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On some generic very cuspidal representations

Stephen DeBacker and Mark Reeder

ABSTRACT

Let G be a reductive p-adic group. Given a compact-mod-center maximal torus S C G
and sufficiently regular character x of S, one can define, following Adler, Yu and others, a
supercuspidal representation 7(S, x) of G. For S unramified, we determine when 7 (S, x)
is generic, and which generic characters it contains.
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1. Introduction

Let k£ be a finite extension of the p-adic numbers @, for some prime p. A connected reductive
k-group G is called unramified if it is quasi-split over k and split over an unramified extension
of k. We let G denote the group of k-rational point of G; this convention applies to all algebraic
k-groups.

Let G be an unramified k-group with center Z. Given an unramified maximal k-torus S C G
such that S/Z is anisotropic, and a sufficiently regular character x : S — C*, one can construct
(cf. [Ad198, Car84, Ger75, How77, YuOl]) an irreducible supercuspidal representation 7 (.S, x) of
(; these are examples of very cuspidal representations and are the representations we consider
in this paper. We have

(S, x) = indg;(z k(S x),

(smooth compact induction) where x = z(S) is the unique [Tit79, §3.6.1] fixed point of S in the
reduced Bruhat—Tits building of GG, K, is an open subgroup of G that fixes x and has compact
image in G/Z, and (S, x) is a finite-dimensional representation of K, constructed from the pair

(S, x)-
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Let B C G be a Borel subgroup defined over k. Fix a maximal k-torus T C B, and let U be
the unipotent radical of B. A character 1 : U — C* is called generic if the stabilizer of v in T
is exactly the center Z. An irreducible admissible representation 7 of G is called generic if there
exists a generic character ¥ of U such that Homy (7, 1) is non-zero (in which case, we say 1
occurs in 7(S, x)). For any representation 7, one may ask the following questions.

(i) Is m generic?

(ii) If 7 is generic, which generic characters occur in 7?7

The purpose of this paper is to answer both questions for the very cuspidal representation
(S, x). The answer to question (i) is as follows.

THEOREM 1.1. The very cuspidal representation m(S,x) is generic if and only if x(S) is a
hyperspecial vertex in the reduced Bruhat—Tits building of G.

The second question is a bit more subtle. We now assume (as we may) that =z =xz(S5) is a
hyperspecial vertex in the apartment of 7' in the reduced building of G. Let r (a positive integer)
be the depth of x, and let

GZ‘J‘? Ux,r = Gm,r nu, T,

be the Moy—Prasad filtration subgroups, with similar groups for »*. We say that a character
Y of U has generic depth r at x if the restriction of ¢ to U, .+ is trivial, giving a character v,
of Uy, /Uy r+, and if the stabilizer in Ty of 1, is contained in Z - Tjy+. Here, Tj is the parahoric
subgroup of T and Tj+ is the pro-unipotent radical of Ty. Since z is hyperspecial, a character of
generic depth r at x is indeed generic, as defined previously. One answer to question (ii) is as
follows.

THEOREM 1.2. Let w=m7(S,x) as above have depth r (see §2.5). Assume that z(S) is
hyperspecial. Then Homy; (7, 1) # 0 if and only if the T-orbit of ¢ contains a character of generic
depth r at z(S).

To give a quantitative answer to question (ii), let H'(k, L) denote the Galois cohomology of
an algebraic k-group L, and given an inclusion of k-groups L C M, let

ker! (L, M) := ker[H'(k, L) — H'(k, M)]
denote the kernel of the map on cohomology induced by the inclusion. The group kerl(Z, QG)
acts simply—transitively on T-orbits of generic characters of U.
Let 7(S, x) be a very cuspidal representation of the type considered in this paper and assume

that x(9) is hyperspecial.

THEOREM 1.3. The subgroup ker!(Z, S) of ker' (Z, G) acts simply-transitively on the T-orbits
of generic characters which occur in 7(S, x).

The final section of the paper relates this result to the L-packets of supercuspidal
representation constructed recently in [DR09, Ree08]. Roughly speaking, we show that
Theorem 1.3 is compatible with the internal parametrization of the generic part of our L-packets.
See § 7 for more details.
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2. Some general results

We begin with minimal hypotheses that will be strengthened as we proceed. Let k be a locally
compact field, complete with respect to a discrete valuation val : k* — Z. Denote by p the prime
ideal in the ring of integers o of k.

Let G = G(k) be the group of k-rational points of a connected reductive k-group G. Let
B(G) denote the reduced Bruhat-Tits building of G. For x € B(G) and s € Ry, let G, s and
G, s+ denote the Moy—Prasad filtration subgroups of G, as defined in [MP94].

2.1 A structure result

Given two points z, y € B(G), let [z, y] denote the geodesic in B(G) from x to y. There exists an
apartment A in B(G) containing both x and y; the geodesic [z, y] is the straight line segment
from z to y in the affine space A.

LEMMA 2.1. Suppose z,y € B(G) and z € [z, y]. Then we have:

(1) Gz,s+ = (Gx,s"" N Gz,s+) : (Gz,s+ N Gy,s+) for all s = O;
(2) Gos=(GgsNGs) (GsNGy,s) for all s > 0.

Proof. We prove statement (2). Statement (1) can be obtained by substituting ‘s™’ for ‘s’ in the
following.

Let A be an apartment in B(G) containing both = and y. Let A be the maximal k-split torus
of G corresponding to A. Then A is a homogeneous space for the vector group V := X,(A) ® R,
and there is v € V such that y =z + v.

Let P denote a minimal parabolic k-subgroup containing A. Let ® denote the set of roots
of A in G and let ®T C ® be the roots of A in P. Without loss of generality, we may assume
that P is chosen so that

(a,v) >0 for all a € ®T.
Let M be the centralizer of A in G and let U be the unipotent radical of P. Then we have

the Levi decomposition P = MU. Let P denote the parabolic k-subgroup which is opposite to P
with respect to M and let U denote the unipotent radical of P.

Since s > 0 we have, for all w € A, the Iwahori decomposition
Gu,s = (GusNU) - My (GysNU),

where
My= () Gu.s
w'eA
Since
Ms C Gy s NGy s NG, s,
it suffices to show:
(a) (G.sNU)C(GysNGyys); and
(b) (G.sNU)C (G sNGyy).
We prove part (b). The proof of part (a) is similar.

Let W denote the set of affine roots of G with respect to A and the valuation on k. If ¢ € @,
then let ¢ € & denote the gradient of ¥. To prove part (b) it suffices to show that if ) € ¥ is
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such that ¢(z) > s and (1, v) > 0, then ¥(y) > s. But we have z =y — tv for some ¢ > 0, so
V() =0z + 1) = () + 1ih, v) > s + (1), v) > 5,

since t<¢, v) = 0. O

2.2 A result on fixed vectors
Fix a smooth representation (7, V') of G. For each compact open subgroup K of G, let
K]:V —VE

denote the projection operator, given by
[K]v:/ m(k)v dk,
K
where dk is the Haar measure on K for which |’ i dk=1.

LEMMA 2.2. Suppose x,y € B(G) and s € Ryq. If v € VY.t and (G s+]v #0, then Vst £
{0} for all z € [z, y].

