5. Some Galois cohomology

In this section we prove those results used above whose proofs were postponed. Although not
phrased as such, these results concern the Galois cohomology of the center Z of G and the map
H1(k, Z)→H1(k, L) for various k-subgroups of L⊂G containing Z.

Fix an algebraic closure k̄ of k and let K be the maximal unramified extension of k in k̄. Let
Γ = Gal(k̄/k) be the absolute Galois group of k and let I = Gal(k̄/K) be the inertia subgroup
of Γ. If L is an algebraic k-group (identified with its set of k̄-rational points) and γ ∈ Γ, then γL
denotes the automorphism of L arising from the given k-structure. Given a containment L⊆M
of k-groups, we let

ι(L,M) :H1(k, L)→H1(k,M)

denote the map induced on (non-abelian) Galois cohomology sets by the inclusion L ↪→M, and
we let ker1(L,M) denote the kernel of ι(L,M).
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5.1 The arithmetic of the adjoint morphism for unramified groups
Recall that our connected reductive k-group G is quasi-split over k and split over K. Fix a Borel
subgroup B of G such that B is defined over k and let T be a maximal k-torus in B.

The adjoint morphism j (introduced in § 3) is generally not surjective on rational points.
Given Z⊂ L⊂G as above, the group

∆(L) := L̄/j(L)

fits into the exact sequence of pointed sets:

1−→∆(L) δL−−−→H1(k, Z)
ι(Z,L)−−−−−→H1(k, L)

jL−−→H1(k, L̄),

where δL is the coboundary map and jL is induced by the adjoint morphism j : L→ L̄. Note
that the inclusion L̄ ↪→ Ḡ induces an injection ∆(L) ↪→∆(G).

Lemma 5.1. We have Ḡ= T̄ · j(G). Hence, the inclusion T̄ ↪→ Ḡ induces an isomorphism

∆(T )'∆(G).

Proof. If we replace G by the simply connected cover of its derived subgroup, then both T̄ and
Ḡ are unchanged while j(G) can only become smaller. Hence, we may as well assume that G is
semi-simple and simply connected. Then H1(k,G) = 1 by Steinberg’s theorem [She65], so

∆(G)'H1(k, Z).

However, we also have H1(k,T) = 1, as is well known (cf. [Pra89, Lemma 2.0]), so that

∆(T )'H1(k, Z),

which proves the lemma. 2

The group ∆(G)'∆(T ) factors into a geometric part and an arithmetic part, as follows. If
we fix a uniformizer $ ∈ k, then since T splits over K, we can identify X with a subgroup of
T(K), via evaluation at $, and we have

T(K) =X ×T(K)0, (16)

where

T(K)0 = {t ∈T(K) | valK(χ(t)) = 0 ∀χ ∈X∗(T)}
and valK is the extension of the valuation val to K. The two factors in (16) are stable under the
Frobenius F and T0 = T(K)F

0 , so we have

T =Xϑ × T0. (17)

Let X̄ =X∗(T̄). Then we have a similar decomposition

T̄ = X̄ϑ × T̄0. (18)

It follows that

∆(T ) = ∆(X)×∆(T0), (19)

where ∆(X) = X̄ϑ/j(Xϑ) is the geometric part and ∆(T0) = T̄0/j(T0) is the arithmetic part.
The following result was used in the proof of Corollary 4.8.

Proposition 5.2. Let S be a minisotropic unramified maximal k-torus in G. Then ∆(S) =
∆(T0).
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Proof. The following proof was suggested by the referee; it is much shorter than our original
proof. Extend the valuation val to k̄×. For any diagonalizable k-group D, define

D0 = {d ∈D(k̄) | val(χ(d)) = 0 ∀χ ∈X∗(D)},

and set D0 = D0 ∩D(k). Let S be any maximal k-torus in G with image S̄ in Ḡ under the
adjoint morphism j : G→ Ḡ. We first claim that j restricts to a surjection S0→ S̄0. For this we
may, upon replacing G by its derived subgroup, assume that G is semi-simple. If s̄ ∈ S̄0 has lift
s ∈ S, then the map X∗(S)→Q+ given by λ 7→ val(λ(s)) vanishes on the subgroup j∗X∗(S̄) of
finite index in X∗(S). Since Q+ has no finite subgroups, the claim follows. We therefore have an
exact sequence

1−→ Z0 −→ S0 −→ S̄0 −→ 1.

