COMPOSITIO MATHEMATICA ## On some generic very cuspidal representations Stephen DeBacker and Mark Reeder Compositio Math. 146 (2010), 1029–1055. doi:10.1112/S0010437X10004653 ## On some generic very cuspidal representations Stephen DeBacker and Mark Reeder #### Abstract Let G be a reductive p-adic group. Given a compact-mod-center maximal torus $S \subset G$ and sufficiently regular character χ of S, one can define, following Adler, Yu and others, a supercuspidal representation $\pi(S,\chi)$ of G. For S unramified, we determine when $\pi(S,\chi)$ is generic, and which generic characters it contains. #### Contents | 1 | Introduction | 1029 | |------------|--|------| | 2 | Some general results | 1031 | | 3 | Generic characters and representations | 1036 | | 4 | Local expansions | 1038 | | 5 | Some Galois cohomology | 1044 | | 6 | The generic characters in a very cuspidal representation | 1050 | | 7 | Generic representations in L-packets | 1052 | | References | | 1054 | #### 1. Introduction Let k be a finite extension of the p-adic numbers \mathbb{Q}_p for some prime p. A connected reductive k-group \mathbf{G} is called *unramified* if it is quasi-split over k and split over an unramified extension of k. We let G denote the group of k-rational point of \mathbf{G} ; this convention applies to all algebraic k-groups. Let **G** be an unramified k-group with center **Z**. Given an unramified maximal k-torus $\mathbf{S} \subset \mathbf{G}$ such that \mathbf{S}/\mathbf{Z} is anisotropic, and a sufficiently regular character $\chi: S \to \mathbb{C}^{\times}$, one can construct (cf. [Adl98, Car84, Ger75, How77, Yu01]) an irreducible supercuspidal representation $\pi(S, \chi)$ of G; these are examples of *very cuspidal* representations and are the representations we consider in this paper. We have $$\pi(S, \chi) = \operatorname{ind}_{K_{\pi}}^{G} \kappa(S, \chi),$$ (smooth compact induction) where x = x(S) is the unique [Tit79, § 3.6.1] fixed point of S in the reduced Bruhat–Tits building of G, K_x is an open subgroup of G that fixes x and has compact image in G/Z, and $\kappa(S,\chi)$ is a finite-dimensional representation of K_x constructed from the pair (S,χ) . Received 21 March 2008, accepted in final form 21 September 2009, published online 18 March 2010. 2000 Mathematics Subject Classification 22E50 (primary), 20G25, 20G10 (secondary). Keywords: generic representation, very cuspidal, Whittaker model, Moy-Prasad depth. The first author was supported by NSF grant DMS-0500667. The second author was supported by NSF grant DMS-0801177. This journal is © Foundation Compositio Mathematica 2010. Let $\mathbf{B} \subset \mathbf{G}$ be a Borel subgroup defined over k. Fix a maximal k-torus $\mathbf{T} \subset \mathbf{B}$, and let \mathbf{U} be the unipotent radical of \mathbf{B} . A character $\psi : U \to \mathbb{C}^{\times}$ is called *generic* if the stabilizer of ψ in T is exactly the center Z. An irreducible admissible representation π of G is called *generic* if there exists a generic character ψ of U such that $\operatorname{Hom}_U(\pi, \psi)$ is non-zero (in which case, we say ψ occurs in $\pi(S, \chi)$). For any representation π , one may ask the following questions. - (i) Is π generic? - (ii) If π is generic, which generic characters occur in π ? The purpose of this paper is to answer both questions for the very cuspidal representation $\pi(S,\chi)$. The answer to question (i) is as follows. THEOREM 1.1. The very cuspidal representation $\pi(S,\chi)$ is generic if and only if x(S) is a hyperspecial vertex in the reduced Bruhat–Tits building of G. The second question is a bit more subtle. We now assume (as we may) that x = x(S) is a hyperspecial vertex in the apartment of T in the reduced building of G. Let r (a positive integer) be the depth of χ , and let $$G_{x,r}, \quad U_{x,r} := G_{x,r} \cap U, \quad T_r$$ be the Moy-Prasad filtration subgroups, with similar groups for r^+ . We say that a character ψ of U has generic depth r at x if the restriction of ψ to U_{x,r^+} is trivial, giving a character ψ_r of $U_{x,r}/U_{x,r^+}$, and if the stabilizer in T_0 of ψ_r is contained in $Z \cdot T_{0^+}$. Here, T_0 is the parahoric subgroup of T and T_{0^+} is the pro-unipotent radical of T_0 . Since x is hyperspecial, a character of generic depth r at x is indeed generic, as defined previously. One answer to question (ii) is as follows. THEOREM 1.2. Let $\pi = \pi(S, \chi)$ as above have depth r (see § 2.5). Assume that x(S) is hyperspecial. Then $\operatorname{Hom}_U(\pi, \psi) \neq 0$ if and only if the T-orbit of ψ contains a character of generic depth r at x(S). To give a quantitative answer to question (ii), let $H^1(k, \mathbf{L})$ denote the Galois cohomology of an algebraic k-group \mathbf{L} , and given an inclusion of k-groups $\mathbf{L} \subset \mathbf{M}$, let $$\ker^1(\mathbf{L},\mathbf{M}) := \ker[H^1(k,\mathbf{L}) \to H^1(k,\mathbf{M})]$$ denote the kernel of the map on cohomology induced by the inclusion. The group $\ker^1(\mathbf{Z}, \mathbf{G})$ acts simply–transitively on T-orbits of generic characters of U. Let $\pi(S, \chi)$ be a very cuspidal representation of the type considered in this paper and assume that x(S) is hyperspecial. THEOREM 1.3. The subgroup $\ker^1(\mathbf{Z}, \mathbf{S})$ of $\ker^1(\mathbf{Z}, \mathbf{G})$ acts simply–transitively on the T-orbits of generic characters which occur in $\pi(S, \chi)$. The final section of the paper relates this result to the L-packets of supercuspidal representation constructed recently in [DR09, Ree08]. Roughly speaking, we show that Theorem 1.3 is compatible with the internal parametrization of the generic part of our L-packets. See § 7 for more details. ## 2. Some general results We begin with minimal hypotheses that will be strengthened as we proceed. Let k be a locally compact field, complete with respect to a discrete valuation val: $k^{\times} \to \mathbb{Z}$. Denote by \mathfrak{p} the prime ideal in the ring of integers \mathfrak{o} of k. Let $G = \mathbf{G}(k)$ be the group of k-rational points of a connected reductive k-group \mathbf{G} . Let $\mathcal{B}(G)$ denote the reduced Bruhat–Tits building of G. For $x \in \mathcal{B}(G)$ and $s \in \mathbb{R}_{\geq 0}$, let $G_{x,s}$ and G_{x,s^+} denote the Moy–Prasad filtration subgroups of G, as defined in [MP94]. #### 2.1 A structure result Given two points $x, y \in \mathcal{B}(G)$, let [x, y] denote the geodesic in $\mathcal{B}(G)$ from x to y. There exists an apartment \mathcal{A} in $\mathcal{B}(G)$ containing both x and y; the geodesic [x, y] is the straight line segment from x to y in the affine space \mathcal{A} . LEMMA 2.1. Suppose $x, y \in \mathcal{B}(G)$ and $z \in [x, y]$. Then we have: (1) $$G_{z,s^+} = (G_{x,s^+} \cap G_{z,s^+}) \cdot (G_{z,s^+} \cap G_{u,s^+})$$ for all $s \ge 0$; (2) $$G_{z,s} = (G_{x,s} \cap G_{z,s}) \cdot (G_{z,s} \cap G_{y,s})$$ for all $s > 0$. *Proof.* We prove statement (2). Statement (1) can be obtained by substituting ' s^+ ' for 's' in the following. Let \mathcal{A} be an apartment in $\mathcal{B}(G)$ containing both x and y. Let \mathbf{A} be the maximal k-split torus of \mathbf{G} corresponding to \mathcal{A} . Then \mathcal{A} is a homogeneous space for the vector group $V := X_*(\mathbf{A}) \otimes \mathbb{R}$, and there is $v \in V$ such that y = x + v. Let **P** denote a minimal parabolic k-subgroup containing **A**. Let Φ denote the set of roots of **A** in **G** and let $\Phi^+ \subset \Phi$ be the roots of **A** in **P**. Without loss of generality, we may assume that **P** is chosen so that $$\langle \alpha, v \rangle \geqslant 0$$ for all $\alpha \in \Phi^+$. Let \mathbf{M} be the centralizer of \mathbf{A} in \mathbf{G} and let \mathbf{U} be the unipotent radical of \mathbf{P} . Then we have the Levi decomposition $\mathbf{P} = \mathbf{M}\mathbf{U}$. Let $\bar{\mathbf{P}}$ denote the parabolic k-subgroup which is opposite to \mathbf{P} with respect to \mathbf{M} and let $\bar{\mathbf{U}}$ denote the unipotent radical of $\bar{\mathbf{P}}$. Since s > 0 we have, for all $w \in \mathcal{A}$, the Iwahori decomposition $$G_{w,s} = (G_{w,s} \cap \bar{U}) \cdot M_s \cdot (G_{w,s} \cap U),$$ where $$M_s = \bigcap_{w' \in \mathcal{A}} G_{w',s}.$$ Since $$M_s \subseteq G_{x,s} \cap G_{y,s} \cap G_{z,s}$$ it suffices to show: (a) $$(G_{z,s} \cap \bar{U}) \subseteq (G_{x,s} \cap G_{z,s})$$; and (b) $$(G_{z,s} \cap U) \subseteq (G_{z,s} \cap G_{y,s}).$$ We prove part (b). The proof of part (a) is similar. Let Ψ denote the set of affine roots of **G** with respect to **A** and the valuation on k. If $\psi \in \Phi$, then let $\dot{\psi} \in \Phi$ denote the gradient of ψ . To prove part (b) it suffices to show that if $\psi \in \Psi$ is such that $\psi(z) \ge s$ and $\langle \dot{\psi}, v \rangle \ge 0$, then $\psi(y) \ge s$. But we have z = y - tv for some $t \ge 0$, so $$\psi(y) = \psi(z + tv) = \psi(z) + t\langle \dot{\psi}, v \rangle \geqslant s + t\langle \dot{\psi}, v \rangle \geqslant s,$$ since $t\langle \dot{\psi}, v \rangle \geqslant 0$. #### 2.2 A result on fixed vectors Fix a smooth representation (π, V) of G. For each compact open subgroup K of G, let $$[K]: V \longrightarrow V^K$$ denote the projection operator, given by $$[K]v = \int_K \pi(k)v \ dk,$$ where dk is the Haar measure on K for which $\int_K dk = 1$. LEMMA 2.2. Suppose $x, y \in \mathcal{B}(G)$ and $s \in \mathbb{R}_{\geqslant 0}$. If $v \in V^{G_{y,s^+}}$ and $[G_{x,s^+}]v \neq 0$, then $V^{G_{z,s^+}} \neq \{0\}$ for all $z \in [x,y]$. *Proof.* Fix $z \in [x, y]$. We actually show that $[G_{z,s^+}]v \neq 0$. From Lemma 2.1, we have $$\begin{split} [G_{x,s^+}][G_{z,s^+}]v &= [G_{x,s^+}][G_{x,s^+} \cap G_{z,s^+}][G_{z,s^+}