Proof. Fix z € [z, y]. We actually show that [G, ¢+]v # 0. From Lemma 2.1, we have
[Gx,s“'] [Gz,s+]v = [G:t,s+] [Gz,s“’ N Gz,s*’] [Gz,s“’ N Gy7s+]v
= [G:c,s+][Gw,s+ N Gz,s+]v

= [Gm,s+]v 7& 07
hence [G, ¢+]v # 0. O

2.3 Generalized s-facets

Let g be the set of k-rational points of the Lie algebra of G. We have analogous filtration
subgroups g, s, 8, s+, for z € B(G) and s € R. We recall here some basic facts about generalized
s-facets from [DeB02, § 3]. If we assume s > 0, then everything in this section remains valid when
‘g’ is replaced by ‘G’.

If ,y € B(G), we say that x is related to y if

92,5 = Oy,s and Oz st = By st

The equivalence classes in B(G) defined by this relation are called generalized s-facets. If F' is a
generalized s-facet and = € F', we set

9F ‘= 0zs and g; =Pg,st-

Suppose that F' is a generalized s-facet in B(G). If A is any apartment in B(G) meeting F,
we let dimy(F') denote the dimension of the smallest affine subspace of A which contains
AN F. From [DeB02, Corollary 3.2.14], if A’ is another apartment in B(G) meeting F, then
dim 4 (F) = dim g (F'). Therefore, it makes sense to define the dimension of F as

dim(F) = dim4(F),
for any apartment A meeting F.

For a generalized s-facet F', we let F' denote the closure of F'in the natural (metric) topology
on B(G). From [DeB02, 3.2], the boundary

OF =F —F
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is a disjoint union of a finite number of generalized s-facets, each having dimension strictly less
than that of F.

LEMMA 2.3. Let Iy, F» be two generalized s-facets. Then we have
R CFegn Con Cor, Con-

Proof. The implication ‘=" is [DeB02, Corollary 3.2.19]. For the other implication, it is enough
to show that for any two points x1, xa, with x; € F;, we have the half-open segment (z1, z2] :=
[x1, 2] — {x1} contained in F5.

Choose an apartment A containing z; and xo. Let A be the maximal k-split torus
corresponding to A and let ¥ be the set of affine roots of G with respect to A and the valuation
on k. To prove that (x1, z3] C Fy, we must show that for any i) € ¥, the affine function ¢ — s is
always positive, always zero, or always negative on (x1, z2].

If ¢(x1) > s, then since g}l C gJF;, we have ¥ (z2) > s, so ¥ — s is positive on all of [z1, z2]. If
Y(x1) < s, then since gp, € gp,, we have ¥(x2) < s, so 1) — s is negative on all of [z1, x2]. Finally,
if (x1) = s, then either ©» — s =0 on [z1, x2] or x; is the unique zero of ) — s on [z, z9], in
which case 1) — s is always positive or always negative on (x1, 2. O

2.4 Cuspidal representations
Let f denote the residue field of k. Let s > 0 and fix a generalized s-facet F'. Set

Lp:= GF/G;C.
If s =0, then Lp is the group of f-rational points of a connected reductive j-group. If s > 0, then

Lr is a finite-dimensional vector space over f.

Suppose that H is a generalized s-facet containing F' in its closure. From Lemma 2.3, we
have

Gp C Gy CGh CGr.

Let LY denote the image of G}; in Lp. A finite-dimensional complex representation (o, W) of
Lr is said to be cuspidal if for all generalized s-facets H for which F' C 9H, we have

Wt = {0}
Let C(Lr) denote the set of equivalence classes of irreducible cuspidal representations of L.

If s =0, then the above definition agrees with the usual definition of a cuspidal representation
of a finite reductive group. If s > 0, then L is abelian and C(Lg) consists of those characters of
Lz which are non-trivial on Lg whenever FF C 0H.

2.5 A discreteness criterion

Suppose that (7, V') is an irreducible admissible representation of G of depth s. This means there
is some x € B(@) for which V% .s+ £ {0} and that V v+ = {0} for any y € B(G) and r < s. The

aim of this section is to give a criterion for the set
X(n) = {z € BG) [ V= #{0}}

to be discrete. Note first of all that X'(7) is a disjoint union of generalized s-facets, preserved
under the action of G on B(G), and X () is closed in B(G), by Lemma 2.3.

1033

https://doi.org/10.1112/50010437X10004653 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X10004653

S. DEBACKER AND M. REEDER

LEMMA 2.4. Suppose that F' is a generalized s-facet in X (m). The Lp-module VGr s cuspidal
if and only if F' is maximal among the generalized s-facets in X ().

Proof. The generalized s-facet F' is not maximal among the generalized s-facets in X'(m) if
and only if there is a generalized s-facet H in X () for which F' C OH; equivalently, FF C 0H and

VGh # {0} or, from Lemma 2.3, F C 0H and
(VERLF = vEi £ {0},

The lemma follows. U

COROLLARY 2.5. Suppose that F' is a generalized s-facet in X () and the Lp-module VG is
cuspidal. If F' is a minimal generalized s-facet in B(G), then X () is discrete; in fact, we have
X(m)={g9F |geG}.

Proof. A minimal generalized s-facet is a point, so we have F' = {z} for some z € B(G). From
Lemma 2.4 it follows that z is isolated in X'(7). We choose a non-zero vector v € Vst

Now suppose that y is another point in X (7). By definition we have VOt £ {0}, so that
(G, s+]V #{0}. Since V is irreducible, there is g € G such that

[Gy75+]7r(g)v ?é 0.
Applying 7(g)~!, this means that

[Ggfly’er]’U 75 0.
By Lemma 2.2, the geodesic [z, g~ 1y] is contained in X (7). However, z is isolated in X (), so
r =g 'y and y = gr. Hence, the generalized s-facet containing y is also minimal, so X (7) is
discrete. O

Remark. The first author and Prasad have shown (unpublished) that any two maximal
generalized s-facets occurring in X'(7) must be associate, in the sense of [DeB02, Definition 3.3.4].
Moreover, if X'(7) is discrete, then 7 must be supercuspidal. There exist (non-trivial) examples
of supercuspidal representations for which X'(7) is not discrete.

2.6 Very cuspidal representations

We now impose the additional assumptions of [Adl198, 2.1.1] on the residual characteristic p of k.
Namely p > 2 and p does not divide the order of the center of the simply connected cover of the
derived group of G and moreover p # 3 if G has a simple factor of type Go. If k has positive
characteristic we also exclude p =3 (respectively, p=3,5) if G has a simple factor of type Fj
(respectively, Eg).

Under these assumptions, there exists, and we fix, a non-degenerate symmetric Ad(G)-
invariant bilinear form (,):g x g — k which restricts to a non-degenerate pairing g, /g, .+ X
92,1/ 8z (—r)+ — f for all r € R. Fix also a character A : kT — C* of the additive group of k, with
ker A =p.