Since H1(k, S0) = 1 by the profinite version of Lang’s theorem, the coboundary δS0 : S̄0→
H1(k, Z0) is surjective. Hence, the image of the composition S̄0→ S̄/j(S)→H1(k, Z) coincides
with the image of H1(k, Z0) in H1(k, Z). It follows that S̄0/j(S0) is independent of S. We
therefore have ∆(S0) = ∆(T0) for any maximal k-torus S in G. Now, if S is minisotropic, we have
∆(S0) = ∆(S), so the result is proved. 2

5.2 Unramified cohomology

This section contains a technical calculation in Galois cohomology that is used in § 7. More
background can be found in [DR09, ch. 2]. If L is any connected k-group, then the natural map

H1(K/k, L(K))−→H1(k, L)

is a bijection. The action of Gal(K/k) on L(K) is completely determined by the endomorphism

F = FrobL

of L. Likewise, a cocycle c : Gal(K/k)→ L(K) is determined by the element

uc = c(Frob),

which belongs to the set

Z1(F, L(K)) := {u ∈ L(K) | u · F(u) · · · Fn−1(u) = 1, for some n > 1}.

Thus, an unramified cocycle is identified with an element in Z1(F, L(K)), and we identify
H1(K/k, L(K)) with the set H1(F, L(K)) of L(K)-orbits in Z1(F, L(K)) under the action:
` ∗ u= `u F(`)−1. Let [u]L ∈H1(F, L(K)) denote the class of an element u ∈ Z1(F, L(K)).

Given any unramified maximal torus S in G, we use unramified cohomology to study the
diagram

1 // ∆(G)
δG // H1(k, Z) // H1(k,G)

jG // H1(k, Ḡ)

1 // ∆(S)
δS // H1(k, Z) // H1(k, S)

jS //

OO

H1(k, S̄)

(20)

where the unlabeled maps are induced by inclusion.
Let X =X∗(T) be the lattice of algebraic one-parameter subgroups of T and let ϑ ∈Aut(X)

be the automorphism of X induced by the Frobenius endomorphism F. Let N be the normalizer
of T in G. For w ∈N/T, let Tw be the unramified twist of T. Denoting the twisted action
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of γ ∈ Γ by γTw , we have

γTw =

{
γT if γ ∈ I
Fw := Ad(w) ◦ F if γ = Frob.

Note that Fw acts on X via wϑ. We have the explicit isomorphism

[X/(1− wϑ)X]tor
∼−−→H1(Fw,T(K))'H1(k,Tw), (21)

which sends the class of λ ∈X to the unramified class [λ($)]Tw ∈H1(Fw,T(K)).
Let p0 ∈G(K) be an element such that p−1

0 F(p0) ∈N(K) is a representative of w. Then
S := p0Tp−1

0 is an unramified maximal k-torus in G, and the map Ad(p0) : Tw→ S is a
k-isomorphism. Hence, we have the explicit isomorphism

[X/(1− wϑ)X]tor −→H1(F, S(K))'H1(k, S), (22)

which sends the class of λ ∈X to the unramified class [p0λ($)p−1
0 ]S ∈H1(F, S(K)).

Let X̄ =X∗(T̄) and again write ϑ for the automorphism of X̄ induced by the Frobenius F.
We have similar isomorphisms

[X̄/(1− wϑ)X̄]tor
∼−−→H1(k, T̄w) ∼−−→H1(k, S̄). (23)

Our basic diagram (20) becomes

1 // ∆(T )
δT // H1(k, Z)

ι(Z,G) // H1(k,G)
jG // H1(k, Ḡ)

1 // ∆(Tw)
δTw // H1(k, Z)

ι(Z,Tw) // H1(k,Tw)
jw //

rw

OO

H1(k, T̄w)

(24)

where rw is the composition

rw :H1(k,Tw)
Ad(p0)−−−−−→H1(k, S)