\cap G_{y,s^+}]v \\ &= [G_{x,s^+}][G_{x,s^+} \cap G_{z,s^+}]v \\ &= [G_{x,s^+}]v \neq 0, \end{split}$$ hence $[G_{z,s^+}]v \neq 0$. #### 2.3 Generalized s-facets Let \mathfrak{g} be the set of k-rational points of the Lie algebra of \mathbf{G} . We have analogous filtration subgroups $\mathfrak{g}_{x,s}$, \mathfrak{g}_{x,s^+} , for $x \in \mathcal{B}(G)$ and $s \in \mathbb{R}$. We recall here some basic facts about generalized s-facets from [DeB02, § 3]. If we assume $s \ge 0$, then everything in this section remains valid when ' \mathfrak{g} ' is replaced by 'G'. If $x, y \in \mathcal{B}(G)$, we say that x is related to y if $$\mathfrak{g}_{x,s} = \mathfrak{g}_{y,s}$$ and $\mathfrak{g}_{x,s^+} = \mathfrak{g}_{y,s^+}$. The equivalence classes in $\mathcal{B}(G)$ defined by this relation are called *generalized s-facets*. If F is a generalized s-facet and $x \in F$, we set $$\mathfrak{g}_F := \mathfrak{g}_{x,s}$$ and $\mathfrak{g}_F^+ = \mathfrak{g}_{x,s^+}$. Suppose that F is a generalized s-facet in $\mathcal{B}(G)$. If \mathcal{A} is any apartment in $\mathcal{B}(G)$ meeting F, we let $\dim_{\mathcal{A}}(F)$ denote the dimension of the smallest affine subspace of \mathcal{A} which contains $\mathcal{A} \cap F$. From [DeB02, Corollary 3.2.14], if \mathcal{A}' is another apartment in $\mathcal{B}(G)$ meeting F, then $\dim_{\mathcal{A}}(F) = \dim_{\mathcal{A}'}(F)$. Therefore, it makes sense to define the dimension of F as $$\dim(F) = \dim_{\mathcal{A}}(F),$$ for any apartment A meeting F. For a generalized s-facet F, we let \bar{F} denote the closure of F in the natural (metric) topology on $\mathcal{B}(G)$. From [DeB02, 3.2], the boundary $$\partial F := \bar{F} - F$$ is a disjoint union of a finite number of generalized s-facets, each having dimension strictly less than that of F. LEMMA 2.3. Let F_1 , F_2 be two generalized s-facets. Then we have $$F_1 \subseteq \bar{F}_2 \Leftrightarrow \mathfrak{g}_{F_1}^+ \subseteq \mathfrak{g}_{F_2}^+ \subseteq \mathfrak{g}_{F_2} \subseteq \mathfrak{g}_{F_1}.$$ *Proof.* The implication ' \Rightarrow ' is [DeB02, Corollary 3.2.19]. For the other implication, it is enough to show that for any two points x_1, x_2 , with $x_i \in F_i$, we have the half-open segment $(x_1, x_2] := [x_1, x_2] - \{x_1\}$ contained in F_2 . Choose an apartment \mathcal{A} containing x_1 and x_2 . Let \mathbf{A} be the maximal k-split torus corresponding to \mathcal{A} and let Ψ be the set of affine roots of \mathbf{G} with respect to \mathbf{A} and the valuation on k. To prove that $(x_1, x_2] \subseteq F_2$, we must show that for any $\psi \in \Psi$, the affine function $\psi - s$ is always positive, always zero, or always negative on $(x_1, x_2]$. If $\psi(x_1) > s$, then since $\mathfrak{g}_{F_1}^+ \subseteq \mathfrak{g}_{F_2}^+$, we have $\psi(x_2) > s$, so $\psi - s$ is positive on all of $[x_1, x_2]$. If $\psi(x_1) < s$, then since $\mathfrak{g}_{F_2} \subseteq \mathfrak{g}_{F_1}$, we have $\psi(x_2) < s$, so $\psi - s$ is negative on all of $[x_1, x_2]$. Finally, if $\psi(x_1) = s$, then either $\psi - s \equiv 0$ on $[x_1, x_2]$ or x_1 is the unique zero of $\psi - s$ on $[x_1, x_2]$, in which case $\psi - s$ is always positive or always negative on $(x_1, x_2]$. ### 2.4 Cuspidal representations Let f denote the residue field of k. Let $s \ge 0$ and fix a generalized s-facet F. Set $$\mathsf{L}_F := G_F/G_F^+$$. If s = 0, then L_F is the group of \mathfrak{f} -rational points of a connected reductive \mathfrak{f} -group. If s > 0, then L_F is a finite-dimensional vector space over \mathfrak{f} . Suppose that H is a generalized s-facet containing F in its closure. From Lemma 2.3, we have $$G_F^+ \subseteq G_H^+ \subseteq G_H \subseteq G_F$$. Let L_F^H denote the image of G_H^+ in L_F . A finite-dimensional complex representation (σ, W) of L_F is said to be *cuspidal* if for all generalized s-facets H for which $F \subseteq \partial H$, we have $$W^{\mathsf{L}_F^H} = \{0\}.$$ Let $\mathcal{C}(\mathsf{L}_F)$ denote the set of equivalence classes of irreducible cuspidal representations of L_F . If s = 0, then the above definition agrees with the usual definition of a cuspidal representation of a finite reductive group. If s > 0, then L_F is abelian and $\mathcal{C}(L_F)$ consists of those characters of L_F which are non-trivial on L_F^H whenever $F \subseteq \partial H$. #### 2.5 A discreteness criterion Suppose that (π, V) is an irreducible admissible representation of G of depth s. This means there is some $x \in \mathcal{B}(G)$ for which $V^{G_{x,s^+}} \neq \{0\}$ and that $V^{G_{y,r^+}} = \{0\}$ for any $y \in \mathcal{B}(G)$ and r < s. The aim of this section is to give a criterion for the set $$\mathcal{X}(\pi) := \{ x \in \mathcal{B}(G) \mid V^{G_{x,s^+}} \neq \{0\} \}$$ to be discrete. Note first of all that $\mathcal{X}(\pi)$ is a disjoint union of generalized s-facets, preserved under the action of G on $\mathcal{B}(G)$, and $\mathcal{X}(\pi)$ is closed in $\mathcal{B}(G)$, by Lemma 2.3. LEMMA 2.4. Suppose that F is a generalized s-facet in $\mathcal{X}(\pi)$. The L_F -module $V^{G_F^+}$ is cuspidal if and only if F is maximal among the generalized s-facets in $\mathcal{X}(\pi)$. *Proof.* The generalized s-facet F is not maximal among the generalized s-facets in $\mathcal{X}(\pi)$ if and only if there is a generalized s-facet H in $\mathcal{X}(\pi)$ for which $F \subset \partial H$; equivalently, $F \subset \partial H$ and $V^{G_H^+} \neq \{0\}$ or, from Lemma 2.3, $F \subset \partial H$ and $$(V^{G_F^+})^{\mathsf{L}_F^H} = V^{G_H^+} \neq \{0\}.$$ The lemma follows. COROLLARY 2.5. Suppose that F is a generalized s-facet in $\mathcal{X}(\pi)$ and the L_F -module $V^{G_F^+}$ is cuspidal. If F is a minimal generalized s-facet in $\mathcal{B}(G)$, then $\mathcal{X}(\pi)$ is discrete; in fact, we have $\mathcal{X}(\pi) = \{gF \mid g \in G\}$. *Proof.* A minimal generalized s-facet is a point, so we have $F = \{x\}$ for some $x \in \mathcal{B}(G)$. From Lemma 2.4 it follows that x is isolated in $\mathcal{X}(\pi)$. We choose a non-zero vector $v \in V^{G_{x,s^+}}$. Now suppose that y is another point in $\mathcal{X}(\pi)$. By definition we have $V^{G_{y,s^+}} \neq \{0\}$, so that $[G_{y,s^+}]V \neq \{0\}$. Since V is irreducible, there is $g \in G$ such that $$[G_{y,s^+}]\pi(g)v \neq 0.$$ Applying $\pi(g)^{-1}$, this means that $$[G_{g^{-1}y,s^+}]v \neq 0.$$ By Lemma 2.2, the geodesic $[x, g^{-1}y]$ is contained in $\mathcal{X}(\pi)$. However, x is isolated in $\mathcal{X}(\pi)$, so $x = g^{-1}y$ and y = gx. Hence, the generalized s-facet containing y is also minimal, so $\mathcal{X}(\pi)$ is discrete. Remark. The first author and Prasad have shown (unpublished) that any two maximal generalized s-facets occurring in $\mathcal{X}(\pi)$ must be associate, in the sense of [DeB02, Definition 3.3.4]. Moreover, if $\mathcal{X}(\pi)$ is discrete, then π must be supercuspidal. There exist (non-trivial) examples of supercuspidal representations for which $\mathcal{X}(\pi)$ is not discrete. #### 2.6 Very cuspidal representations We now impose the additional assumptions of [Adl98, 2.1.1] on the residual characteristic p of k. Namely p > 2 and p does not divide the order of the center of the simply connected cover of the derived group of \mathbf{G} and moreover $p \neq 3$ if \mathbf{G} has a simple factor of type G_2 . If k has positive characteristic we also exclude p = 3 (respectively, p = 3, 5) if \mathbf{G} has a simple factor of type F_4 (respectively, E_8). Under these assumptions, there exists, and we fix, a non-degenerate symmetric $\operatorname{Ad}(G)$ -invariant bilinear form $\langle , \rangle : \mathfrak{g} \times \mathfrak{g} \to k$ which restricts to a non-degenerate pairing $\mathfrak{g}_{x,r}/\mathfrak{g}_{x,r^+} \times \mathfrak{g}_{x,-r}/\mathfrak{g}_{x,(-r)^+} \to \mathfrak{f}$ for all $r \in \mathbb{R}$. Fix also a character $\Lambda : k^+ \to \mathbb{C}^\times$ of the additive group of k, with $\ker \Lambda = \mathfrak{p}$. Let $x \in \mathcal{B}(G)$ and r > 0. Identifying $G_{x,r}/G_{x,r^+} = \mathfrak{g}_{x,r}/\mathfrak{g}_{x,r^+}$, as we may, any element $X \in \mathfrak{g}_{x,-r}$ determines a character $$\chi_X: G_{x,r}/G_{x,r^+} \longrightarrow \mathbb{C}^{\times},$$ by the formula $$\chi_X(Y + \mathfrak{g}_{x,r^+}) = \Lambda \langle X, Y \rangle.$$ The assignment $X \mapsto \chi_X$ is a bijection $$\mathfrak{g}_{x,-r}/\mathfrak{g}_{x,(-r)^+} \xrightarrow{\sim} \operatorname{Irr}(G_{x,r}/G_{x,r^+}).$$ A semi-simple element $X \in \mathfrak{g}$ has depth -r < 0 if $X \in \mathfrak{g}_{x,-r}$ for some $x \in \mathcal{B}(G)$ and $X \notin \mathfrak{g}_{y,(-r)^+}$ for any $y \in \mathcal{B}(G)$. As in [Adl98, 2.2.3], a semi-simple element $X \in \mathfrak{g}$ of depth -r is called good if the centralizer $\mathbf{M} = C_{\mathbf{G}}(X)$ contains a maximal torus \mathbf{S} splitting over a tame extension E/k, such that $\operatorname{val}_E(d\alpha(X)) = -r$ for every root of \mathbf{S} in \mathbf{G} outside of \mathbf{M} . Note that r is an integer if the extension E/k is unramified. Suppose that X is good of depth -r with centralizer $\mathbf{M} = C_{\mathbf{G}}(X)$. Let $\mathcal{B}(M)$ be the image of the building of M in $\mathcal{B}(G)$. By [KM03, 2.3.1] we have that $$\mathcal{B}(M) = \{ x \in \mathcal{B}(G) \mid X \in \mathfrak{g}_{x,-r} \backslash \mathfrak{g}_{x,(-r)^{+}} \}. \tag{1}$$ Assume further that \mathbf{M}/\mathbf{Z} is anisotropic (we say \mathbf{M} is minisotropic). Then $\mathcal{B}(M) = \{x\}$ consists of the unique point $x \in \mathcal{B}(G)$ such that $X \in \mathfrak{g}_{x,-r} \setminus \mathfrak{g}_{x,(-r)^+}$. For such an element X, Adler's construction in [Adl98] produces many finite-dimensional representations κ_X of the stabilizer