Let z € B(G) and r > 0. Identifying Gu /Gy + = 8;/820+, 85 We may, any element X €
95—, determines a character

XX : G;p,r/G‘r,r-;- — (C><7
by the formula
XX(Y + gac,r+) = A<X7 Y>
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The assignment X — yx is a bijection
Gx,fr/gx,(fr)'*‘ — Irr(G%T/Gm,r*‘)'

A semi-simple element X € g has depth —r <0 if X €g, _, for some x € B(G) and X ¢
8y, (—r)+ for any y € B(G). As in [AdI98, 2.2.3], a semi-simple element X € g of depth —r is called
good if the centralizer M = C'c(X) contains a maximal torus S splitting over a tame extension
E/k, such that valg(da(X)) = —r for every root of S in G outside of M. Note that r is an
integer if the extension E/k is unramified.

Suppose that X is good of depth —r with centralizer M = Cq(X). Let B(M) be the image
of the building of M in B(G). By [KMO03, 2.3.1] we have that
B(M) = {33 € B(G) | X e g‘r,fr\gx,(fr)""}' (1)

Assume further that M/Z is anisotropic (we say M is minisotropic). Then B(M) = {x} consists
of the unique point x € B(G) such that X € g, _,\g, )+ For such an element X, Adler’s
construction in [Adl98] produces many finite-dimensional representations kx of the stabilizer
K, of x in G, with the property that the compactly induced representation

ind?(I KX (2)

is irreducible supercuspidal of depth r and contains the character xx upon restriction to G .
Let IIx be the set of these representations (2). Each 7 € Ilx is an example of a very cuspidal
representation.

LEMMA 2.6. Let the semi-simple element X € g be good of depth —r, with minisotropic
centralizer M = Cg(X) and let w € IIx. Then X () is discrete.

Proof. Note first that (1) implies that B(M) = {z} is a generalized (—r)-facet in B(G); we denote
it by F. By [DeB02, Lemma 3.2.5], F' is also a generalized r-facet in B(G). Let V' be the space

of . We show that the Lp-module VGr is cuspidal. The character xx appears in VCart We
first claim that any other character xy of G, which appears in VYt is K;-conjugate to xx.

Since 7 is irreducible, there is a g € G so that
(X + gx,(—r)“’) n Ad(g)(y + gx,(—r)“')

is non-empty (see [MP94, 7.2]). This implies that there is Z € g, (_,y+ such that X + Z € gg, _,.
Let m be the k-rational points in the Lie algebra of M. From [AdI98, 2.3.2], there is an h € G, o+
so that

Ad(h)(X + Z) € X +my (s

Moreover, the element Ad(h)(X + Z) is still good of depth —r. However, Ad(h)(X + Z) also
belongs to gjg, _,. From (1) we have hgx = z. Hence, g € K, and the claim is proved.

Hence, it is enough to show that yx is cuspidal. If not, there exists a generalized r-facet H
such that F' C OH and xx is trivial on LY. This implies that X € gy, for all y € H. Using (1)
again, we have H C {x}, a contradiction.

Since F' is a minimal generalized s-facet and VGr s cuspidal, it follows from Corollary 2.5
that X () is discrete. O
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3. Generic characters and representations

We now add the assumption that G is unramified. That is, G is quasi-split over k and G splits
over an unramified extension of k. Let U denote the unipotent radical of a k-Borel subgroup B
of G. Let T be a maximal k-torus in B and let A be the maximal k-split subtorus of T. Let
® (respectively, @) be the set of roots of A in G (respectively, U) and let IT be the simple
roots in ®*. For each o € ® let U, be the corresponding root group; it is the product of T-root
groups for the roots of T which restrict to a. Then U, is defined over k and we let U, = U,/(k).

Let j: G — G := G/Z be the adjoint morphism. For any intermediate k-group Z C L C G,
we set
L=j(L)~L/Z
and let L = L(k) denote the group of k-rational points in L. For example, B is a k-Borel subgroup
of G containing the maximal k-torus T of G.

A character £:U — C* is generic if its stabilizer in T is trivial. The group T acts
simply—transitively on the set = of generic characters of U. Hence, the finite group 7'/j(T)
acts simply—transitively on the set /T of T-orbits of generic characters.

3.1 Generic representations

We say that an irreducible admissible representation m of G is generic if the set
=(r) := {¢ € 2 | Homy (r, §) # 0}
is non-empty.

From now on our representations will have positive integral depth. Let (7, V') be an irreducible
supercuspidal representation of G of depth r € Z~g, of the form

= ind%ﬁ K, (3)

where z is a vertex in B(G), K, is the stabilizer of z in G, and k is a finite-dimensional
representation of K, which is trivial on G, ,+. In §2.5 we studied the set

X(r) ={x € B(G) | Viert £{0}}.
Since G is unramified, the building B(G) contains hyperspecial vertices.

LEMMA 3.1. Suppose that 7 is generic of depth r € Z~y and X(w) is discrete. Then x is
hyperspecial.

Proof. This proof is very similar to that of [DR09, Lemma 6.1.2]. Let ¥ be the set of affine roots
of A in G with respect to the valuation on k. If ¢ € U, let ¢ € ® denote its gradient.

Since G is unramified we may choose a hyperspecial vertex o in A. Choose an alcove C' in A
so that o € C' and

dt = {4 :9(0) =0 and ¥|c > 0}.
Since we are free to conjugate x by elements of G, we may and do assume that = € C.
For each y € C, set

Uy ={peV:g(y) =0}, ¥ :={yYe¥,:¢c>0}

Then ¥, is a spherical root system and \IIJ is a set of positive roots in ¥,. Let f[y be the unique
base of ¥, contained in \IJ; . Let @, <I>;j , 11, be the respective sets of gradients of the affine roots
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in W, ¥F, IT,. Note that ®+ = ®}. The roots in II, form a base of the reduced root system
consisting of the non-divisible roots in ®,,.

It follows from the affine Bruhat decomposition that G = UNK,, where N is the normalizer
of Ain G and K, is the stabilizer of y in G. We may choose a set N(y) C N of representatives
for the double cosets in U\G/K,, such that n®; C & for each n € N(y).

Now let £ € E(m). Then from [Rod73] we have
C ~ Homg(ind?, &, Ind§ €) ~ Homp, (x, Ind{ £). (4)
By Mackey theory, the restriction of Indgé’ to K is a direct sum

(ndf i, = P Indfjig, £
neN (x)

From (4) there is a unique n € N(x) such that " appears in the restriction of x to U™ N K.
Since & is trivial on G, .+, we have that §" is trivial on U™ N G, .+, so § is trivial on U N Gy ot

For r > 0, the Lie algebra L, is abelian. However, since r is an integer, we can identify L, and
the Lie algebra of G, (f) as T(f)-modules. (Here, G, is the connected reductive f-group associated
with z and T denotes the f-torus in G, corresponding to T.) Consequently, we can speak of
parabolic, Borel, Levi and nilradical subspaces of L,, which are defined by the usual root-space
decompositions.

Since n¥} C U, it follows that the image of U" NG, in L, is the nilradical of a Borel

0

subspace of L,. Let w =nA be the image of n in the Weyl group N/A. We claim that wII, C II,.