ι(S,G)−−−−−→H1(k,G)

and jw = jTw is induced by the restriction of j to T.
The group ∆(T ) parametrizes generic characters, and the group H1(k,Tw) parametrizes

representations in an L-packet of very cuspidal representations (see [Ree08]). In § 7 we show that
the map

ιw : ∆(T )→H1(k,Tw),
given by the composition

ιw : ∆(T ) δT−−−→H1(k, Z)
ι(Z,Tw)−−−−−−→H1(k,Tw) (25)

determines which generic characters appear in which representation in the L-packet. Our goal
here is to calculate the map ιw explicitly. Diagram (24) shows that

ιw(∆(T )) = ι(Z,Tw)(ker1(Z,G)) = ker rw ∩ ker jw.

Lemma 5.3. Let t ∈T be such that j(t) is k-rational. Then t · w(t)−1 ∈ Z1(Fw,T(K)) and

ιw([t]∆) = [t · w(t)−1]Tw ∈H1(Fw,T(K)).

Proof. Recall that [t]∆ denotes the class of j(t) in ∆(T ) and δT([t]∆) ∈H1(k, Z) is the class of
the cocycle γ 7→ zγ = t−1 · γT(t) ∈ Z, for γ ∈ Γ. In Tw, the cocycle zγ is cohomologous to the
cocycle

z′γ := t · zγ · γTw(t)−1 = γT(t) · γTw(t)−1.
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Note that z′σ = 1 for σ ∈ I and

z′Frob = F(t) · Fw(t)−1.

Since t−1 · F(t) ∈ Z which is centralized by w, we have

t−1 · F(t) = w(t−1 · F(t)) = w(t)−1 · Fw(t).

It follows that

z′Frob = t · w(t)−1.

Since z′ is trivial on I, it is an unramified cocycle, so the lemma is proved. 2

We now obtain a more explicit formula for ιw using the factorization ∆(T ) = ∆(X)×∆(T0)
from (19). Let X◦ ⊂X be the lattice of co-roots.

Lemma 5.4. Assume that Tw is minisotropic. Then ker ιw = ∆(T0) and on ∆(X) we have the
formula

ιw[µ($)]∆ = [λ($)]Tw ∈H1(Fw,T(K)),

where µ ∈ X̄ϑ and λ is the unique element of X◦ such that jλ= (1− w)µ.

Proof. Note that the formula makes sense because (1− w)X̄ ⊂ jX◦ and j is injective on X◦.
Since jX has finite index in X̄, there is an integer m > 1 and η ∈X such that

mµ= jη. (26)

Let $1/m ∈ k̄ be a root of xm =$. Set

t := η($1/m).

Then j(t) = µ($), and

t · w(t)−1 = (1− w)η($1/m).

Now

j(1− w)η = (1− w)jη =m(1− w)µ=mjλ.

Since j is injective on X◦, we have

(1− w)η =mλ, (27)

so that

t · w(t)−1 = λ($).

The formula for ιw on ∆(X) now follows from Lemma 5.3. This formula implies that ιw is
injective on ∆(X). Indeed, if [λ($)]Tw = 1, then there is ν ∈X such that

λ= (1− wϑ)ν. (28)

Applying j to both sides and remembering that ϑµ= µ, we obtain

(1− wϑ)µ= (1− w)µ= jλ= (1− wϑ)jν.

Since Tw is minisotropic, the map 1− wϑ is injective on X̄, so we have

µ= jν.

In (26) we can then take η = ν and m= 1, so that (27) reads as

(1− w)ν = λ. (29)
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Comparing (28) and (29), we see that ν ∈Xϑ, so that µ ∈ j(Xϑ), proving the injectivity of ιw
on ∆(X).