K_x of x in G, with the property that the compactly induced representation $$\operatorname{ind}_{K_{\pi}}^{G} \kappa_{X} \tag{2}$$ is irreducible supercuspidal of depth r and contains the character χ_X upon restriction to $G_{x,r}$. Let Π_X be the set of these representations (2). Each $\pi \in \Pi_X$ is an example of a very cuspidal representation. LEMMA 2.6. Let the semi-simple element $X \in \mathfrak{g}$ be good of depth -r, with minisotropic centralizer $\mathbf{M} = C_{\mathbf{G}}(X)$ and let $\pi \in \Pi_X$. Then $\mathcal{X}(\pi)$ is discrete. Proof. Note first that (1) implies that $\mathcal{B}(M) = \{x\}$ is a generalized (-r)-facet in $\mathcal{B}(G)$; we denote it by F. By [DeB02, Lemma 3.2.5], F is also a generalized r-facet in $\mathcal{B}(G)$. Let V be the space of π . We show that the L_F -module $V^{G_F^+}$ is cuspidal. The character χ_X appears in $V^{G_{x,r^+}}$. We first claim that any other character χ_Y of $G_{x,r}$ which appears in $V^{G_{x,r^+}}$ is K_x -conjugate to χ_X . Since π is irreducible, there is a $g \in G$ so that $$(X + \mathfrak{g}_{x,(-r)^+}) \cap \operatorname{Ad}(g)(Y + \mathfrak{g}_{x,(-r)^+})$$ is non-empty (see [MP94, 7.2]). This implies that there is $Z \in \mathfrak{g}_{x,(-r)^+}$ such that $X + Z \in \mathfrak{g}_{gx,-r}$. Let \mathfrak{m} be the k-rational points in the Lie algebra of M. From [Adl98, 2.3.2], there is an $h \in G_{x,0^+}$ so that $$Ad(h)(X+Z) \in X + \mathfrak{m}_{x,(-r)^+}.$$ Moreover, the element $\mathrm{Ad}(h)(X+Z)$ is still good of depth -r. However, $\mathrm{Ad}(h)(X+Z)$ also belongs to $\mathfrak{g}_{hqx,-r}$. From (1) we have hgx=x. Hence, $g\in K_x$, and the claim is proved. Hence, it is enough to show that χ_X is cuspidal. If not, there exists a generalized r-facet H such that $F \subset \partial H$ and χ_X is trivial on L_F^H . This implies that $X \in \mathfrak{g}_{y,-r}$ for all $y \in H$. Using (1) again, we have $H \subset \{x\}$, a contradiction. Since F is a minimal generalized s-facet and $V^{G_F^+}$ is cuspidal, it follows from Corollary 2.5 that $\mathcal{X}(\pi)$ is discrete. #### 3. Generic characters and representations We now add the assumption that \mathbf{G} is unramified. That is, \mathbf{G} is quasi-split over k and \mathbf{G} splits over an unramified extension of k. Let \mathbf{U} denote the unipotent radical of a k-Borel subgroup \mathbf{B} of \mathbf{G} . Let \mathbf{T} be a maximal k-torus in \mathbf{B} and let \mathbf{A} be the maximal k-split subtorus of \mathbf{T} . Let Φ (respectively, Φ^+) be the set of roots of \mathbf{A} in \mathbf{G} (respectively, \mathbf{U}) and let Π be the simple roots in Φ^+ . For each $\alpha \in \Phi$ let \mathbf{U}_{α} be the corresponding root group; it is the product of \mathbf{T} -root groups for the roots of \mathbf{T} which restrict to α . Then \mathbf{U}_{α} is defined over k and we let $U_{\alpha} = \mathbf{U}_{\alpha}(k)$. Let $j: \mathbf{G} \to \overline{\mathbf{G}} := \mathbf{G}/\mathbf{Z}$ be the adjoint morphism. For any intermediate k-group $\mathbf{Z} \subset \mathbf{L} \subset \mathbf{G}$, we set $$\bar{\mathbf{L}} = j(\mathbf{L}) \simeq \mathbf{L}/\mathbf{Z}$$ and let $\bar{L} = \bar{\mathbf{L}}(k)$ denote the group of k-rational points in $\bar{\mathbf{L}}$. For example, $\bar{\mathbf{B}}$ is a k-Borel subgroup of $\bar{\mathbf{G}}$ containing the maximal k-torus $\bar{\mathbf{T}}$ of $\bar{\mathbf{G}}$. A character $\xi: U \to \mathbb{C}^{\times}$ is generic if its stabilizer in \overline{T} is trivial. The group \overline{T} acts simply–transitively on the set Ξ of generic characters of U. Hence, the finite group $\overline{T}/j(T)$ acts simply–transitively on the set Ξ/T of T-orbits of generic characters. #### 3.1 Generic representations We say that an irreducible admissible representation π of G is generic if the set $$\Xi(\pi) := \{ \xi \in \Xi \mid \operatorname{Hom}_{U}(\pi, \xi) \neq 0 \}$$ is non-empty. From now on our representations will have positive *integral* depth. Let (π, V) be an irreducible supercuspidal representation of G of depth $r \in \mathbb{Z}_{>0}$, of the form $$\pi = \operatorname{ind}_{K_x}^G \kappa, \tag{3}$$ where x is a vertex in $\mathcal{B}(G)$, K_x is the stabilizer of x in G, and κ is a finite-dimensional representation of K_x which is trivial on G_{x,r^+} . In § 2.5 we studied the set $$\mathcal{X}(\pi) = \{ x \in \mathcal{B}(G) \mid V^{G_{x,r^+}} \neq \{0\} \}.$$ Since **G** is unramified, the building $\mathcal{B}(G)$ contains hyperspecial vertices. LEMMA 3.1. Suppose that π is generic of depth $r \in \mathbb{Z}_{>0}$ and $\mathcal{X}(\pi)$ is discrete. Then x is hyperspecial. *Proof.* This proof is very similar to that of [DR09, Lemma 6.1.2]. Let Ψ be the set of affine roots of **A** in **G** with respect to the valuation on k. If $\psi \in \Psi$, let $\dot{\psi} \in \Phi$ denote its gradient. Since **G** is unramified we may choose a hyperspecial vertex o in \mathcal{A} . Choose an alcove C in \mathcal{A} so that $o \in \overline{C}$ and $$\Phi^+ = \{ \dot{\psi} : \psi(o) = 0 \text{ and } \psi|_C > 0 \}.$$ Since we are free to conjugate x by elements of G, we may and do assume that $x \in \bar{C}$. For each $y \in \bar{C}$, set $$\Psi_y := \{ \psi \in \Psi : \psi(y) = 0 \}, \quad \Psi_y^+ := \{ \psi \in \Psi_y : \psi|_C > 0 \}.$$ Then Ψ_y is a spherical root system and Ψ_y^+ is a set of positive roots in Ψ_y . Let $\tilde{\Pi}_y$ be the unique base of Ψ_y contained in Ψ_y^+ . Let Φ_y , Φ_y^+ , Π_y be the respective sets of gradients of the affine roots in $\Psi_y, \Psi_y^+, \tilde{\Pi}_y$. Note that $\Phi^+ = \Phi_o^+$. The roots in Π_y form a base of the reduced root system consisting of the non-divisible roots in Φ_y . It follows from the affine Bruhat decomposition that $G = UNK_y$, where N is the normalizer of A in G and K_y is the stabilizer of y in G. We may choose a set $N(y) \subset N$ of representatives for the double cosets in $U \setminus G/K_y$, such that $n\Phi_y^+ \subset \Phi_o^+$ for each $n \in N(y)$. Now let $\xi \in \Xi(\pi)$. Then from [Rod73] we have $$\mathbb{C} \simeq \operatorname{Hom}_{G}(\operatorname{ind}_{K_{x}}^{G} \kappa, \operatorname{Ind}_{U}^{G} \xi) \simeq \operatorname{Hom}_{K_{x}}(\kappa, \operatorname{Ind}_{U}^{G} \xi). \tag{4}$$ By Mackey theory, the restriction of $\operatorname{Ind}_U^G \xi$ to K_x is a direct sum $$(\operatorname{Ind}_U^G \xi)|_{K_x} = \bigoplus_{n \in N(x)} \operatorname{Ind}_{U^n \cap K_x}^{K_x} \xi^n.$$ From (4) there is a unique $n \in N(x)$ such that ξ^n appears in the restriction of κ to $U^n \cap K_x$. Since κ is trivial on G_{x,r^+} , we have that ξ^n is trivial on $U^n \cap G_{x,r^+}$, so ξ is trivial on $U \cap G_{nx,r^+}$. For r > 0, the Lie algebra L_x is abelian. However, since r is an integer, we can identify L_x and the Lie algebra of $G_x(\mathfrak{f})$ as $\mathsf{T}(\mathfrak{f})$ -modules. (Here, G_x is the connected reductive \mathfrak{f} -group associated with x and T denotes the \mathfrak{f} -torus in G_x corresponding to T .) Consequently, we can speak of parabolic, Borel, Levi and nilradical subspaces of L_x , which are defined by the usual root-space decompositions. Since $n\Psi_x^+ \subset \Psi_o^+$, it follows that the image of $U^n \cap G_{x,r}$ in L_x is the nilradical of a Borel subspace of L_x . Let w = nA be the image of n in the Weyl group N/A. We claim that $w\Pi_x \subset \Pi_o$. Since $n\Psi_x^+ \subset \Psi_o^+$, have $w\Pi_x \subset \Phi_o^+$. So suppose $\beta \in \Pi_x$ and $w\beta \in \Phi_o^+ - \Pi_o$. Then the root group $U_{w\beta}$ is contained in the commutator subgroup of U, so that ξ is trivial on $U_{w\beta}$. Hence, $U_{\beta} \subset \ker \xi^n$. Since $\beta \in \Pi_x$, this implies that ξ^n is trivial on the nilradical \mathfrak{n} of the maximal parabolic subspace of L_x whose Levi subspace contains the β -root space. There is a facet $F \subset \mathcal{A}$ of positive dimension such that $x \in \overline{F}$ and \mathfrak{n} is the image of $G(k)_{y,r^+}$ in L_x for any $y \in F$. Hence, $V^{G_{y,r^+}} \neq \{0\}$ for all $y \in F$, contradicting the discreteness of $\mathcal{X}(\pi)$. We have proved that $w\Pi_x \subset \Pi_o$. Since both x and o are vertices in \mathcal{A} , we have $$|\Pi_x| = |\Pi_o| = \dim \mathcal{A},$$ implying that $w\Pi_x = \Pi_o$. Hence, for any $\psi \in \tilde{\Pi}_o$ there is $k_{\psi} \in \mathbb{Z}$ such that $n^{-1}\psi(x) = k_{\psi}$. Define $\lambda \in \bar{X}$ by the values $\langle \lambda, \beta \rangle = k_{\psi}$ for every absolute root β of **T** which restricts to $\dot{\psi}$. Then λ is Galois-fixed, so the translation t_{λ} preserves the apartment \mathcal{A} . For all $\psi \in \tilde{\Pi}_{o}$, we have $$\psi(t_{\lambda} \cdot o) = \langle \lambda, \dot{\psi} \rangle = k_{\psi} = \psi(n \cdot x).$$ It follows that $n \cdot x = t_{\lambda} \cdot o$ is hyperspecial, so x is hyperspecial. COROLLARY 3.2. Suppose that $\pi \in \Pi_X$ is very cuspidal, as in § 2.6, and generic. Then x is hyperspecial. *Proof.* This is immediate from Lemmas 3.1 and 2.6. #### 3.2 Depth of generic characters Given $r \ge 0$ and a hyperspecial vertex $x \in \mathcal{A}$, we say that a character ξ of U has generic depth r at x if ξ is trivial on $U \cap G_{x,r^+}$ and the restriction of ξ to $U \cap G_{x,r}$ has trivial stabilizer in the parahoric subgroup \bar{T}_0 of \bar{T} . This makes sense because \bar{T}_0 fixes x and preserves the Moy–Prasad filtration subgroups at x. Since x is hyperspecial, we have $U_{\alpha} \cap G_{x,r^+} \neq