Since n¥;} C ¥}, have wll, C ®}. So suppose 3 €Il and w3 € ®F —II,. Then the root
group U, is contained in the commutator subgroup of U, so that ¢ is trivial on U,g3. Hence,
Ug C ker £". Since (3 € I, this implies that £ is trivial on the nilradical n of the maximal
parabolic subspace of L, whose Levi subspace contains the 3-root space. There is a facet F' C A
of positive dimension such that z € F' and n is the image of G(k), + in Ly for any y € F. Hence,

VCurt £ {0} for all y € F, contradicting the discreteness of X ().
We have proved that wll, C II,. Since both x and o are vertices in A, we have
|TL;| = [TI,| = dim A,

implying that wIl, = IT,. Hence, for any ¢ € I, there is ky € Z such that n=1y(x) = ky.
Define A € X by the values (), 8) =k, for every absolute root 3 of T which restricts to .
Then ) is Galois-fixed, so the translation ¢, preserves the apartment A. For all ¥ € 11, we have

Pty -0) = (N Y) =ky =9(n-x).

It follows that n - x =ty - 0 is hyperspecial, so = is hyperspecial. O

COROLLARY 3.2. Suppose that © € llx is very cuspidal, as in § 2.6, and generic. Then x is
hyperspecial.

Proof. This is immediate from Lemmas 3.1 and 2.6. a

3.2 Depth of generic characters

Given r > 0 and a hyperspecial vertex = € A, we say that a character £ of U has generic depth r
at x if £ is trivial on U N G, ,+ and the restriction of £ to U N G, has trivial stabilizer in the
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parahoric subgroup Ty of T. This makes sense because Tp fixes  and preserves the Moy—Prasad
filtration subgroups at z.

Since x is hyperspecial, we have Uy N G, .+ # Uy N Gy for all a € ®. It follows that & has
generic depth r at x exactly when & is trivial on U, N G, ,+ and non-trivial on Uy N Gy, for
each o € II. Moreover, characters of generic depth r are generic. Let =, , C 2 denote the set of
characters of U having generic depth r at x. It is clear that Tp preserves Z, .

LEMMA 3.3. The group Ty acts simply—transitively on B

Proof. We need only prove transitivity. Let &, &' € Z,,. We have ¢ = ¢ for some (unique) t € 7.
We must show that t € Ty. We may assume that t € A and it suffices to show that |a(t)| =1 for
every « € IT. If |a(t)| > 1, then

Ad(t) - (Ua N Gay) CUa NGy e Cker & =ker '€,
50 Uy N Gy, C ker &, contradicting the assumption. Interchanging ¢ and &', we see that |a(t)] < 1

is also impossible. Hence, |a(t)| =1, as desired. O

LEMMA 3.4. Suppose that the representation 7 in (3) is generic and X (w) is discrete, so that x
is hyperspecial, by Lemma 3.1. Then for any £ € Z(r) there exists t € T such that &' € =, .
Moreover, if t' is another element of T' with the property that £ € 2., then t' € UtK,.

Proof. In fact, we show that we can choose t € A. Recall that N(x) C N is a set of representatives
for U\G/ K. Since z is hyperspecial, the Iwasawa decomposition allows us to choose N(x) C A.
If ¢ € Z(7), then by Mackey theory again, we have

Homy (m, §) ~ @ Homynx, (K, ).
teN(x)
Hence, there is a unique coset UtK, such that
HOIIlUme (K, ft) 75 0.
It is immediate that &' is trivial on U N G, ,+. The argument in the proof of Lemma 3.1 shows

that &' cannot be trivial on U N G, . Hence, &' has generic depth r at z, as claimed. O

COROLLARY 3.5. Suppose that the representation 7 in (3) is generic and X () is discrete, so
that « is hyperspecial. Then every T-orbit in Z(m) meets =, , in a single Ty-orbit. The group
To/j(To) acts simply—transitively on Z(m)/T.

Proof. The argument in the proof of Lemma 3.3, using instead ¢t € T', shows that if two characters
in Z; , are T-conjugate, then they are Tp-conjugate. Hence, we have an injection on orbit spaces:

Zar/To — Z/T. (5)

Lemma 3.4 shows every T-orbit in Z(m) meets =, ,. Hence, every T-orbit in =(7) meets =, , in
a single Tp-orbit. The last assertion follows from Lemma 3.3 itself. O

4. Local expansions

In Lemma 3.1 we proved one direction of Theorem 1.1; in this section we prove the other direction.
We now assume that k has characteristic zero. Until we reach Corollary 4.8, we require only that
G be quasi-split over k. We use some results on Galois cohomology, whose proofs are deferred
to §5.
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4.1 Regular nilpotent elements

Let g denote the Lie algebra of G. An element Y € g is regular if its centralizer Cc(Y) has
smallest possible dimension, namely dim Cg(Y) = dim T. The regular nilpotent elements in g
form a single G-orbit and the centralizer Cq(F') of a regular nilpotent element F € g is the
product of its unipotent radical and the center Z of G.

A reductive group is quasi-split over k exactly when its Lie algebra contains regular nilpotent
elements rational over k. Since G is quasi-split by assumption, the set Mg of k-rational regular
nilpotent elements in g is non-empty.

Any two elements of N,e are G-conjugate, but they need not be G-conjugate. The G-orbits
in Neg are parametrized by the first Galois cohomology set H!(k, Cg(F)), for any F € Nyeg. By
Hilbert’s Theorem 90 and a simple exact sequence argument, the first Galois cohomology set
of a unipotent group is trivial. It follows that if F' € Nieg, then H(k, Cq(F))~ H'(k, Z). This
means that any two elements in Mg are conjugate by an element g € G for which v(g)lgeZ
for all v € Gal(k/k). It follows that the group G acts transitively on the elements of Neg, and
the finite group G/j(G) acts simply-transitively on the set of G-orbits in Neg.

Let v be the span of the negative simple root spaces for T in g and let v = v(k). An element
F € v belongs to Nyeg precisely when the coefficient of every root vector in F' is non-zero. Since
X.(T) has a basis dual to the roots in v, it follows that T acts transitively on v N Meg.

LEMMA 4.1. Every G-orbit in Nyeg meets v in a single T-orbit. This gives a bijection between
the set of G-orbits in Nyeg and the set of T-orbits in v N Neg.

Proof. Given F € Nieg, choose g € G such that Ad(g)F €v. By Lemma 5.1, we can write
g=t-j(h), with t € T and h € G. Then

Ad(R)F = Ad(t1g)F € 0 N Neg

Now suppose that F, F’ belong to v N MNg and that there is h € G such that Ad(h)F = F’.
Choose t € T such that Ad(t)F’ = F. Then t - j(h) is a k-rational point in the centralizer Cg (F).
Since j maps the unipotent radical of Cq(F') bijectively onto Cg(F'), there is a k-rational
element ¢ € Cg(F) such that t- j(h) = j(£). Hence, t € T N j(G) = j(T), so that F and F’ are
T-conjugate. O

4.2 Regular semi-simple orbital integrals

Let O’ be an arbitrary nilpotent G-orbit in g. By [Ran72], the G(k)-invariant measure on O’
(which is uniquely determined by our choices of the pairing (,) and additive character A) may
be uniquely extended to a distribution e, on g which vanishes on elements of CZ°(g) whose
support does not meet O'.

Let X be a regular semi-simple element in g. By [Har99, Theorem 5.11], there exists a lattice
L=L(X)Cg and complex constants co/(X), indexed by the nilpotent G-orbits O’ C g, such
that the orbital integral px over the G-orbit of X has the expansion

px(f)=>_ co(X)uor(f), (6)
O/
for all f € C.(g/L), where the sum runs over all nilpotent G-orbits in g.