Finally, it follows from Proposition 5.2 that ιw vanishes on ∆(T0). Hence, ker ιw = ∆(T0) and
the proof of Lemma 5.4 is complete. 2

5.3 Hyperspecial points and stable conjugacy
In this section we prove Lemma 5.5, which was used in § 4.7

Let X ∈ g be regular semi-simple, let O = Ad(G)X, and let S = CG(X). Any k-rational
point Y ∈O(k) is of the form Y = Ad(g)X for some g ∈G such that sγ := g−1γ(g) ∈ S for all
γ ∈ Γ = Gal(k̄/k). The mapping γ 7→ sγ is a Galois cocycle whose class

inv(X, Y ) := [sγ ] ∈H1(k, S)

is independent of the choice of g. It is clear that [sγ ] lies in the kernel ker1(S,G) of the map
H1(k, S)→H1(k,G) induced by the inclusion S ↪→G. Two rational points Y, Y ′ ∈O(k) are
G-conjugate if and only if inv(X, Y ) = inv(X, Y ′), and we have

ker1(S,G) = {inv(X, Y ) | Y ∈O(k)}.

Let Y = Ad(g)X ∈O(k) as above, and let S1 = Ad(g)S = CG(Y ). Since S is abelian, the
isomorphism Ad(g) : S→ S1 is defined over k.

Assume now that S is minisotropic and unramified over k and therefore has a unique fixed-
point x in B(G). Then S1 is also minisotropic unramified over k and has a unique fixed-point
y ∈ B(G).

Lemma 5.5. In the situation above, assume that x is hyperspecial in B(G). Then the point y
is also hyperspecial in B(G) if and only if inv(X, Y ) belongs to the image of the map H1(k, Z)→
H1(k, S) induced by the inclusion Z ↪→ S.

Proof. We have inv(X, Y ) ∈ im[H1(k, Z)→H1(k, S)] exactly when there exists g′ ∈G such that
Y = Ad(g′)X and j(g′) is k-rational. In this case we have y = j(g′) · x, by uniqueness of fixed
points. It follows that y is hyperspecial.

Assume now that y is hyperspecial in B(G). Since Ḡ acts transitively on hyperspecial
points in B(G), we have y = j(h) · x for some h ∈G with the property that j(h) ∈ Ḡ. Set
zγ := h−1γ(h) ∈ Z, for γ ∈ Γ. The tori S1 = gS and S2 = hS both fix the vertex y and are
isomorphic over k, via the map Ad(hg−1) : S1→ S2.

Set Gy := G(K)y/G(K)y,0+ and Ḡy := Ḡ(K)y/Ḡ(K)y,0+ . These are connected reductive
groups over the residue field f. Since y is hyperspecial, we may identify

(Ḡ)y = Gy/Z(Gy),

where Z(Gy) is the center of Gy. Indeed, G(K)y projects naturally onto both groups and the
kernel of both projections is G(K)+

y · (Z ∩G(K)y).
For i= 1, 2, the intersections Si ∩G(K)y project to maximal tori Si in Gy. In turn, each Si

projects to a maximal torus S̄i in Gy/Z(Gy). Since Ḡ is K-split and y is hyperspecial in B(G),
it follows that Ḡ(K)y is the full stabilizer of y in Ḡ(K). The element Ad(hg−1) ∈ Ḡ(K)y thus
projects to an element d ∈ Gy/Z(Gy), and we have dS̄1 = S̄2. By Lemma 5.6 below, the tori S1

and S2 are Gx(f)-conjugate. From [DeB06] we conclude that S1 and S2 are Gx-conjugate. Choose
` ∈Gx such that `S1 = S2.
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The element n := h−1`g belongs to the normalizer N of S in G. For any γ ∈ Γ, we have

h−1γ(h) = zγ ∈ Z, g−1γ(g) = sγ ∈ S, γ(`) = `.

It follows that
γ(n) = n · z−1

γ · sγ .
Since z−1

γ · sγ ∈ S, the image of n in N/S is k-rational.
Since S is unramified, we have H1(k̄/K, S) = 1, which implies that

[N/S](K) = N(K)/S(K).

Since x is hyperspecial, we can apply [DR09, Lemma 6.2.3], to conclude that

[N/S](k) = N(k)/S(k).

Hence, there exists s ∈ S such that ns is k-rational. For all γ ∈ Γ, we then have

ns= γ(ns) = γ(n)γ(s) = n · z−1
γ · sγ · γ(s)

so that s−1sγγ(s) = zγ ∈ Z. This means that [sγ ] = [zγ ] ∈ im[H1(k, Z)→H1(k, S)], as claimed. 2

In the proof above, we used the following result.