U_{\alpha} \cap G_{x,r}$ for all $\alpha \in \Phi$. It follows that ξ has generic depth r at x exactly when ξ is trivial on $U_{\alpha} \cap G_{x,r^+}$ and non-trivial on $U_{\alpha} \cap G_{x,r}$, for each $\alpha \in \Pi$. Moreover, characters of generic depth r are generic. Let $\Xi_{x,r} \subset \Xi$ denote the set of characters of U having generic depth r at x. It is clear that \overline{T}_0 preserves $\Xi_{x,r}$. LEMMA 3.3. The group \bar{T}_0 acts simply–transitively on $\Xi_{x,r}$. *Proof.* We need only prove transitivity. Let $\xi, \xi' \in \Xi_{x,\underline{r}}$. We have $\xi' = {}^t\xi$ for some (unique) $t \in \overline{T}$. We must show that $t \in \overline{T}_0$. We may assume that $t \in \overline{A}$ and it suffices to show that $|\alpha(t)| = 1$ for every $\alpha \in \Pi$. If $|\alpha(t)| > 1$, then $$\operatorname{Ad}(t) \cdot (U_{\alpha} \cap G_{x,r}) \subset U_{\alpha} \cap G_{x,r^{+}} \subset \ker \xi' = \ker^{t} \xi,$$ so $U_{\alpha} \cap G_{x,r} \subset \ker \xi$, contradicting the assumption. Interchanging ξ and ξ' , we see that $|\alpha(t)| < 1$ is also impossible. Hence, $|\alpha(t)| = 1$, as desired. LEMMA 3.4. Suppose that the representation π in (3) is generic and $\mathcal{X}(\pi)$ is discrete, so that x is hyperspecial, by Lemma 3.1. Then for any $\xi \in \Xi(\pi)$ there exists $t \in T$ such that $\xi^t \in \Xi_{x,r}$. Moreover, if t' is another element of T with the property that $\xi^{t'} \in \Xi_{x,r}$, then $t' \in UtK_x$. *Proof.* In fact, we show that we can choose $t \in A$. Recall that $N(x) \subset N$ is a set of representatives for $U \setminus G/K_x$. Since x is hyperspecial, the Iwasawa decomposition allows us to choose $N(x) \subset A$. If $\xi \in \Xi(\pi)$, then by Mackey theory again, we have $$\operatorname{Hom}_U(\pi,\xi) \simeq \bigoplus_{t \in N(x)} \operatorname{Hom}_{U \cap K_x}(\kappa,\xi^t).$$ Hence, there is a unique coset UtK_x such that $$\operatorname{Hom}_{U\cap K_x}(\kappa,\xi^t)\neq 0.$$ It is immediate that ξ^t is trivial on $U \cap G_{x,r^+}$. The argument in the proof of Lemma 3.1 shows that ξ^t cannot be trivial on $U \cap G_{x,r}$. Hence, ξ^t has generic depth r at x, as claimed. \square COROLLARY 3.5. Suppose that the representation π in (3) is generic and $\mathcal{X}(\pi)$ is discrete, so that x is hyperspecial. Then every T-orbit in $\Xi(\pi)$ meets $\Xi_{x,r}$ in a single T_0 -orbit. The group $\overline{T}_0/j(T_0)$ acts simply-transitively on $\Xi(\pi)/T$. *Proof.* The argument in the proof of Lemma 3.3, using instead $t \in T$, shows that if two characters in $\Xi_{x,r}$ are T-conjugate, then they are T_0 -conjugate. Hence, we have an injection on orbit spaces: $$\Xi_{x,r}/T_0 \hookrightarrow \Xi/T.$$ (5) Lemma 3.4 shows every T-orbit in $\Xi(\pi)$ meets $\Xi_{x,r}$. Hence, every T-orbit in $\Xi(\pi)$ meets $\Xi_{x,r}$ in a single T_0 -orbit. The last assertion follows from Lemma 3.3 itself. #### 4. Local expansions In Lemma 3.1 we proved one direction of Theorem 1.1; in this section we prove the other direction. We now assume that k has characteristic zero. Until we reach Corollary 4.8, we require only that G be quasi-split over k. We use some results on Galois cohomology, whose proofs are deferred to § 5. #### 4.1 Regular nilpotent elements Let \mathfrak{g} denote the Lie algebra of \mathbf{G} . An element $Y \in \mathfrak{g}$ is regular if its centralizer $C_{\mathbf{G}}(Y)$ has smallest possible dimension, namely dim $C_{\mathbf{G}}(Y) = \dim \mathbf{T}$. The regular nilpotent elements in \mathfrak{g} form a single \mathbf{G} -orbit and the centralizer $C_{\mathbf{G}}(F)$ of a regular nilpotent element $F \in \mathfrak{g}$ is the product of its unipotent radical and the center \mathbf{Z} of \mathbf{G} . A reductive group is quasi-split over k exactly when its Lie algebra contains regular nilpotent elements rational over k. Since \mathbf{G} is quasi-split by assumption, the set $\mathcal{N}_{\mathsf{reg}}$ of k-rational regular nilpotent elements in \mathfrak{g} is non-empty. Any two elements of \mathcal{N}_{reg} are **G**-conjugate, but they need not be G-conjugate. The G-orbits in \mathcal{N}_{reg} are parametrized by the first Galois cohomology set $H^1(k, C_{\mathbf{G}}(F))$, for any $F \in \mathcal{N}_{\text{reg}}$. By Hilbert's Theorem 90 and a simple exact sequence argument, the first Galois cohomology set of a unipotent group is trivial. It follows that if $F \in \mathcal{N}_{\text{reg}}$, then $H^1(k, C_{\mathbf{G}}(F)) \simeq H^1(k, \mathbf{Z})$. This means that any two elements in \mathcal{N}_{reg} are conjugate by an element $g \in \mathbf{G}$ for which $\gamma(g)^{-1}g \in \mathbf{Z}$ for all $\gamma \in \text{Gal}(\bar{k}/k)$. It follows that the group \bar{G} acts transitively on the elements of \mathcal{N}_{reg} , and the finite group $\bar{G}/j(G)$ acts simply-transitively on the set of G-orbits in \mathcal{N}_{reg} . Let \mathfrak{v} be the span of the negative simple root spaces for \mathbf{T} in \mathfrak{g} and let $\mathfrak{v} = \mathfrak{v}(k)$. An element $F \in \mathfrak{v}$ belongs to $\mathcal{N}_{\mathsf{reg}}$ precisely when the coefficient of every root vector in F is non-zero. Since $X_*(\bar{\mathbf{T}})$ has a basis dual to the roots in \mathfrak{v} , it follows that \bar{T} acts transitively on $\mathfrak{v} \cap \mathcal{N}_{\mathsf{reg}}$. LEMMA 4.1. Every G-orbit in \mathcal{N}_{reg} meets \mathfrak{v} in a single T-orbit. This gives a bijection between the set of G-orbits in \mathcal{N}_{reg} and the set of T-orbits in $\mathfrak{v} \cap \mathcal{N}_{reg}$. *Proof.* Given $F \in \mathcal{N}_{reg}$, choose $g \in \overline{G}$ such that $Ad(g)F \in \mathfrak{v}$. By Lemma 5.1, we can write $g = t \cdot j(h)$, with $t \in \overline{T}$ and $h \in G$. Then $$\mathrm{Ad}(h)F=\mathrm{Ad}(t^{-1}g)F\in\mathfrak{v}\cap\mathcal{N}_{\mathsf{reg}}.$$ Now suppose that F, F' belong to $\mathfrak{v} \cap \mathcal{N}_{\mathsf{reg}}$ and that there is $h \in G$ such that $\mathrm{Ad}(h)F = F'$. Choose $t \in \bar{T}$ such that $\mathrm{Ad}(t)F' = F$. Then $t \cdot j(h)$ is a k-rational point in the centralizer $C_{\bar{\mathbf{G}}}(F)$. Since j maps the unipotent radical of $C_{\mathbf{G}}(F)$ bijectively onto $C_{\bar{\mathbf{G}}}(F)$, there is a k-rational element $\ell \in C_{\mathbf{G}}(F)$ such that $t \cdot j(h) = j(\ell)$. Hence, $t \in \bar{T} \cap j(G) = j(T)$, so that F and F' are T-conjugate. #### 4.2 Regular semi-simple orbital integrals Let \mathcal{O}' be an arbitrary nilpotent G-orbit in \mathfrak{g} . By [Ran72], the G(k)-invariant measure on \mathcal{O}' (which is uniquely determined by our choices of the pairing \langle , \rangle and additive character Λ) may be uniquely extended to a distribution $\mu_{\mathcal{O}'}$ on \mathfrak{g} which vanishes on elements of $C_c^{\infty}(\mathfrak{g})$ whose support does not meet \mathcal{O}' . Let X be a regular semi-simple element in \mathfrak{g} . By [Har99, Theorem 5.11], there exists a lattice $L = L(X) \subset \mathfrak{g}$ and complex constants $c_{\mathcal{O}'}(X)$, indexed by the nilpotent G-orbits $\mathcal{O}' \subset \mathfrak{g}$, such that the orbital integral μ_X over the G-orbit of X has the expansion $$\mu_X(f) = \sum_{\mathcal{O}'} c_{\mathcal{O}'}(X)\mu_{\mathcal{O}'}(f),\tag{6}$$ for all $f \in C_c(\mathfrak{g}/L)$, where the sum runs over all nilpotent G-orbits in \mathfrak{g} . A result of Shelstad [She89] gives necessary and sufficient conditions for the non-vanishing of $c_{\mathcal{O}}(X)$, when \mathcal{O} is a regular nilpotent G-orbit. (In fact, Shelstad computes an exact formula for $c_{\mathcal{O}}(X)$, but we do not need this.) Kottwitz [Kot95] has recast Shelstad's non-vanishing criterion in terms of Kostant sections. In the next section we review Kostant sections, and then give Kottwitz' formulation of Shelstad's non-vanishing result. #### 4.3 Kostant sections Let \mathcal{O} be a regular nilpotent G-orbit in \mathfrak{g} . Choose $F \in \mathcal{O}$. A Kostant section for \mathcal{O} (at F) is an affine subspace $\mathbf{V} \subset \mathfrak{g}$ obtained as follows [Kos77]. Choose, as we may, elements $H, E \in \mathfrak{g}$, satisfying the \mathfrak{sl}_2 -relations $$[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H,$$ and let $$\mathbf{V} = F + C_{\mathbf{a}}(E).$$ (This is not the most general Kostant section, but it will suffice for our purposes.) Kostant showed that every regular G-orbit $\mathcal{O}_0 \subset \mathfrak{g}$ meets V in exactly one point. Since E and F are k-rational, the Kostant section V is defined over k. Hence, if the regular G-orbit \mathcal{O}_0 is also defined over k, the unique point in $\mathcal{O}_0 \cap V$ must be k-rational. Thus, V determines a k-rational point in every regular G-orbit which is defined over k. Any two triples (F, H, E) and (F, H', E'), with the same F, are conjugate by the unipotent radical of $C_{\mathbf{G}}(F)$ (see [Car85, 5.5.10]). Since unipotent groups have trivial Galois cohomology in degree one, it follows that any two Kostant sections for \mathcal{O} are G-conjugate. #### 4.4 A result of Kottwitz and Shelstad PROPOSITION 4.2. Let \mathcal{O} be a regular nilpotent G-orbit in \mathfrak{g} , let \mathbf{V} be a Kostant section for \mathcal{O} and let $X \in \mathfrak{g}$ be regular semi-simple. Then the constant $c_{\mathcal{O}}(X)$ is non-zero exactly when the G-orbit of X meets \mathbf{V} . In [Kot95] Kottwitz provides a direct proof of Proposition 4.2, based on the fact that the map $\mathbf{G} \times \mathbf{V} \to \mathfrak{g}$, arising from the adjoint action, is a submersion. We offer a slightly different proof, still based on the 'submersion principle'. We begin by establishing some notation. Choose $F \in \mathcal{O}$