A result of Shelstad [She89] gives necessary and sufficient conditions for the non-vanishing of
co(X), when O is a regular nilpotent G-orbit. (In fact, Shelstad computes an exact formula
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for co(X), but we do not need this.) Kottwitz [Kot95] has recast Shelstad’s non-vanishing
criterion in terms of Kostant sections. In the next section we review Kostant sections, and
then give Kottwitz’ formulation of Shelstad’s non-vanishing result.

4.3 Kostant sections

Let O be a regular nilpotent G-orbit in g. Choose F € O. A Kostant section for O (at F) is
an affine subspace V C g obtained as follows [Kos77]. Choose, as we may, elements H, E € g,
satisfying the slo-relations

[H,E]=2F, |[H,F|=-2F, [E,F|=H,
and let

(This is not the most general Kostant section, but it will suffice for our purposes.) Kostant
showed that every regular G-orbit Oy C g meets V in exactly one point. Since £ and F' are
k-rational, the Kostant section V is defined over k. Hence, if the regular G-orbit Qg is also
defined over k, the unique point in Oy NV must be k-rational. Thus, V determines a k-rational
point in every regular G-orbit which is defined over k.

Any two triples (F, H, E) and (F, H', E’), with the same F, are conjugate by the unipotent
radical of Ca(F') (see [Car85, 5.5.10]). Since unipotent groups have trivial Galois cohomology in
degree one, it follows that any two Kostant sections for O are G-conjugate.

4.4 A result of Kottwitz and Shelstad

PROPOSITION 4.2. Let O be a regular nilpotent G-orbit in g, let V be a Kostant section for O
and let X € g be regular semi-simple. Then the constant co(X) is non-zero exactly when the
G-orbit of X meets V.

In [Kot95] Kottwitz provides a direct proof of Proposition 4.2, based on the fact that the
map G x V — g, arising from the adjoint action, is a submersion. We offer a slightly different
proof, still based on the ‘submersion principle’. We begin by establishing some notation.

Choose F € O with E, H as in §4.3, such that V=F + Cg(Ez. There are unique Borel
subgroups B, B in G, with Lie algebras b, b, such that £ € b, F € b. Let U be the unipotent
radical of B.

LEMMA 4.3. The map
BxUxV-—g, (bu, F+A)— Ad(bu)(F + A) (7)
is a submersion.
Proof. Kostant showed (see [Kot99, 2.4]) that the adjoint action gives a k-isomorphism
UxV =S F+b.
Hence, it is enough to show that the map
0:Bx(F+b)—g, (bF+A)—AdD)(F+A) (8)

is a submersion.
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After conjugating, it is enough to show that the differential dp is surjective at (1, F + A), for
all A € b, which is to say that

b+[F+Ab]=g, (9)
for all A€ b.
For integers i, let g, ={Z € g | [Z, H] = iZ}. Since O is regular, we have g, = 0 for odd i. We
have
b:@gia E:@Bw ﬁi:@gi
i<0 i>0 i>0
and

[F, g =812 ifi20.
To prove (9), it suffices to show that
PaCo+I[F+ADb
i<m
for all m > 0. We prove this by induction on m. This is obvious for m € {0, 1}. Let m > 2 and let
Y=3 Y., Yicg:
i<m
Choose
Z€g, oCh
such that [F, Z] =Y,,. Note that since A € b, we have
[A, Z] € @ g
<<m
Hence, we have
Y-[F+AZcPa

<m
By induction, we may assume that
Y —[F+A,Z€b+[F+A,b].
It follows that
Yeb+[F+AHb,

as desired. O

COROLLARY 4.4. The map G x V — g given by sending (g, v) to Ad(g)v is a submersion.

COROLLARY 4.5. The set
U:=|J Ad(bu)V(k)
beB
uelU
is open in g.
LEMMA 4.6. For all t € k*, we have t?U =U.

Proof. Let « be the one-parameter k-subgroup of G such that dy(1) = —H. Then, for all t € kX,
we have

Ad(y(t))F=t"2F and Ad(y(t))E =tE.
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Thus, for all ¢t € k*, we have that Ad(y(t)) normalizes Cg(F) and
Ad(y(t))V = t*F + Cy(E) = t*(F + Cg(E)) = t*V.

Since 7 is defined over k, the lemma now follows from the definition of ¢ in Corollary 4.5. O

LEMMA 4.7. Suppose X € V(k) and that Ly C Cg(E) is a lattice so that X € F'+ Lg. Then
for all n € Z>q the G-orbit of w?"X meets F + L.

Proof. Let v be the one-parameter k-subgroup of G such that dy(1) = —H. Then
Ad(y(w"))F =w ?"F and Ad(y(w"))Lg C Lg.
Consequently, Ad(y(@"))(@?"X) € F + L. O

We are now ready to prove Proposition 4.2.

Proof. Fix a regular semi-simple element X € g. Choose a lattice L = L(X) as at the start of
84.4.

Suppose that (Ad(G)X) meets V. Without loss of generality, we assume X € V (k). Choose
a lattice Ly C (Cg(FE))(k) so that X € F'+ L. Let K be any compact open subgroup of G. The
set

F:={Ad(k)(F+W)|ke K and W € Lg}
is compact and, from Corollary 4.4, open in g. Thus, there exists an N € Z such that
F+aL="7F.
Consequently, [ 2V F] € C.(g/L). From Lemma 4.7 we conclude that

0% pigenx ([F]) = px ([~ F]).
Thus, in the notation of (6)
0 px ([@ " F) = co(X)por ([~ F)).
O/
Since O is the only nilpotent orbit that meets Ad(G)(V(k)), we conclude that co(X) # 0.

Suppose that (Ad(G)X) does not meet V. Consider the function [ =2 F + L] which, from
the above paragraph and Lemma 4.6, belongs to

D :=CF(Ad(G)V(k)) N C.(g/L).
For all f € D, we have

0=px(f) =co(X)po(f)-
Since po([w™ 2N F + L]) # 0, we conclude that co(X) = 0. O

Let A be an index set for the regular nilpotent G-orbits, so that
Meg = H 05
dEA

is the partition of NVeg into G-orbits. By Lemma 5.1, the group T/j(T) acts simply—transitively
on {O; |6 € A} If X € g is regular semi-simple, we abbreviate ¢5(X) = co, (X) for the coefficient
of pp;, in (6).
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COROLLARY 4.8. Suppose that the centralizer of X in G is an unramified anisotropic
torus S whose unique fixed point in B(G) is a hyperspecial point. Then T, preserves the set

{Os | es(X) #0}.

Proof. If ¢5(X) # 0, then by Proposition 4.2 there is a Kostant section V for Os such that X €
V. In Proposition 5.2 (which requires S to be unramified), it follows that Ad(¢)X € Ad(G)X,
for all t € Ty. Hence, Ad(t)Vy is a Kostant section for Ad(t)Os which meets Ad(G)X. The result
follows from another application of Proposition 4.2. O

4.5 Local character expansions

Given a generic character £ of U, there is a regular nilpotent element F¢ € v defined by the
condition

A((X, Fy)) = &(exp X) (10)
for all X € u. The assignment £ — Fy is a T-equivariant bijection between the set of generic
characters of U and the set of regular nilpotent elements in v.