Lemma 5.6. Let G be a connected reductive group over the finite field f, with center Z and
adjoint group Ḡ = G/Z. Let F be the Frobenius endomorphism of G and Ḡ. Suppose that we
have two F -stable maximal tori S1, S2 in G, projecting to maximal tori S̄1, S̄2 in Ḡ. Suppose also
that there is d ∈ Ḡ satisfying

(i) dS̄1 = S̄2 and (ii) Ad(d) ◦ F = F ◦Ad(d) on S̄1.

Then S1 and S2 are G(f)-conjugate.

Condition (ii) means that d−1F (d) ∈ S̄1. By Lang’s theorem applied to S̄1, there is s1 ∈ S̄1

such that S̄1 and S̄2 are conjugate by the element d1 := ds1 ∈ Ḡ(f). Let d2 be a lift of d1 in G and
let z := d−1

2 F (d2) ∈ Z. Since Z⊂ S1, there is t ∈ S1 such that z = t · F (t)−1. Then the element
d3 := d2t belongs to G(f) and conjugates S1 to S2, proving the lemma. 2

6. The generic characters in a very cuspidal representation

We next consider question (ii) in the introduction, concerning which generic characters are
afforded by our generic very cuspidal representations π ∈ΠX .

Given two regular nilpotent elements F, F ′ in g and g ∈G such that Ad(g)F = F ′, we have
a cocycle zγ = g−1γ(g) ∈ Z whose class

inv(F, F ′) := [zγ ] ∈ ker1(Z,G)

vanishes if and only if F and F ′ are G-conjugate. By Lemma 4.1, we know that if F, F ′ belong
to v, then we may take g ∈T.

Lemma 6.1. Let π ∈ΠX be a generic very cuspidal representation such that CG(X) is a
minisotropic torus S, and let ξ ∈ Ξ(π). Then if ξ′ ∈ Ξ is another generic character of U , we
have ξ′ ∈ Ξ(π) if and only if inv(Fξ, Fξ′) ∈ ker1(Z, S).

Proof. We have Fξ′ = Ad(t)Fξ for some t ∈T, with cocycle zγ = t−1γ(t) ∈ Z. Let Vξ be a Kostant
section at Fξ for the G-orbit of Fξ. Then Vξ′ := Ad(t)Vξ is a Kostant section at Fξ′ for the G-
orbit of Fξ′ . By Proposition 4.10, we may assume that X ∈Vξ. Moreover, we have Ad(h)X ∈ Vξ′
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for some h ∈G. The elements X and Ad(t−1h)X both belong to Vξ, hence they must coincide.
It follows that h= ts for some s ∈ S. We have

s−1zγγ(s) = s−1 · t−1γ(t) · γ(s) = h−1 · γ(h) = 1.

This shows that [zγ ] becomes trivial in H1(k, S), as claimed.
The argument is reversible: if there exists s ∈ S such that zγ = s · γ(s)−1, then the element

h= ts belongs to G and Ad(h)X = Ad(t)X ∈Vξ′ , so that ξ′ ∈ Ξ(π), by Proposition 4.10. 2

6.1 Example: SL2

Assume p 6= 2. Let G = SL2, with Ḡ = PGL2. Here Z = {±1}, so

H1(k, Z) = k×/k×2.

Let k2 be the unramified quadratic extension of k with norm mapping N : k×2 → k×. Set
k1

2 = kerN . Take an unramified torus S⊂G with S ' k1
2. We have S̄ = k×2 /k

× and

j(S) = k1
2/± 1' k1

2 · k×/k× ⊂ S̄.

Hence,
∆(S)' k×2 /k

1
2 · k×,

which is isomorphic, via N , to the group N(k×2 )/k×2. It follows that ∆(S) is isomorphic to an
index two subgroup of k×/k×2, so that |∆(S)|= 2.

Let T, U be the diagonal and upper triangular matrices (with ones on the diagonal) in G and
let α be the root of T in u. We may identify T = k× = T̄ , such that j : T → T̄ is the squaring
map. Hence, ∆(X) = Z/2Z and

|∆(T0)|= 1
2 [k× : k×2] = |∆(S)|.