with E, H as in § 4.3, such that $\mathbf{V} = F + C_{\mathfrak{g}}(E)$. There are unique Borel subgroups $\mathbf{B}, \bar{\mathbf{B}}$ in \mathbf{G} , with Lie algebras $\boldsymbol{\mathfrak{b}}, \bar{\mathbf{b}}$, such that $E \in \mathfrak{b}, F \in \bar{\mathbf{b}}$. Let \mathbf{U} be the unipotent radical of \mathbf{B} . Lemma 4.3. The map $$\bar{\mathbf{B}} \times \mathbf{U} \times \mathbf{V} \longrightarrow \mathbf{g}, \quad (\bar{b}, u, F + A) \mapsto \mathrm{Ad}(\bar{b}u)(F + A)$$ (7) is a submersion. *Proof.* Kostant showed (see [Kot99, 2.4]) that the adjoint action gives a k-isomorphism $$\mathbf{U} \times \mathbf{V} \xrightarrow{\sim} F + \mathbf{b}.$$ Hence, it is enough to show that the map $$\varrho : \bar{\mathbf{B}} \times (F + \mathbf{b}) \longrightarrow \mathbf{g}, \quad (\bar{b}, F + A) \mapsto \mathrm{Ad}(\bar{b})(F + A)$$ (8) is a submersion. #### On some generic very cuspidal representations After conjugating, it is enough to show that the differential $d\varrho$ is surjective at (1, F + A), for all $A \in \mathfrak{b}$, which is to say that $$\mathbf{b} + [F + A, \bar{\mathbf{b}}] = \mathbf{g},\tag{9}$$ for all $A \in \mathfrak{b}$. For integers i, let $\mathfrak{g}_i = \{Z \in \mathfrak{g} \mid [Z, H] = iZ\}$. Since \mathcal{O} is regular, we have $\mathfrak{g}_i = 0$ for odd i. We have $$\mathfrak{b} = \bigoplus_{i \leqslant 0} \mathfrak{g}_i, \quad \bar{\mathfrak{b}} = \bigoplus_{i \geqslant 0} \mathfrak{g}_i, \quad \bar{\mathfrak{u}} := \bigoplus_{i > 0} \mathfrak{g}_i$$ and $$[F, \mathfrak{g}_i] = \mathfrak{g}_{i+2}$$ if $i \geqslant 0$. To prove (9), it suffices to show that $$\bigoplus_{i\leqslant m}\mathfrak{g}_i\subseteq\mathfrak{b}+[F+A,\,\bar{\mathfrak{b}}]$$ for all $m \ge 0$. We prove this by induction on m. This is obvious for $m \in \{0, 1\}$. Let $m \ge 2$ and let $$Y = \sum_{i \leqslant m} Y_i, \quad Y_i \in \mathfrak{g}_i.$$ Choose $$Z \in \mathfrak{g}_{m-2} \subset \bar{\mathfrak{b}}$$ such that $[F, Z] = Y_m$. Note that since $A \in \mathfrak{b}$, we have $$[A, Z] \in \bigoplus_{i < m} \mathfrak{g}_i.$$ Hence, we have $$Y - [F + A, Z] \in \bigoplus_{i < m} \mathfrak{g}_i.$$ By induction, we may assume that $$Y - [F + A, Z] \in \mathfrak{b} + [F + A, \bar{\mathfrak{b}}].$$ It follows that $$Y \in \mathbf{b} + [F + A, \bar{\mathbf{b}}],$$ as desired. COROLLARY 4.4. The map $\mathbf{G} \times \mathbf{V} \to \mathfrak{g}$ given by sending (g, v) to $\mathrm{Ad}(g)v$ is a submersion. Corollary 4.5. The set $$\mathcal{U} := \bigcup_{\substack{\bar{b} \in \bar{B} \\ u \in U}} \mathrm{Ad}(\bar{b}u)\mathbf{V}(k)$$ is open in g. LEMMA 4.6. For all $t \in k^{\times}$, we have $t^2 \mathcal{U} = \mathcal{U}$. *Proof.* Let γ be the one-parameter k-subgroup of \mathbf{G} such that $d\gamma(1) = -H$. Then, for all $t \in \bar{k}^{\times}$, we have $$\operatorname{Ad}(\gamma(t))F = t^{-2}F \quad \text{and} \quad \operatorname{Ad}(\gamma(t))E = t^2E.$$ Thus, for all $t \in \bar{k}^{\times}$, we have that $Ad(\gamma(t))$ normalizes $C_{\mathfrak{g}}(E)$ and $$Ad(\gamma(t))\mathbf{V} = t^2 F + C_{\mathfrak{q}}(E) = t^2 (F + C_{\mathfrak{q}}(E)) = t^2 \mathbf{V}.$$ Since γ is defined over k, the lemma now follows from the definition of \mathcal{U} in Corollary 4.5. \square LEMMA 4.7. Suppose $X \in \mathbf{V}(k)$ and that $L_E \subset C_{\mathfrak{g}}(E)$ is a lattice so that $X \in F + L_E$. Then for all $n \in \mathbb{Z}_{\geq 0}$ the G-orbit of $\varpi^{2n}X$ meets $F + L_E$. *Proof.* Let γ be the one-parameter k-subgroup of **G** such that $d\gamma(1) = -H$. Then $$\operatorname{Ad}(\gamma(\varpi^n))F = \varpi^{-2n}F$$ and $\operatorname{Ad}(\gamma(\varpi^n))L_E \subset L_E$. Consequently, $\operatorname{Ad}(\gamma(\varpi^n))(\varpi^{2n}X) \in F + L_E$. We are now ready to prove Proposition 4.2. *Proof.* Fix a regular semi-simple element $X \in \mathfrak{g}$. Choose a lattice L = L(X) as at the start of § 4.4. Suppose that (Ad(G)X) meets **V**. Without loss of generality, we assume $X \in \mathbf{V}(k)$. Choose a lattice $L_E \subset (C_{\mathfrak{g}}(E))(k)$ so that $X \in F + L_E$. Let K be any compact open subgroup of G. The set $$\mathcal{F} := \{ \operatorname{Ad}(k)(F+W) \mid k \in K \text{ and } W \in L_E \}$$ is compact and, from Corollary 4.4, open in g. Thus, there exists an $N \in \mathbb{Z}$ such that $$\mathcal{F} + \varpi^{2N} L = \mathcal{F}.$$ Consequently, $[\varpi^{-2N}\mathcal{F}] \in C_c(\mathfrak{g}/L)$. From Lemma 4.7 we conclude that $$0 \neq \mu_{\varpi^{2n}X}([\mathcal{F}]) = \mu_X([\varpi^{-2N}\mathcal{F}]).$$ Thus, in the notation of (6) $$0 \neq \mu_X([\varpi^{-2N}\mathcal{F}]) = \sum_{\mathcal{O}'} c_{\mathcal{O}'}(X) \mu_{\mathcal{O}'}([\varpi^{-2N}\mathcal{F}]).$$ Since \mathcal{O} is the only nilpotent orbit that meets $Ad(G)(\mathbf{V}(k))$, we conclude that $c_{\mathcal{O}}(X) \neq 0$. Suppose that $(\mathrm{Ad}(G)X)$ does not meet **V**. Consider the function $[\varpi^{-2N}F + L]$ which, from the above paragraph and Lemma 4.6, belongs to $$D := C_c^{\infty}(\operatorname{Ad}(G)\mathbf{V}(k)) \cap C_c(\mathfrak{g}/L).$$ For all $f \in D$, we have $$0 = \mu_X(f) = c_{\mathcal{O}}(X)\mu_{\mathcal{O}}(f).$$ Since $\mu_{\mathcal{O}}([\varpi^{-2N}F + L]) \neq 0$, we conclude that $c_{\mathcal{O}}(X) = 0$. Let Δ be an index set for the regular nilpotent G-orbits, so that $$\mathcal{N}_{\mathsf{reg}} = \coprod_{\delta \in \Delta} \mathcal{O}_{\delta}$$ is the partition of \mathcal{N}_{reg} into G-orbits. By Lemma 5.1, the group $\overline{T}/j(T)$ acts simply–transitively on $\{\mathcal{O}_{\delta} \mid \delta \in \Delta\}$. If $X \in \mathfrak{g}$ is regular semi-simple, we abbreviate $c_{\delta}(X) = c_{\mathcal{O}_{\delta}}(X)$ for the coefficient of $\mu_{\mathcal{O}_{\delta}}$ in (6). COROLLARY 4.8. Suppose that the centralizer of X in \mathbf{G} is an unramified anisotropic torus \mathbf{S} whose unique fixed point in $\mathcal{B}(G)$ is a hyperspecial point. Then \bar{T}_0 preserves the set $\{\mathcal{O}_{\delta} \mid c_{\delta}(X) \neq 0\}$. *Proof.* If $c_{\delta}(X) \neq 0$, then by Proposition 4.2 there is a Kostant section \mathbf{V}_{δ} for \mathcal{O}_{δ} such that $X \in \mathbf{V}_{\delta}$. In Proposition 5.2 (which requires \mathbf{S} to be unramified), it follows that $\mathrm{Ad}(t)X \in \mathrm{Ad}(G)X$, for all $t \in \overline{T}_0$. Hence, $\mathrm{Ad}(t)\mathbf{V}_{\delta}$ is a Kostant section for $\mathrm{Ad}(t)\mathcal{O}_{\delta}$ which meets $\mathrm{Ad}(G)X$. The result follows from another application of Proposition 4.2. ## 4.5 Local character expansions Given a generic character ξ of U, there is a regular nilpotent element $F_{\xi} \in \mathfrak{v}$ defined by the condition $$\Lambda(\langle X, F_{\mathcal{E}} \rangle) = \xi(\exp X) \tag{10}$$ for all $X \in \mathfrak{u}$. The assignment $\xi \mapsto F_{\xi}$ is a \overline{T} -equivariant bijection between the set of generic characters of U and the set of regular nilpotent elements in \mathfrak{v} . For any irreducible admissible representation π of G, let Θ_{π} be the character of π , viewed as a function on the set G^{rss} of regular semi-simple elements in G. There is a neighborhood \mathcal{V} of the identity in G such that on $\mathcal{V} \cap G^{rss}$ we have the identity $$\Theta_{\pi}(\gamma) = \sum_{\mathcal{O}'} c_{\mathcal{O}'}(\pi) \hat{\mu}_{\mathcal{O}'}(\log \gamma), \tag{11}$$ where, as in (6), \mathcal{O}' runs over the set of nilpotent G-orbits in \mathfrak{g} , $\hat{\mu}_{\mathcal{O}'}$ is the Fourier transform of the orbital integral over \mathcal{O}' , and the complex numbers $c_{\mathcal{O}'}(\pi)$ are uniquely determined, given our choices of Λ and \langle , \rangle . The following is a special case of the main result in [MW87]. PROPOSITION 4.9. We have $\xi \in \Xi(\pi)$ if and only if $c_{\mathcal{O}}(\pi) \neq 0$, where \mathcal{O} is the G-orbit of F_{ξ} . #### 4.6 Regular very cuspidal characters Let $\pi \in \Pi_X$ be a very cuspidal representation, as in § 2.6. Assume now that X is regular, so that $C_{\mathbf{G}}(X)$ is a torus, which we now denote by **S**. From [AD04, 6.3.1] we have the Murnaghan–Kirillov formula, valid for regular semi-simple γ in an explicit neighborhood of the identity of G: $$\Theta_{\pi}(\gamma) = \deg(\pi)\hat{\mu}_X(\log \gamma). \tag{12}$$ Inserting (6) into (12), comparing with (11) and invoking the uniqueness of the coefficients, we find that $$c_{\mathcal{O}'}(\pi) = \deg(\pi)c_{\mathcal{O}'}(X) \tag{13}$$ for each nilpotent G-orbit \mathcal{O}' in \mathfrak{g} . Since π is generic, we may further assume that x is hyperspecial (see Corollary 3.2). Let ξ be a generic character of U, let \mathcal{O}_{ξ} be the G-orbit of F_{ξ} , and choose a Kostant section \mathbf{V}_{ξ} for \mathcal{O}_{ξ} . Combining Proposition 4.9, equation (13) and Proposition 4.2, we have the following proposition. PROPOSITION 4.10. Assume that $\pi \in \Pi_X$ is very cuspidal, where $C_{\mathbf{G}}(X) = \mathbf{S}$ is a torus such that $\mathcal{B}(S)$ is a hyperspecial point in $\mathcal{B}(G)$. Then for any generic character ξ of U, we have $\operatorname{Hom}_U(\pi, \xi) \neq 0$ if and only if the G-orbit of X meets \mathbf{V}_{ξ} . #### 4.7 Completion of the proof of Theorem 1.1 We must show that if $\pi \in \Pi_X$ is very cuspidal and the centralizer $\mathbf{S} = C_{\mathbf{G}}(X)$ is an unramified minisotropic torus whose unique fixed point x in $\mathcal{B}(G)$ is hyperspecial, then π is generic. Let $\xi \in \Xi$ be any generic character with corresponding regular nilpotent element $F_{\xi} \in \mathfrak{v}$ and choose a Kostant section \mathbf{V}_{ξ} for the G-orbit of F_{ξ} . Since X is regular, there is $g \in \mathbf{G}$ such that $$Ad(g)X \in \mathbf{V}_{\mathcal{E}}.\tag{14}$$ Since the **G**-orbit of X is