For any irreducible admissible representation m of GG, let ©, be the character of 7, viewed as
a function on the set G™° of regular semi-simple elements in G. There is a neighborhood V of
the identity in GG such that on ¥V N G™° we have the identity

@7?(7) = Z co () fror (10g 7)s (11)
o

where, as in (6), O’ runs over the set of nilpotent G-orbits in g, fio is the Fourier transform
of the orbital integral over @', and the complex numbers co/(7) are uniquely determined, given
our choices of A and (, ). The following is a special case of the main result in [MW8T].

PROPOSITION 4.9. We have ¢ € Z(w) if and only if co(m) # 0, where O is the G-orbit of Fy.

4.6 Regular very cuspidal characters

Let m € IIx be a very cuspidal representation, as in §2.6. Assume now that X is regular, so that
Cg(X) is a torus, which we now denote by S. From [AD04, 6.3.1] we have the Murnaghan—
Kirillov formula, valid for regular semi-simple « in an explicit neighborhood of the identity of G:

Ox(7) = deg(m)fix (log 7). (12)

Inserting (6) into (12), comparing with (11) and invoking the uniqueness of the coefficients, we
find that

o () = deg(m)cor(X) (13)

for each nilpotent G-orbit O’ in g.

Since 7 is generic, we may further assume that x is hyperspecial (see Corollary 3.2). Let £ be
a generic character of U, let O¢ be the G-orbit of F¢, and choose a Kostant section V¢ for Og.
Combining Proposition 4.9, equation (13) and Proposition 4.2, we have the following proposition.

PROPOSITION 4.10. Assume that 7 € Ilx is very cuspidal, where Cg(X) =S is a torus such
that B(S) is a hyperspecial point in B(G). Then for any generic character £ of U, we have
Homy (, §) # 0 if and only if the G-orbit of X meets V.
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4.7 Completion of the proof of Theorem 1.1

We must show that if 7 € IIx is very cuspidal and the centralizer S = Cg(X) is an unramified
minisotropic torus whose unique fixed point x in B(G) is hyperspecial, then 7 is generic.

Let £ € = be any generic character with corresponding regular nilpotent element Fy € v and
choose a Kostant section V¢ for the G-orbit of F¢. Since X is regular, there is g € G such that

Ad(g)X € Ve. (14)

Since the G-orbit of X is defined over k, the point Ad(g)X is k-rational, so its centralizer ¢S
is defined over k. Since S is abelian, it follows that the map Ad(g): S — 98 is a k-isomorphism.
Since X and Ad(g)X have the same set of root values, the element Ad(g)X is also good, in the
sense of §2.6. Moreover, 9S is also minisotropic and unramified. Hence, we have another very
cuspidal representation

Im:=7n(Ad(g9)X)

of G. For regular semi-simple v near the identity in G we have the expansion

@97r('7) = deg(gﬂ) ) ﬂAd(g)X(log ’Y)
By (14) and Proposition 4.10, we have

Homy (Y7, §) # 0. (15)

By the other direction of Theorem 1.1, which was already proved in Lemma 3.1, the unique
fixed point y of 95 in B(G) is hyperspecial. By Lemma 5.5, we may adjust g in its coset gS so
that j(g) € G. By uniqueness of the fixed point, we have y = j(g) - .

Moreover, Ad(g) ' Fg is k-rational, so by Lemma 4.1 we may choose h € G such that the
regular nilpotent element

F' = Ad(hg™ ") F;
lies in v. Let & € Z be the generic character such that F' = Fr, as in (10). Then Ad(h)X is
contained in the Kostant section V/ = Ad(hg~!)V¢ for the G-orbit of F’. From Proposition 4.10,
we now have

HOHlU(ﬂ', gl) ?é 07
showing that 7 is generic. This completes the proof of Theorem 1.1.

5. Some Galois cohomology

In this section we prove those results used above whose proofs were postponed. Although not
phrased as such, these results concern the Galois cohomology of the center Z of G and the map
H'(k,Z)— H'(k, L) for various k-subgroups of L. C G containing Z.

Fix an algebraic closure k of k and let K be the maximal unramified extension of k in k. Let
I' = Gal(k/k) be the absolute Galois group of k and let Z = Gal(k/K) be the inertia subgroup
of . If L is an algebraic k-group (identified with its set of k-rational points) and v € T', then 71,
denotes the automorphism of L arising from the given k-structure. Given a containment L C M
of k-groups, we let

WL, M) : HY(k, L) — H'(k, M)

denote the map induced on (non-abelian) Galois cohomology sets by the inclusion L — M, and
we let ker!(L, M) denote the kernel of +(L, M).
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5.1 The arithmetic of the adjoint morphism for unramified groups

Recall that our connected reductive k-group G is quasi-split over k and split over K. Fix a Borel
subgroup B of G such that B is defined over k and let T be a maximal k-torus in B.

The adjoint morphism j (introduced in §3) is generally not surjective on rational points.
Given Z C L C G as above, the group

A(L):=L/j(L)
fits into the exact sequence of pointed sets:

(Z,1)

1— A(L) 2 H'(k, Z) ““ H(k, L) 2 H'(k, L),

where Jy, is the coboundary map and jy, is induced by the adjoint morphism j:L — L. Note

that the inclusion L — G induces an injection A(L) — A(G).

LEMMA 5.1. We have G =T - j(G). Hence, the inclusion T — G induces an isomorphism
A(T) ~ A(G).

]froof. If we replace G by the simply connected cover of its derived subgroup, then both T and

G are unchanged while j(G) can only become smaller. Hence, we may as well assume that G is
semi-simple and simply connected. Then H!(k, G) =1 by Steinberg’s theorem [She65], so

A(G) ~ H'(k, Z).

However, we also have H!(k, T) =1, as is well known (cf. [Pra89, Lemma 2.0]), so that
A(T)~ H' (K, Z),

which proves the lemma. O

The group A(G) ~ A(T) factors into a geometric part and an arithmetic part, as follows. If
we fix a uniformizer w € k, then since T splits over K, we can identify X with a subgroup of
T(K), via evaluation at w, and we have

T(K)=X x T(K)oy, (16)
where
T(K)o = {t € T(K) | vali (x(t)) = 0 Vx € X*(T)}

and valg is the extension of the valuation val to K. The two factors in (16) are stable under the
Frobenius F and Ty = T(K)§, so we have

T=X"xT. (17)
Let X = X.(T). Then we have a similar decomposition
T=X"xT,. (18)
It follows that
A(T)=A(X) x A(Tp), (19)

where A(X) = X"/j(X?) is the geometric part and A(Ty) = Tp/j(Tp) is the arithmetic part.
The following result was used in the proof of Corollary 4.8.

PROPOSITION 5.2. Let S be a minisotropic unramified maximal k-torus in G. Then A(S) =
A(Tp).
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Proof. The following proof was suggested by the referee; it is much shorter than our original
proof. Extend the valuation val to k*. For any diagonalizable k-group D, define

Dy = {d € D(k) | val(x(d)) = 0 ¥x € X" (D)},

and set Dy =DoN D(k). Let S be any maximal k-torus in G with image S in G under the
adjoint morphism j : G — G. We first claim that j restricts to a surjection Sg — Sg. For this we
may, upon replacing G by its derived subgroup, assume that G is semi-simple. If 5 € S¢ has lift
5 €S, then the map X*(S) — QT given by A val(A(s)) vanishes on the subgroup j*X*(S) of
finite index in X*(S). Since Q* has no finite subgroups, the claim follows. We therefore have an
exact sequence

1—Zyg— Sy — Sy — 1.