Let A be the apartment of T and let o, y ∈ A be the hyperspecial vertices whose stabilizers
are

Go = SL2(o), Gy =
[
1 0
0 $

]
SL2(o)

[
1 0
0 $

]−1

.

Taking o as the origin, we view α as a linear functional on A with

α(o) = 0, α(y) = 1.

For F =
[

0 0
f 0

]
with f ∈ k×, the corresponding generic character ξf : U → C× is given by

ψf

([
1 t
0 1

])
= Λ(ft).

A Kostant section at F for the G-orbit of F is given by

Vf =
{[

0 t
f 0

] ∣∣∣∣ t ∈ k̄} .
The T -orbits of such F are represented by

f ∈ F := {1, ε, $, ε$},

where ε is a fixed non-square unit in o.
For x ∈ {o, y} and integers r > 0, we have

U ∩Gx,r =
[
1 pr−α(x)

0 1

]
.
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Since Λ has conductor p, it follows that ξf has generic depth r at x if and only if

val(f) + r = α(x). (30)

Each x ∈ {o, y} is the fixed-point set in B(G) of the group Sx of k-rational points in an unramified
anisotropic torus Sx. These groups are given by

So =
[
a b
bε a

]
, Sy =

[
1 0
0 $

]
So

[
1 0
0 $

]−1

.

Very cuspidal representations πx = π(Xx) of G arise from elements Xx ∈ g of the form

Xo = u$−r
[
0 1
ε 0

]
, Xy = u$−r

[
0 $−1

ε$ 0

]
= Ad

([
1 0
0 $

])
Xo,

where u is a unit in o. One can check that there exists g =
[
a b
c d

]
∈G such that Ad(g)Xx ∈Vf

exactly when the equations {
d2ε− c2 = u−1f$r for x= o

(d$)2 − c2ε= u−1f$r+1 for x= y

have a solution (c, d) in k × k. The left-hand side of these equations is a norm from the unramified
quadratic extension of k. It follows that

Ad(G)Xx ∩Vf 6= ∅⇔ r + val(f)≡ α(x) mod 2. (31)

Hence, from Proposition 4.10 we have

Ξ(πx) = {ξf | r + val(f)≡ α(x) mod 2}. (32)

From (30) we see that Ξ(πx) is the union of the two T -orbits of characters having generic depth r
at x and these two orbits are interchanged by the projective matrix[

ε 0
0 1

]
∈ T̄0.

7. Generic representations in L-packets

Let W be the Weil group of k and let Ĝ be the dual group of G. Let ϑ̂ ∈Aut(Ĝ) be the
automorphism of Ĝ arising from the action of the Frobenius F on the root datum of G.
In [DR09, Ree08] we considered homomorphisms

ϕ :W −→ LG= 〈ϑ̂〉n Ĝ

with the properties:

– the map ϕ is trivial on I(r+1) and non-trivial on I(r), for some integer r > 0, where I(r)

is the upper-numbering filtration on I (see [Ser79, ch. 4]);

– the centralizer of ϕ(I(r)) in Ĝ is a maximal torus T̂ of Ĝ;

– ϕ(Frob) ∈ ϑ̂n Ĝ, and the centralizer of ϕ(W) in Ĝ is finite, modulo the center Z(Ĝ) of Ĝ.

Let Cϕ be the component group of the centralizer of the image of ϕ in Ĝ. The element ϕ(Frob)
is of the form

ϕ(Frob) = ϑ̂n ŵ,
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where ŵ ∈ Ĝ normalizes T̂ and corresponds via duality to an element w ∈N/T. We have

Cϕ = T̂ ϑ̂ŵ/Z(Ĝ)◦.

Hence, Cϕ is abelian, and the set of irreducible characters of Cϕ may be identified with the torsion
subgroup of X/(1− wϑ)X. For each class ρ ∈ [X/(1− wϑ)X]tor we have an explicitly constructed
isomorphism class of supercuspidal representations π(ϕ, ρ) which have depth zero [DR09] or are
very cuspidal [Ree08].