defined over k, the point Ad(g)X is k-rational, so its centralizer ${}^g\mathbf{S}$ is defined over k. Since **S** is abelian, it follows that the map $Ad(g): \mathbf{S} \to {}^g\mathbf{S}$ is a k-isomorphism. Since X and Ad(g)X have the same set of root values, the element Ad(g)X is also good, in the sense of § 2.6. Moreover, ${}^g\mathbf{S}$ is also minisotropic and unramified. Hence, we have another very cuspidal representation $$g_{\pi} := \pi(\operatorname{Ad}(g)X)$$ of G. For regular semi-simple γ near the identity in G we have the expansion $$\Theta_{g_{\pi}}(\gamma) = \deg(g_{\pi}) \cdot \hat{\mu}_{\mathrm{Ad}(g)X}(\log \gamma).$$ By (14) and Proposition 4.10, we have $$\operatorname{Hom}_{U}({}^{g}\pi,\xi) \neq 0. \tag{15}$$ By the other direction of Theorem 1.1, which was already proved in Lemma 3.1, the unique fixed point g of g in $\mathcal{B}(G)$ is hyperspecial. By Lemma 5.5, we may adjust g in its coset g so that $j(g) \in \bar{G}$. By uniqueness of the fixed point, we have $g = j(g) \cdot x$. Moreover, $\mathrm{Ad}(g)^{-1}F_{\xi}$ is k-rational, so by Lemma 4.1 we may choose $h\in G$ such that the regular nilpotent element $$F' := \operatorname{Ad}(hq^{-1})F_{\varepsilon}$$ lies in \mathfrak{v} . Let $\xi' \in \Xi$ be the generic character such that $F' = F_{\xi'}$, as in (10). Then $\mathrm{Ad}(h)X$ is contained in the Kostant section $\mathbf{V}' = \mathrm{Ad}(hg^{-1})\mathbf{V}_{\xi}$ for the G-orbit of F'. From Proposition 4.10, we now have $$\operatorname{Hom}_{U}(\pi, \xi') \neq 0$$, showing that π is generic. This completes the proof of Theorem 1.1. ## 5. Some Galois cohomology In this section we prove those results used above whose proofs were postponed. Although not phrased as such, these results concern the Galois cohomology of the center **Z** of **G** and the map $H^1(k, \mathbf{Z}) \to H^1(k, \mathbf{L})$ for various k-subgroups of $\mathbf{L} \subset \mathbf{G}$ containing **Z**. Fix an algebraic closure \bar{k} of k and let K be the maximal unramified extension of k in \bar{k} . Let $\Gamma = \operatorname{Gal}(\bar{k}/k)$ be the absolute Galois group of k and let $\mathcal{I} = \operatorname{Gal}(\bar{k}/K)$ be the inertia subgroup of Γ . If \mathbf{L} is an algebraic k-group (identified with its set of \bar{k} -rational points) and $\gamma \in \Gamma$, then $\gamma_{\mathbf{L}}$ denotes the automorphism of \mathbf{L} arising from the given k-structure. Given a containment $\mathbf{L} \subseteq \mathbf{M}$ of k-groups, we let $$\iota(\mathbf{L},\mathbf{M}):H^1(k,\mathbf{L})\to H^1(k,\mathbf{M})$$ denote the map induced on (non-abelian) Galois cohomology sets by the inclusion $\mathbf{L} \hookrightarrow \mathbf{M}$, and we let $\ker^1(\mathbf{L}, \mathbf{M})$ denote the kernel of $\iota(\mathbf{L}, \mathbf{M})$. #### 5.1 The arithmetic of the adjoint morphism for unramified groups Recall that our connected reductive k-group \mathbf{G} is quasi-split over k and split over K. Fix a Borel subgroup \mathbf{B} of \mathbf{G} such that \mathbf{B} is defined over k and let \mathbf{T} be a maximal k-torus in \mathbf{B} . The adjoint morphism j (introduced in §3) is generally not surjective on rational points. Given $\mathbf{Z} \subset \mathbf{L} \subset \mathbf{G}$ as above, the group $$\Delta(L) := \bar{L}/j(L)$$ fits into the exact sequence of pointed sets: $$1 \longrightarrow \Delta(L) \xrightarrow{\delta_{\mathbf{L}}} H^1(k, \mathbf{Z}) \xrightarrow{\iota(\mathbf{Z}, \mathbf{L})} H^1(k, \mathbf{L}) \xrightarrow{j_{\mathbf{L}}} H^1(k, \bar{\mathbf{L}}),$$ where $\delta_{\mathbf{L}}$ is the coboundary map and $j_{\mathbf{L}}$ is induced by the adjoint morphism $j: \mathbf{L} \to \bar{\mathbf{L}}$. Note that the inclusion $\bar{L} \hookrightarrow \bar{G}$ induces an injection $\Delta(L) \hookrightarrow \Delta(G)$. LEMMA 5.1. We have $\bar{G} = \bar{T} \cdot j(G)$. Hence, the inclusion $\bar{T} \hookrightarrow \bar{G}$ induces an isomorphism $$\Delta(T) \simeq \Delta(G)$$. *Proof.* If we replace **G** by the simply connected cover of its derived subgroup, then both \bar{T} and \bar{G} are unchanged while j(G) can only become smaller. Hence, we may as well assume that **G** is semi-simple and simply connected. Then $H^1(k, \mathbf{G}) = 1$ by Steinberg's theorem [She65], so $$\Delta(G) \simeq H^1(k, \mathbf{Z}).$$ However, we also have $H^1(k, \mathbf{T}) = 1$, as is well known (cf. [Pra89, Lemma 2.0]), so that $$\Delta(T) \simeq H^1(k, \mathbf{Z}),$$ which proves the lemma. The group $\Delta(G) \simeq \Delta(T)$ factors into a geometric part and an arithmetic part, as follows. If we fix a uniformizer $\varpi \in k$, then since **T** splits over K, we can identify X with a subgroup of $\mathbf{T}(K)$, via evaluation at ϖ , and we have $$\mathbf{T}(K) = X \times \mathbf{T}(K)_0,\tag{16}$$ where $$\mathbf{T}(K)_0 = \{ t \in \mathbf{T}(K) \mid \operatorname{val}_K(\chi(t)) = 0 \ \forall \chi \in X^*(\mathbf{T}) \}$$ and val_K is the extension of the valuation val to K. The two factors in (16) are stable under the Frobenius F and $T_0 = \mathbf{T}(K)_0^{\mathrm{F}}$, so we have $$T = X^{\vartheta} \times T_0. \tag{17}$$ Let $\bar{X} = X_*(\bar{\mathbf{T}})$. Then we have a similar decomposition $$\bar{T} = \bar{X}^{\vartheta} \times \bar{T}_0. \tag{18}$$ It follows that $$\Delta(T) = \Delta(X) \times \Delta(T_0), \tag{19}$$ where $\Delta(X) = \bar{X}^{\vartheta}/j(X^{\vartheta})$ is the geometric part and $\Delta(T_0) = \bar{T}_0/j(T_0)$ is the arithmetic part. The following result was used in the proof of Corollary 4.8. PROPOSITION 5.2. Let **S** be a minisotropic unramified maximal k-torus in **G**. Then $\Delta(S) = \Delta(T_0)$. *Proof.* The following proof was suggested by the referee; it is much shorter than our original proof. Extend the valuation val to \bar{k}^{\times} . For any diagonalizable k-group **D**, define $$\mathbf{D}_0 = \{ d \in \mathbf{D}(\bar{k}) \mid \operatorname{val}(\chi(d)) = 0 \ \forall \chi \in X^*(\mathbf{D}) \},$$ and set $D_0 = \mathbf{D}_0 \cap D(k)$. Let \mathbf{S} be any maximal k-torus in \mathbf{G} with image $\bar{\mathbf{S}}$ in $\bar{\mathbf{G}}$ under the adjoint morphism $j: \mathbf{G} \to \bar{\mathbf{G}}$. We first claim that j restricts to a surjection $\mathbf{S}_0 \to \bar{\mathbf{S}}_0$. For this we may, upon replacing \mathbf{G} by its derived subgroup, assume that \mathbf{G} is semi-simple. If $\bar{s} \in \bar{\mathbf{S}}_0$ has lift $s \in \mathbf{S}$, then the map $X^*(\mathbf{S}) \to \mathbf{Q}^+$ given by $\lambda \mapsto \operatorname{val}(\lambda(s))$ vanishes on the subgroup $j^*X^*(\bar{\mathbf{S}})$ of finite index in $X^*(\mathbf{S})$. Since \mathbf{Q}^+ has no finite subgroups, the claim follows. We therefore have an exact sequence $$1 \longrightarrow \mathbf{Z}_0 \longrightarrow \mathbf{S}_0 \longrightarrow \bar{\mathbf{S}}_0 \longrightarrow 1.$$ Since $H^1(k, \mathbf{S}_0) = 1$ by the profinite version of Lang's theorem, the coboundary $\delta_{\mathbf{S}_0} : \bar{S}_0 \to H^1(k, \mathbf{Z}_0)$ is surjective. Hence, the image of the composition $\bar{S}_0 \to \bar{S}/j(S) \to H^1(k, \mathbf{Z})$ coincides with the image of $H^1(k, \mathbf{Z}_0)$ in $H^1(k, \mathbf{Z})$. It follows that $\bar{S}_0/j(S_0)$ is independent of \mathbf{S} . We therefore have $\Delta(S_0) = \Delta(T_0)$ for any maximal k-torus \mathbf{S} in \mathbf{G} . Now, if S is minisotropic, we have $\Delta(S_0) = \Delta(S)$, so the result is proved. #### 5.2 Unramified cohomology This section contains a technical calculation in Galois cohomology that is used in $\S 7$. More background can be found in [DR09, ch. 2]. If **L** is any connected k-group, then the natural map $$H^1(K/k, \mathbf{L}(K)) \longrightarrow H^1(k, \mathbf{L})$$ is a bijection. The action of Gal(K/k) on L(K) is completely determined by the endomorphism $$F = Frob_L$$ of L. Likewise, a cocycle $c: Gal(K/k) \to L(K)$ is determined by the element $$u_c = c(\text{Frob}),$$ which belongs to the set $$Z^{1}(\mathcal{F}, \mathbf{L}(K)) := \{ u \in \mathbf{L}(K) \mid u \cdot \mathcal{F}(u) \cdots \mathcal{F}^{n-1}(u) = 1, \text{ for some } n \geqslant 1 \}.$$ Thus, an unramified cocycle is identified with an element in $Z^1(F, \mathbf{L}(K))$, and we identify $H^1(K/k, \mathbf{L}(K))$ with the set $H^1(F, \mathbf{L}(K))$ of $\mathbf{L}(K)$ -orbits in $Z^1(F, \mathbf{L}(K))$ under the action: $\ell * u = \ell u F(\ell)^{-1}$. Let $[u]_L \in H^1(F, \mathbf{L}(K))$ denote the class of an element $u \in Z^1(F, \mathbf{L}(K))$. Given any unramified maximal torus ${\bf S}$ in ${\bf G}$, we use unramified cohomology to study the diagram $$1 \longrightarrow \Delta(G) \xrightarrow{\delta_{\mathbf{G}}} H^{1}(k, \mathbf{Z}) \longrightarrow H^{1}(k, \mathbf{G}) \xrightarrow{j_{\mathbf{G}}} H^{1}(k, \bar{\mathbf{G}})$$ $$\parallel \qquad \qquad \uparrow \qquad \qquad \downarrow$$ $$1 \longrightarrow \Delta(S) \xrightarrow{\delta_{\mathbf{S}}} H^{1}(k, \mathbf{Z}) \longrightarrow H^{1}(k, \mathbf{S}) \xrightarrow{j_{\mathbf{S}}} H^{1}(k, \bar{\mathbf{S}})$$ $$(20)$$ where the unlabeled maps are induced by inclusion. Let $X = X_*(\mathbf{T})$ be the lattice of algebraic one-parameter subgroups of \mathbf{T} and let $\vartheta \in \operatorname{Aut}(X)$ be the automorphism of X induced by the Frobenius endomorphism F. Let \mathbf{N} be the normalizer of \mathbf{T} in \mathbf{G} . For $w \in \mathbf{N}/\mathbf{T}$, let \mathbf{T}_w be the unramified twist of \mathbf{T} . Denoting the twisted action of $\gamma \in \Gamma$ by $\gamma_{\mathbf{T}_w}$, we have $$\gamma_{\mathbf{T}_w} = \begin{cases} \gamma_{\mathbf{T}} & \text{if } \gamma \in \mathcal{I} \\ F_w := \operatorname{Ad}(w) \circ F & \text{if } \gamma = \operatorname{Frob.} \end{cases}$$ Note that F_w acts on X via $w\vartheta$. We have the explicit isomorphism $$[X/(1-w\vartheta)X]_{\text{tor}} \xrightarrow{\sim}