Since H'(k,Sp) =1 by the profinite version of Lang’s theorem, the coboundary dg, : Sy —
H(k, Zo) is surjective. Hence, the image of the composition Sy — S/;(S) — H*'(k, Z) coincides
with the image of H'(k,Zo) in H'(k,Z). It follows that Sy/j(Sp) is independent of S. We
therefore have A(Sy) = A(1p) for any maximal k-torus S in G. Now, if S is minisotropic, we have
A(Sy) = A(S), so the result is proved. O

5.2 Unramified cohomology

This section contains a technical calculation in Galois cohomology that is used in §7. More
background can be found in [DR09, ch. 2]. If L is any connected k-group, then the natural map

HYK/k,L(K)) — H'(k,L)
is a bijection. The action of Gal(K/k) on L(K) is completely determined by the endomorphism
F = Froby,
of L. Likewise, a cocycle ¢: Gal(K/k) — L(K) is determined by the element
ue = c¢(Frob),
which belongs to the set
ZVF, LK) ={uc L(K) |u-F(u)---F*""}(u) = 1, for some n > 1}.

Thus, an unramified cocycle is identified with an element in Z!(F, L(K)), and we identify
HY(K/k,L(K)) with the set H'(F,L(K)) of L(K)-orbits in Z!(F, L(K)) under the action:
Cxu=/luF(). Let [u];, € H'(F,L(K)) denote the class of an element u € Z'(F, L(K)).

Given any unramified maximal torus S in G, we use unramified cohomology to study the

diagram
11— AG) 2% HY(k, Z) — H(k, G) S~ H'(k, G)
T 0
1 A(S) %~ HY(k, Z) — = H'(k,S) —~ H(k, §)

where the unlabeled maps are induced by inclusion.

Let X = X,.(T) be the lattice of algebraic one-parameter subgroups of T and let ¥ € Aut(X)
be the automorphism of X induced by the Frobenius endomorphism F. Let N be the normalizer
of T in G. For we N/T, let T,, be the unramified twist of T. Denoting the twisted action
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of vy €T by ~r,, we have

_ )T ifyeZ
T = Fy:=Ad(w)oF if v = Frob.

Note that F, acts on X via wid. We have the explicit isomorphism
(X/(1 — w9) X]ior — H'(F,, T(K)) ~ H'(k, Ty), (21)

which sends the class of A € X to the unramified class [A(w@)]t, € H'(F,, T(K)).
Let po € G(K) be an element such that p,' F(po) € N(K) is a representative of w. Then
S :=poTpy l'is an unramified maximal k-torus in G, and the map Ad(py): T, —S is a
k-isomorphism. Hence, we have the explicit isomorphism
[X/(1 = w9) Xior — H'(F, S(K)) ~ H' (k, S), (22)
which sends the class of A € X to the unramified class [poA(w)py ']s € H'(F, S(K)).
Let X = X,(T) and again write 9 for the automorphism of X induced by the Frobenius F.
We have similar isomorphisms
[(X/(1 — wd)X]tor — H'(k, Ty) — H(k, S). (23)

Our basic diagram (20) becomes

1 AT) - 5k, Z) — 29 (e, G) S H(K, @)
¥
| A(Tw) 2 1k, Z) — 2T 1 (kT 22 HY (K, T)
where r, is the composition
P H' (b, To) 220, gk ) 290, g1, @)

and j,, = jT,, is induced by the restriction of j to T.

The group A(T) parametrizes generic characters, and the group H'(k, T,) parametrizes
representations in an L-packet of very cuspidal representations (see [Ree08]). In § 7 we show that
the map

Lo A(T) — HY(k, Ty),
given by the composition

(Zva)

bt A(T) 22 HY(k, 2) 2210 gk, T,) (25)

determines which generic characters appear in which representation in the L-packet. Our goal
here is to calculate the map ¢, explicitly. Diagram (24) shows that

Lw(A(T)) = 1(Z, Ty)(ker' (Z, G)) = ker 1, N ker jy,.
LEMMA 5.3. Let t € T be such that j(t) is k-rational. Then t - w(t)~! € Z1(F,, T(K)) and
tw([tla) = [t - w(t) ", € H' (Fy, T(K)).

Proof. Recall that [t]a denotes the class of j(t) in A(T) and o ([t]a) € H'(k, Z) is the class of
the cocycle v+ 2z, = t=1.yp(t) €Z, for y€T. In Ty, the cocycle 2, is cohomologous to the
cocycle

2=t zy Y1, (£) 7 =1 (t) -y, (1)
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Note that 2z, =1 for 0 € Z and
Z{:“rob = F(t) : Fw(t)_l‘
Since t~! - F(t) € Z which is centralized by w, we have
L F#®) =w(t - Ft) =wt) ™! - Fy(t).
It follows that
Z%‘rob =t- w(t)il‘
Since 2’ is trivial on Z, it is an unramified cocycle, so the lemma is proved. O

We now obtain a more explicit formula for ¢,, using the factorization A(T) = A(X) x A(Tp)
from (19). Let X° C X be the lattice of co-roots.

LEMMA 5.4. Assume that T, is minisotropic. Then ker ¢, = A(Tp) and on A(X) we have the
formula

twlp(@)a = MN@))r, € H' (F,, T(K)),
where u € XV and X is the unique element of X° such that j\ = (1 — w)pu.

Proof. Note that the formula makes sense because (1 —w)X C jX° and j is injective on X°.
Since j X has finite index in X, there is an integer m > 1 and n € X such that

my = jn. (26)
Let w!/™ € k be a root of 2™ = w. Set
t:=n(w'/™).
Then j(t) = p(w), and
tw(t) = (1 —w)n(=/m).
Now
J(1 —w)n=(1—w)jn=m(l —w)p=mjA.

Since j is injective on X°, we have

(1 —w)n=mA, (27)
so that

t-w(t) = \Nw).

The formula for ¢, on A(X) now follows from Lemma 5.3. This formula implies that ¢, is
injective on A(X). Indeed, if [A\(w)]T, =1, then there is v € X such that

A= (1—wi)v. (28)
Applying j to both sides and remembering that ¥y = u, we obtain
(I—wdpu=(1—-w)p=jr=(1—wd)jr.

Since T, is minisotropic, the map 1 — w?¥ is injective on X, so we have

pw=jv.
In (26) we can then take n = v and m =1, so that (27) reads as
(1—-w)r=A (29)
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Comparing (28) and (29), we see that v € X7, so that p € j(X?), proving the injectivity of i,

on A(X).
Finally, it follows from Proposition 5.2 that ¢,, vanishes on A(7p). Hence, ker ¢,, = A(Tp) and
the proof of Lemma 5.4 is complete. O

5.3 Hyperspecial points and stable conjugacy
In this section we prove Lemma 5.5, which was used in §4.7

Let X € g be regular semi-simple, let O =Ad(G)X, and let S=Cg(X). Any k-rational
point Y € O(k) is of the form Y = Ad(g)X for some g € G such that s, := g 'y(g) €S for all
v €' = Gal(k/k). The mapping v — s is a Galois cocycle whose class

inv(X,Y):=[s,] € H'(k,S)

is independent of the choice of g. It is clear that [s,] lies in the kernel ker!(S, G) of the map
H'(k,S) — H'(k, G) induced by the inclusion S < G. Two rational points Y, Y’ € O(k) are
G-conjugate if and only if inv(X,Y) =inv(X,Y”), and we have

ker'(S, G) = {inv(X,Y) | Y € O(k)}.