7.1 Generic representations in L-packets
For a general ρ ∈ Irr(Cϕ), the class π(ϕ, ρ) consists of representations of the group of k-points
of a certain pure inner form of G. This pure inner form is k-isomorphic to G itself exactly when
rw(ρ) = 1 ∈H1(k,G), where rw is the map in (24). Let

Π(ϕ, 1) = {π(ϕ, ρ) | ρ ∈ ker rw}.

For ρ ∈ ker rw, the class π(ϕ, ρ) contains a representation induced from a hyperspecial
parahoric subgroup of G if and only if ρ ∈ ker jw (see [DR09, 6.2.1], which applies also to
the positive-depth case). From Theorem 1.1 it follows that π(ϕ, ρ) is generic if and only if
ρ ∈ ker rw ∩ ker jw. Lemma 5.4 shows that the map ιw restricts to an isomorphism

ιw : ∆(X) ∼−−→ ker rw ∩ ker jw.

In particular, we have the following corollary.

Corollary 7.1. The set Π(ϕ, 1) contains exactly |∆(X)|= [X̄ϑ : j(Xϑ)] generic representa-
tions.

This was proved in the depth-zero case in [DR09].

7.2 Generic characters and the parametrization of L-packets
We now consider the generic characters appearing in a representation belonging to the class
π(ϕ, ρ), for ρ ∈ ker rw ∩ ker jw.

Proposition 7.2. Let µ ∈ X̄ϑ have image ρ= ιw([µ($)]∆) ∈ ker rw ∩ ker jw. Then under the
conjugation action of Ḡ on isomorphism classes of representations of G, we have

Ad(µ($)) · π(ϕ, 1) = π(ϕ, ρ).

On the level of generic characters, this gives the following immediate corollary.

Corollary 7.3. We have

Ad(µ($)) · Ξ(π(ϕ, 1)) = Ξ(π(ϕ, ρ)).

This can be stated more cohomologically, as follows. Via the coboundary δT and Lemma 5.1,
we identify ker1(Z,G) with the union of the cosets of j(T ) in T̄ . Let ker1

ρ(Z,G) be the fiber
over ρ under the map H1(k, Z)→H1(k,Tw) induced by inclusion. Corollary 7.3 asserts that if
ξ is any generic character in Ξ(π(ϕ, 1)), then in the free ker1(Z,G)-orbit through ξ we have

ker1
ρ(Z,G) · ξ = Ξ(π(ϕ, ρ)).

To prove Proposition 7.2, we assume, as we may, that Ḡ is simple. Let o be a hyperspecial
vertex in A such that some representation in the class π(ϕ, 1) is induced from Ko. Let C be
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a ϑ-stable alcove in A(K) containing o in its closure. Let M (for ‘minuscule weight’) be the
set of ν ∈ X̄ such that tν · o ∈ C̄. Then ϑM=M and Mϑ contains a set of representatives for
X̄ϑ/j(Xϑ). We may assume that µ ∈Mϑ. Then tµ · o is a hyperspecial vertex in C̄ϑ ⊂A.

Recall from Lemma 5.4 that ρ is the class of λ ∈X◦, where jλ= (1− w)µ. Then the unique
fixed point of tλwϑ in A(K) is xλ = tµ · o ∈ C̄. According to the recipe of [DR09, ch. 4] (using
the notation therein) we have

wλ = tλw, yλ = 1, Fλ = F.

The element

pλ := Ad(µ($))p0 ∈G(K)xλ
has the property that p−1

λ F (pλ) normalizes T(K) and is a lift of tλw. Let χϕ be the character
of Tw given by the abelian Langlands correspondence [DR09, Lan97, Ree08]. As in § 2.6, the
character χϕ is determined by an element Xϕ in the Lie algebra of Tw.

If we set

X0 = Ad(p0)Xϕ, Xλ = Ad(pλ)Xϕ,

then the class π(ϕ, 1) contains π(X0) and the class π(ϕ, ρ) contains π(Xλ). Since Ad(µ($))X0 =
Xλ, this implies Proposition 7.2. 2
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