H^1(\mathcal{F}_w, \mathbf{T}(K)) \simeq H^1(k, \mathbf{T}_w),$$ (21) which sends the class of $\lambda \in X$ to the unramified class $[\lambda(\varpi)]_{\mathbf{T}_w} \in H^1(\mathcal{F}_w, \mathbf{T}(K))$. Let $p_0 \in \mathbf{G}(K)$ be an element such that $p_0^{-1} F(p_0) \in \mathbf{N}(K)$ is a representative of w. Then $\mathbf{S} := p_0 \mathbf{T} p_0^{-1}$ is an unramified maximal k-torus in \mathbf{G} , and the map $\mathrm{Ad}(p_0) : \mathbf{T}_w \to \mathbf{S}$ is a k-isomorphism. Hence, we have the explicit isomorphism $$[X/(1-w\vartheta)X]_{\text{tor}} \longrightarrow H^1(F, \mathbf{S}(K)) \simeq H^1(k, \mathbf{S}),$$ (22) which sends the class of $\lambda \in X$ to the unramified class $[p_0\lambda(\varpi)p_0^{-1}]_{\mathbf{S}} \in H^1(\mathcal{F}, \mathbf{S}(K))$. Let $\bar{X} = X_*(\bar{\mathbf{T}})$ and again write ϑ for the automorphism of \bar{X} induced by the Frobenius F. We have similar isomorphisms $$[\bar{X}/(1-w\vartheta)\bar{X}]_{\text{tor}} \xrightarrow{\sim} H^1(k,\bar{\mathbf{T}}_w) \xrightarrow{\sim} H^1(k,\bar{\mathbf{S}}).$$ (23) Our basic diagram (20) becomes where r_w is the composition $$r_w: H^1(k, \mathbf{T}_w) \xrightarrow{\operatorname{Ad}(p_0)} H^1(k, \mathbf{S}) \xrightarrow{\iota(\mathbf{S}, \mathbf{G})} H^1(k, \mathbf{G})$$ and $j_w = j_{\mathbf{T}_w}$ is induced by the restriction of j to **T**. The group $\Delta(T)$ parametrizes generic characters, and the group $H^1(k, \mathbf{T}_w)$ parametrizes representations in an L-packet of very cuspidal representations (see [Ree08]). In § 7 we show that the map $$\iota_w: \Delta(T) \to H^1(k, \mathbf{T}_w),$$ given by the composition $$\iota_w : \Delta(T) \xrightarrow{\delta_{\mathbf{T}}} H^1(k, \mathbf{Z}) \xrightarrow{\iota(\mathbf{Z}, \mathbf{T}_w)} H^1(k, \mathbf{T}_w)$$ (25) determines which generic characters appear in which representation in the L-packet. Our goal here is to calculate the map ι_w explicitly. Diagram (24) shows that $$\iota_w(\Delta(T)) = \iota(\mathbf{Z}, \mathbf{T}_w)(\ker^1(\mathbf{Z}, \mathbf{G})) = \ker r_w \cap \ker j_w.$$ LEMMA 5.3. Let $t \in \mathbf{T}$ be such that j(t) is k-rational. Then $t \cdot w(t)^{-1} \in Z^1(\mathcal{F}_w, \mathbf{T}(K))$ and $$\iota_w([t]_{\Delta}) = [t \cdot w(t)^{-1}]_{\mathbf{T}_w} \in H^1(\mathcal{F}_w, \mathbf{T}(K)).$$ *Proof.* Recall that $[t]_{\Delta}$ denotes the class of j(t) in $\Delta(T)$ and $\delta_{\mathbf{T}}([t]_{\Delta}) \in H^1(k, \mathbf{Z})$ is the class of the cocycle $\gamma \mapsto z_{\gamma} = t^{-1} \cdot \gamma_{\mathbf{T}}(t) \in \mathbf{Z}$, for $\gamma \in \Gamma$. In \mathbf{T}_w , the cocycle z_{γ} is cohomologous to the cocycle $$z'_{\gamma} := t \cdot z_{\gamma} \cdot \gamma_{\mathbf{T}_w}(t)^{-1} = \gamma_{\mathbf{T}}(t) \cdot \gamma_{\mathbf{T}_w}(t)^{-1}$$ Note that $z'_{\sigma} = 1$ for $\sigma \in \mathcal{I}$ and $$z'_{\text{Frob}} = \mathbf{F}(t) \cdot \mathbf{F}_w(t)^{-1}$$. Since $t^{-1} \cdot F(t) \in \mathbf{Z}$ which is centralized by w, we have $$t^{-1} \cdot F(t) = w(t^{-1} \cdot F(t)) = w(t)^{-1} \cdot F_w(t).$$ It follows that $$z'_{\text{Frob}} = t \cdot w(t)^{-1}$$. Since z' is trivial on \mathcal{I} , it is an unramified cocycle, so the lemma is proved. We now obtain a more explicit formula for ι_w using the factorization $\Delta(T) = \Delta(X) \times \Delta(T_0)$ from (19). Let $X^{\circ} \subset X$ be the lattice of co-roots. LEMMA 5.4. Assume that \mathbf{T}_w is minisotropic. Then $\ker \iota_w = \Delta(T_0)$ and on $\Delta(X)$ we have the formula $$\iota_w[\mu(\varpi)]_{\Delta} = [\lambda(\varpi)]_{\mathbf{T}_w} \in H^1(\mathcal{F}_w, \mathbf{T}(K)),$$ where $\mu \in \bar{X}^{\vartheta}$ and λ is the unique element of X° such that $j\lambda = (1-w)\mu$. *Proof.* Note that the formula makes sense because $(1-w)\bar{X} \subset jX^{\circ}$ and j is injective on X° . Since jX has finite index in \bar{X} , there is an integer $m \ge 1$ and $\eta \in X$ such that $$m\mu = j\eta. \tag{26}$$ Let $\varpi^{1/m} \in \bar{k}$ be a root of $x^m = \varpi$. Set $$t := \eta(\varpi^{1/m}).$$ Then $j(t) = \mu(\varpi)$, and $$t \cdot w(t)^{-1} = (1 - w)\eta(\varpi^{1/m}).$$ Now $$j(1-w)\eta = (1-w)j\eta = m(1-w)\mu = mj\lambda.$$ Since j is injective on X° , we have $$(1 - w)\eta = m\lambda, (27)$$ so that $$t \cdot w(t)^{-1} = \lambda(\varpi).$$ The formula for ι_w on $\Delta(X)$ now follows from Lemma 5.3. This formula implies that ι_w is injective on $\Delta(X)$. Indeed, if $[\lambda(\varpi)]_{\mathbf{T}_w} = 1$, then there is $\nu \in X$ such that $$\lambda = (1 - w\vartheta)\nu. \tag{28}$$ Applying j to both sides and remembering that $\vartheta \mu = \mu$, we obtain $$(1 - w\vartheta)\mu = (1 - w)\mu = j\lambda = (1 - w\vartheta)j\nu.$$ Since \mathbf{T}_w is minisotropic, the map $1 - w\vartheta$ is injective on \bar{X} , so we have $$u = i\nu$$ In (26) we can then take $\eta = \nu$ and m = 1, so that (27) reads as $$(1 - w)\nu = \lambda. \tag{29}$$ Comparing (28) and (29), we see that $\nu \in X^{\vartheta}$, so that $\mu \in j(X^{\vartheta})$, proving the injectivity of ι_w on $\Delta(X)$. Finally, it follows from Proposition 5.2 that ι_w vanishes on $\Delta(T_0)$. Hence, $\ker \iota_w = \Delta(T_0)$ and the proof of Lemma 5.4 is complete. #### 5.3 Hyperspecial points and stable conjugacy In this section we prove Lemma 5.5, which was used in $\S 4.7$ Let $X \in \mathfrak{g}$ be regular semi-simple, let $\mathcal{O} = \operatorname{Ad}(\mathbf{G})X$, and let $\mathbf{S} = C_{\mathbf{G}}(X)$. Any k-rational point $Y \in \mathcal{O}(k)$ is of the form $Y = \operatorname{Ad}(g)X$ for some $g \in \mathbf{G}$ such that $s_{\gamma} := g^{-1}\gamma(g) \in \mathbf{S}$ for all $\gamma \in \Gamma = \operatorname{Gal}(\bar{k}/k)$. The mapping $\gamma \mapsto s_{\gamma}$ is a Galois cocycle whose class $$\operatorname{inv}(X,Y) := [s_{\gamma}] \in H^1(k,\mathbf{S})$$ is independent of the choice of g. It is clear that $[s_{\gamma}]$ lies in the kernel $\ker^1(\mathbf{S}, \mathbf{G})$ of the map $H^1(k, \mathbf{S}) \to H^1(k, \mathbf{G})$ induced by the inclusion $\mathbf{S} \hookrightarrow \mathbf{G}$. Two rational points $Y, Y' \in \mathcal{O}(k)$ are G-conjugate if and only if $\operatorname{inv}(X, Y) = \operatorname{inv}(X, Y')$, and we have $$\ker^1(\mathbf{S}, \mathbf{G}) = \{ \operatorname{inv}(X, Y) \mid Y \in \mathcal{O}(k) \}.$$ Let $Y = \operatorname{Ad}(g)X \in \mathcal{O}(k)$ as above, and let $\mathbf{S}_1 = \operatorname{Ad}(g)\mathbf{S} = C_{\mathbf{G}}(Y)$. Since **S** is abelian, the isomorphism $\operatorname{Ad}(g) : \mathbf{S} \to \mathbf{S}_1$ is defined over k. Assume now that **S** is minisotropic and unramified over k and therefore has a unique fixed-point x in $\mathcal{B}(G)$. Then **S**₁ is also minisotropic unramified over k and has a unique fixed-point $y \in \mathcal{B}(G)$. LEMMA 5.5. In the situation above, assume that x is hyperspecial in $\mathcal{B}(G)$. Then the point y is also hyperspecial in $\mathcal{B}(G)$ if and only if $\operatorname{inv}(X,Y)$ belongs to the image of the map $H^1(k,\mathbf{Z}) \to H^1(k,\mathbf{S})$ induced by the inclusion $\mathbf{Z} \hookrightarrow \mathbf{S}$. *Proof.* We have $\operatorname{inv}(X,Y) \in \operatorname{im}[H^1(k,\mathbf{Z}) \to H^1(k,\mathbf{S})]$ exactly when there exists $g' \in \mathbf{G}$ such that $Y = \operatorname{Ad}(g')X$ and j(g') is k-rational. In this case we have $y = j(g') \cdot x$, by uniqueness of fixed points. It follows that g is hyperspecial. Assume now that y is hyperspecial in $\mathcal{B}(G)$. Since \bar{G} acts transitively on hyperspecial points in $\mathcal{B}(G)$, we have $y = j(h) \cdot x$ for some $h \in \mathbf{G}$ with the property that $j(h) \in \bar{G}$. Set $z_{\gamma} := h^{-1}\gamma(h) \in \mathbf{Z}$, for $\gamma \in \Gamma$. The tori $\mathbf{S}_1 = {}^g\mathbf{S}$ and $\mathbf{S}_2 = {}^h\mathbf{S}$ both fix the vertex y and are isomorphic over k, via the map $\mathrm{Ad}(hg^{-1}) : \mathbf{S}_1 \to \mathbf{S}_2$. Set $G_y := \mathbf{G}(K)_y/\mathbf{G}(K)_{y,0^+}$ and $\bar{G}_y := \bar{\mathbf{G}}(K)_y/\bar{\mathbf{G}}(K)_{y,0^+}$. These are connected reductive groups over the residue field \mathfrak{f} . Since y is hyperspecial, we may identify $$(\bar{\mathsf{G}})_y = \mathsf{G}_y/Z(\mathsf{G}_y),$$ where $Z(\mathsf{G}_y)$ is the center of G_y . Indeed, $\mathbf{G}(K)_y$ projects naturally onto both groups and the kernel of both projections is $\mathbf{G}(K)_y^+ \cdot (\mathbf{Z} \cap \mathbf{G}(K)_y)$. For i=1,2, the intersections $\mathbf{S}_i \cap \mathbf{G}(K)_y$ project to maximal tori S_i in G_y . In turn, each S_i projects to a maximal torus $\bar{\mathsf{S}}_i$ in $\mathsf{G}_y/Z(\mathsf{G}_y)$. Since $\bar{\mathbf{G}}$ is K-split and y is hyperspecial in $\mathcal{B}(G)$, it follows that $\bar{\mathbf{G}}(K)_y$ is the full stabilizer of y in $\bar{\mathbf{G}}(K)$. The element $\mathrm{Ad}(hg^{-1}) \in \bar{\mathbf{G}}(K)_y$ thus projects to an element $d \in \mathsf{G}_y/Z(\mathsf{G}_y)$, and we have $d\bar{\mathsf{S}}_1 = \bar{\mathsf{S}}_2$. By Lemma 5.6 below, the tori S_1 and S_2 are $\mathsf{G}_x(\mathfrak{f})$ -conjugate. From [DeB06] we conclude that S_1 and S_2 are G_x -conjugate. Choose $\ell \in G_x$ such that $\ell \mathsf{S}_1 = \mathsf{S}_2$. The element $n := h^{-1} \ell g$ belongs to the normalizer **N** of **S** in **G**. For any $\gamma \in \Gamma$, we have $$h^{-1}\gamma(h) = z_{\gamma} \in \mathbf{Z}, \quad g^{-1}\gamma(g) = s_{\gamma} \in \mathbf{S}, \quad \gamma(\ell) = \ell.$$ It follows that $$\gamma(n) = n \cdot z_{\gamma}^{-1} \cdot s_{\gamma}.$$ Since $z_{\gamma}^{-1} \cdot s_{\gamma} \in \mathbf{S}$, the image of n in \mathbf{N}/\mathbf{S} is k-rational. Since **S** is unramified, we have $H^1(\bar{k}/K, \mathbf{S}) = 1$, which
implies that $$[\mathbf{N}/\mathbf{S}](K) = \mathbf{N}(K)/\mathbf{S}(K).$$ Since x is hyperspecial, we can apply [DR09, Lemma 6.2.3], to conclude that $$[\mathbf{N}/\mathbf{S}](k) = \mathbf{N}(k)/\mathbf{S}(k).$$ Hence, there exists $s \in \mathbf{S}$ such that ns is k-rational. For all $\gamma \in \Gamma$, we then have $$ns = \gamma(ns) = \gamma(n)\gamma(s) = n \cdot z_{\gamma}^{-1} \cdot s_{\gamma} \cdot \gamma(s)$$ so that $s^{-1}s_{\gamma}\gamma(s)=z_{\gamma}\in \mathbf{Z}$. This means that $[s_{\gamma}]=[z_{\gamma}]\in \operatorname{im}[H^{1}(k,\mathbf{Z})\to H^{1}(k,\mathbf{S})],$ as claimed. \square In the proof above, we used the following result. LEMMA 5.6. Let G be a connected reductive group over the finite field f, with center Z and adjoint group $\bar{G} = G/Z$. Let F be the Frobenius endomorphism of G and \bar{G} . Suppose that we have two F-stable maximal tori S_1 , S_2 in G, projecting to maximal tori \bar{S}_1 , \bar{S}_2 in \bar{G} . Suppose also that there is $d \in \bar{G}$ satisfying (i) $${}^d \bar{\mathsf{S}}_1 = \bar{\mathsf{S}}_2$$ and (ii) $\mathrm{Ad}(d) \circ F = F \circ \mathrm{Ad}(d)$ on $\bar{\mathsf{S}}_1$. Then S_1 and S_2 are $G(\mathfrak{f})$ -conjugate. Condition (ii) means that $d^{-1}F(d) \in \bar{S}_1$. By Lang's theorem applied to \bar{S}_1 , there is $s_1 \in \bar{S}_1$ such that \bar{S}_1 and \bar{S}_2 are conjugate by the element $d_1 := ds_1 \in \bar{G}(\mathfrak{f})$. Let d_2 be a lift of d_1 in G and let $z := d_2^{-1}F(d_2) \in Z$. Since $Z \subset S_1$, there is $t \in S_1$ such that $z = t \cdot F(t)^{-1}$. Then the element $d_3 := d_2t$ belongs to $G(\mathfrak{f})$ and conjugates S_1 to S_2 , proving the lemma. ## 6. The generic characters in a very cuspidal representation We next consider question (ii) in the introduction, concerning which generic characters are afforded by our generic very cuspidal representations $\pi \in \Pi_X$. Given two regular nilpotent elements F, F' in \mathfrak{g} and $g \in \mathbf{G}$ such that $\mathrm{Ad}(g)F = F'$, we have a cocycle $z_{\gamma} = g^{-1}\gamma(g) \in \mathbf{Z}$ whose class $$\mathrm{inv}(F,F') := [z_\gamma] \in \ker^1(\mathbf{Z},\mathbf{G})$$ vanishes if and only if F and F' are G-conjugate. By Lemma 4.1, we know that if F, F' belong to \mathfrak{v} , then we may take $g \in \mathbf{T}$. LEMMA 6.1. Let $\pi \in \Pi_X$ be a generic very cuspidal representation such that $C_{\mathbf{G}}(X)$ is a minisotropic torus \mathbf{S} , and let $\xi \in \Xi(\pi)$. Then if $\xi' \in \Xi$ is another generic character of U, we have $\xi' \in \Xi(\pi)$ if and only if $\operatorname{inv}(F_{\xi}, F_{\xi'}) \in \ker^1(\mathbf{Z}, \mathbf{S})$. *Proof.