Let Y =Ad(g9)X € O(k) as above, and let S;=Ad(¢g)S=Cg(Y). Since S is abelian, the
isomorphism Ad(g) : S — Sy is defined over k.

Assume now that S is minisotropic and unramified over k£ and therefore has a unique fixed-
point x in B(G). Then S; is also minisotropic unramified over k and has a unique fixed-point
y € B(G).

LEMMA 5.5. In the situation above, assume that x is hyperspecial in B(G). Then the point y
is also hyperspecial in B(G) if and only if inv(X,Y’) belongs to the image of the map H'(k, Z) —
H'(k,S) induced by the inclusion Z < S.

Proof. We have inv(X,Y) € im[H'(k, Z) — H'(k, S)] exactly when there exists ¢’ € G such that
Y =Ad(¢')X and j(¢') is k-rational. In this case we have y =j(¢') - x, by uniqueness of fixed
points. It follows that y is hyperspecial.

Assume now that y is hyperspecial in B(G). Since G acts transitively on hyperspecial
points in B(G), we have y=j(h)-x for some h € G with the property that j(h) € G. Set
zy=h"1y(h) €Z, for y€T. The tori S;=9S and S, ="8 both fix the vertex y and are
isomorphic over k, via the map Ad(hg—!):S; — Sa.

Set Gy :=G(K),/G(K), o+ and G, :=G(K),/G(K),+. These are connected reductive
groups over the residue field f. Since y is hyperspecial, we may identify

(G)y = Gy/Z(Gy),
where Z(G,) is the center of G,. Indeed, G(K), projects naturally onto both groups and the
kernel of both projections is G(K),} - (2N G(K),).

For i =1, 2, the intersections S; N G(K), project to maximal tori S; in G,. In turn, each S;
projects to a maximal torus S; in G,/Z(G,). Since G is K-split and y is hyperspecial in B(G),
it follows that G(K), is the full stabilizer of y in G(K). The element Ad(hg~') € G(K), thus
projects to an element d € G,/Z(G,), and we have 9S; =Sy. By Lemma 5.6 below, the tori S;
and Sg are Gg(f)-conjugate. From [DeB06] we conclude that S; and Sy are G-conjugate. Choose
{ € (G, such that 481 =S,.
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The element n := h~ /g belongs to the normalizer N of S in G. For any v € I', we have

hWly(h)=2,€Z, g 'y(g)=s,€8, ~{)=L

It follows that

’y(n):n-zv_l-sw.

Since z;l -5y € S, the image of n in N/S is k-rational.
Since S is unramified, we have H'(k/K, S) = 1, which implies that
[N/SJ(K) = N(K)/S(K).
Since x is hyperspecial, we can apply [DR09, Lemma 6.2.3], to conclude that

[N/S](k) = N(k)/S(k).
Hence, there exists s € S such that ns is k-rational. For all v € I, we then have

ns=7(ns) = v(n)y(s) =n- 25" -5, - 4(s)

so that s~ 1s,7(s) = 2y € Z. This means that [s,] = [z,] € im[H'(k, Z) — H'(k, S)], as claimed. O
In the proof above, we used the following result.

LEMMA 5.6. Let G be a connected reductive group over the finite field f, with center Z and
adjoint group G=G/Z. Let F be the Frobenius endomorphism of G and G. Suppose that we
have two F-stable maximal tori S1, Sg in G, projecting to maximal tori S1, Sz in G. Suppose also
that there is d € G satisfying

(1) 95, =S, and (ii) Ad(d)o F =F oAd(d) onS;.
Then Sy and Sy are G(f)-conjugate.

Condition (ii) means that d~'F(d) € S;. By Lang’s theorem applied to Si, there is 51 € Sy
such that S; and Sy are conjugate by the element dy := ds; € G(f). Let da be a lift of d; in G and
let z:=d; ' F(dy) € Z. Since Z C'Sy, there is t €Sy such that z=1¢- F(t)~!. Then the element
d3 := dat belongs to G(f) and conjugates S; to Sg, proving the lemma. a

6. The generic characters in a very cuspidal representation

We next consider question (ii) in the introduction, concerning which generic characters are
afforded by our generic very cuspidal representations w € Ilx.

Given two regular nilpotent elements F, F’ in g and g € G such that Ad(g)F = F’, we have
a cocycle z, = g~1v(g) € Z whose class
inv(F, F') := [z,] € ker'(Z, G)
vanishes if and only if F' and F’ are G-conjugate. By Lemma 4.1, we know that if F, F’ belong
to v, then we may take g € T.

LEMMA 6.1. Let w € Ily be a generic very cuspidal representation such that Cg(X) is a
minisotropic torus S, and let £ € Z(m). Then if ¢’ € Z is another generic character of U, we
have ¢’ € Z(r) if and only if inv(Fg, Fr) € ker' (Z, S).

Proof. We have Fgr = Ad(t) Fy for some ¢ € T, with cocycle z, = t~1y(t) € Z. Let V¢ be a Kostant
section at F¢ for the G-orbit of F¢. Then V¢ := Ad(t)V¢ is a Kostant section at F¢ for the G-
orbit of Fir. By Proposition 4.10, we may assume that X € V¢. Moreover, we have Ad(h)X € Vg
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for some h € G. The elements X and Ad(¢~'h)X both belong to V¢, hence they must coincide.
It follows that h =ts for some s € S. We have

s zy(s) =571t (8) y(s) =R q(h) =1
This shows that [z,] becomes trivial in H'(k, S), as claimed.

The argument is reversible: if there exists s € S such that z, = s-v(s)~!, then the element
h =ts belongs to G and Ad(h)X = Ad(t)X € V¢, so that ¢’ € Z(n), by Proposition 4.10. O

6.1 Example: SLo
Assume p # 2. Let G = SLy, with G = PGLy. Here Z = {£1}, so
HY(k,Z) = k™ /E*2.
Let ko be the unramified quadratic extension of k with norm mapping N : k) — k*. Set
ki =ker N. Take an unramified torus S C G with S ~ ki. We have S = k' /k* and
J(S)=ki/ £1~ k- KX/ CS.
Hence,
A(S) =~k Jky - k™,
which is isomorphic, via N, to the group N(k)/k*?. It follows that A(S) is isomorphic to an
index two subgroup of kX /k*2, so that |A(S)| = 2.

Let T, U be the diagonal and upper triangular matrices (with ones on the diﬁagonal) in G and
let o be the root of T' in u. We may identify T'= k> =T, such that j: T — T is the squaring
map. Hence, A(X) =7Z/2Z and

|A(To)] = 5[k : k%] = |A(S)]-

Let A be the apartment of 7" and le