* We have $F_{\xi'} = \operatorname{Ad}(t)F_{\xi}$ for some $t \in \mathbf{T}$, with cocycle $z_{\gamma} = t^{-1}\gamma(t) \in \mathbf{Z}$. Let \mathbf{V}_{ξ} be a Kostant section at F_{ξ} for the G-orbit of F_{ξ} . Then $\mathbf{V}_{\xi'} := \operatorname{Ad}(t)\mathbf{V}_{\xi}$ is a Kostant section at $F_{\xi'}$ for the G-orbit of $F_{\xi'}$. By Proposition 4.10, we may assume that $X \in \mathbf{V}_{\xi}$. Moreover, we have $\operatorname{Ad}(h)X \in V_{\xi'}$ #### ON SOME GENERIC VERY CUSPIDAL REPRESENTATIONS for some $h \in G$. The elements X and $\mathrm{Ad}(t^{-1}h)X$ both belong to \mathbf{V}_{ξ} , hence they must coincide. It follows that h = ts for some $s \in \mathbf{S}$. We have $$s^{-1}z_{\gamma}\gamma(s) = s^{-1} \cdot t^{-1}\gamma(t) \cdot \gamma(s) = h^{-1} \cdot \gamma(h) = 1.$$ This shows that $[z_{\gamma}]$ becomes trivial in $H^1(k, \mathbf{S})$, as claimed. The argument is reversible: if there exists $s \in \mathbf{S}$ such that $z_{\gamma} = s \cdot \gamma(s)^{-1}$, then the element h = ts belongs to G and $\mathrm{Ad}(h)X = \mathrm{Ad}(t)X \in \mathbf{V}_{\xi'}$, so that $\xi' \in \Xi(\pi)$, by Proposition 4.10. #### 6.1 Example: SL_2 Assume $p \neq 2$. Let $\mathbf{G} = \mathbf{SL}_2$, with $\bar{\mathbf{G}} = \mathbf{PGL}_2$. Here $\mathbf{Z} = \{\pm 1\}$, so $$H^1(k, \mathbf{Z}) = k^{\times}/k^{\times 2}.$$ Let k_2 be the unramified quadratic extension of k with norm mapping $N: k_2^{\times} \to k^{\times}$. Set $k_2^1 = \ker N$. Take an unramified torus $\mathbf{S} \subset \mathbf{G}$ with $S \simeq k_2^1$. We have $\bar{S} = k_2^{\times}/k^{\times}$ and $$j(S) = k_2^1/\pm 1 \simeq k_2^1 \cdot k^{\times}/k^{\times} \subset \bar{S}.$$ Hence, $$\Delta(S) \simeq k_2^{\times}/k_2^1 \cdot k^{\times},$$ which is isomorphic, via N, to the group $N(k_2^{\times})/k^{\times 2}$. It follows that $\Delta(S)$ is isomorphic to an index two subgroup of $k^{\times}/k^{\times 2}$, so that $|\Delta(S)| = 2$. Let T, U be the diagonal and upper triangular matrices (with ones on the diagonal) in G and let α be the root of T in \mathfrak{u} . We may identify $T = k^{\times} = \overline{T}$, such that $j: T \to \overline{T}$ is the squaring map. Hence, $\Delta(X) = \mathbb{Z}/2\mathbb{Z}$ and $$|\Delta(T_0)| = \frac{1}{2}[k^{\times} : k^{\times 2}] = |\Delta(S)|.$$ Let \mathcal{A} be the apartment of T and let $o, y \in \mathcal{A}$ be the hyperspecial vertices whose stabilizers are $$G_o = \mathrm{SL}_2(\mathfrak{o}), \quad G_y = \begin{bmatrix} 1 & 0 \\ 0 & \varpi \end{bmatrix} \mathrm{SL}_2(\mathfrak{o}) \begin{bmatrix} 1 & 0 \\ 0 & \varpi \end{bmatrix}^{-1}.$$ Taking o as the origin, we view α as a linear functional on \mathcal{A} with $$\alpha(o) = 0, \quad \alpha(y) = 1.$$ For $F = \begin{bmatrix} 0 & 0 \\ f & 0 \end{bmatrix}$ with $f \in k^{\times}$, the corresponding generic character $\xi_f : U \to \mathbb{C}^{\times}$ is given by $$\psi_f\left(\begin{bmatrix}1&t\\0&1\end{bmatrix}\right) = \Lambda(ft).$$ A Kostant section at F for the G-orbit of F is given by $$\mathbf{V}_f = \left\{ \begin{bmatrix} 0 & t \\ f & 0 \end{bmatrix} \middle| t \in \bar{k} \right\}.$$ The T-orbits of such F are represented by $$f \in \mathcal{F} := \{1, \epsilon, \varpi, \epsilon \varpi\},\$$ where ϵ is a fixed non-square unit in \mathfrak{o} . For $x \in \{o, y\}$ and integers $r \ge 0$, we have $$U \cap G_{x,r} = \begin{bmatrix} 1 & \mathfrak{p}^{r-\alpha(x)} \\ 0 & 1 \end{bmatrix}.$$ Since Λ has conductor \mathfrak{p} , it follows that ξ_f has generic depth r at x if and only if $$val(f) + r = \alpha(x). \tag{30}$$ Each $x \in \{o, y\}$ is the fixed-point set in $\mathcal{B}(G)$ of the group S_x of k-rational points in an unramified anisotropic torus \mathbf{S}_x . These groups are given by $$S_o = \begin{bmatrix} a & b \\ b\epsilon & a \end{bmatrix}, \quad S_y = \begin{bmatrix} 1 & 0 \\ 0 & \varpi \end{bmatrix} S_o \begin{bmatrix} 1 & 0 \\ 0 & \varpi \end{bmatrix}^{-1}.$$ Very cuspidal representations $\pi_x = \pi(X_x)$ of G arise from elements $X_x \in \mathfrak{g}$ of the form $$X_o = u\varpi^{-r} \begin{bmatrix} 0 & 1 \\ \epsilon & 0 \end{bmatrix}, \quad X_y = u\varpi^{-r} \begin{bmatrix} 0 & \varpi^{-1} \\ \epsilon\varpi & 0 \end{bmatrix} = \operatorname{Ad} \left(\begin{bmatrix} 1 & 0 \\ 0 & \varpi \end{bmatrix} \right) X_o,$$ where u is a unit in \mathfrak{o} . One can check that there exists $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G$ such that $\mathrm{Ad}(g)X_x \in \mathbf{V}_f$ exactly when the equations $$\begin{cases} d^2\epsilon - c^2 = u^{-1}f\varpi^r & \text{for } x = o\\ (d\varpi)^2 - c^2\epsilon = u^{-1}f\varpi^{r+1} & \text{for } x = y \end{cases}$$ have a solution (c, d) in $k \times k$. The left-hand side of these equations is a norm from the unramified quadratic extension of k. It follows that $$Ad(G)X_x \cap \mathbf{V}_f \neq \emptyset \Leftrightarrow r + val(f) \equiv \alpha(x) \mod 2. \tag{31}$$ Hence, from Proposition 4.10 we have $$\Xi(\pi_x) = \{ \xi_f \mid r + \text{val}(f) \equiv \alpha(x) \mod 2 \}. \tag{32}$$ From (30) we see that $\Xi(\pi_x)$ is the union of the two T-orbits of characters having generic depth r at x and these two orbits are interchanged by the projective matrix $$\begin{bmatrix} \epsilon & 0 \\ 0 & 1 \end{bmatrix} \in \bar{T}_0.$$ #### 7. Generic representations in L-packets Let \mathcal{W} be the Weil group of k and let \hat{G} be the dual group of \mathbf{G} . Let $\hat{\vartheta} \in \operatorname{Aut}(\hat{G})$ be the automorphism of \hat{G} arising from the action of the Frobenius F on the root datum of \mathbf{G} . In [DR09, Ree08] we considered homomorphisms $$\varphi: \mathcal{W} \longrightarrow {}^{L}G = \langle \hat{\vartheta} \rangle \ltimes \hat{G}$$ with the properties: - the map φ is trivial on $\mathcal{I}^{(r+1)}$ and non-trivial on $\mathcal{I}^{(r)}$, for some integer $r \geqslant 0$, where $\mathcal{I}^{(r)}$ is the upper-numbering filtration on \mathcal{I} (see [Ser79, ch. 4]); - the centralizer of $\varphi(\mathcal{I}^{(r)})$ in \hat{G} is a maximal torus \hat{T} of \hat{G} ; - $-\varphi(\text{Frob}) \in \hat{\vartheta} \ltimes \hat{G}$, and the centralizer of $\varphi(\mathcal{W})$ in \hat{G} is finite, modulo the center $Z(\hat{G})$ of \hat{G} . Let C_{φ} be the component group of the centralizer of the image of φ in \hat{G} . The element $\varphi(\text{Frob})$ is of the form $$\varphi(\operatorname{Frob}) = \hat{\vartheta} \ltimes \hat{w},$$ where $\hat{w} \in \hat{G}$ normalizes \hat{T} and corresponds via duality to an element $w \in \mathbf{N}/\mathbf{T}$. We have $$C_{\varphi} = \hat{T}^{\hat{\vartheta}\hat{w}}/Z(\hat{G})^{\circ}.$$ Hence, C_{φ} is abelian, and the set of irreducible characters of C_{φ} may be identified with the torsion subgroup of $X/(1-w\vartheta)X$. For each class $\rho \in [X/(1-w\vartheta)X]_{\text{tor}}$ we have an explicitly constructed isomorphism class of supercuspidal representations $\pi(\varphi, \rho)$ which have depth zero [DR09] or are very cuspidal [Ree08]. ## 7.1 Generic representations in L-packets For a general $\rho \in
\operatorname{Irr}(C_{\varphi})$, the class $\pi(\varphi, \rho)$ consists of representations of the group of k-points of a certain pure inner form of \mathbf{G} . This pure inner form is k-isomorphic to \mathbf{G} itself exactly when $r_w(\rho) = 1 \in H^1(k, \mathbf{G})$, where r_w is the map in (24). Let $$\Pi(\varphi, 1) = \{ \pi(\varphi, \rho) \mid \rho \in \ker r_w \}.$$ For $\rho \in \ker r_w$, the class $\pi(\varphi, \rho)$ contains a representation induced from a hyperspecial parahoric subgroup of G if and only if $\rho \in \ker j_w$ (see [DR09, 6.2.1], which applies also to the positive-depth case). From Theorem 1.1 it follows that $\pi(\varphi, \rho)$ is generic if and only if $\rho \in \ker r_w \cap \ker j_w$. Lemma 5.4 shows that the map ι_w restricts to an isomorphism $$\iota_w: \Delta(X) \xrightarrow{\sim} \ker r_w \cap \ker j_w.$$ In particular, we have the following corollary. Corollary 7.1. The set $\Pi(\varphi, 1)$ contains exactly $|\Delta(X)| = [\bar{X}^{\vartheta} : j(X^{\vartheta})]$ generic representations. This was proved in the depth-zero case in [DR09]. ## 7.2 Generic characters and the parametrization of L-packets We now consider the generic characters appearing in a representation belonging to the class $\pi(\varphi, \rho)$, for $\rho \in \ker r_w \cap \ker j_w$. PROPOSITION 7.2. Let $\mu \in \bar{X}^{\vartheta}$ have image $\rho = \iota_w([\mu(\varpi)]_{\Delta}) \in \ker r_w \cap \ker j_w$. Then under the conjugation action of \bar{G} on isomorphism classes of representations of G, we have $$\operatorname{Ad}(\mu(\varpi)) \cdot \pi(\varphi, 1) = \pi(\varphi, \rho).$$ On the level of generic characters, this gives the following immediate corollary. COROLLARY 7.3. We have $$\operatorname{Ad}(\mu(\varpi)) \cdot \Xi(\pi(\varphi, 1)) = \Xi(\pi(\varphi, \rho)).$$ This can be stated more cohomologically, as follows. Via the coboundary $\delta_{\mathbf{T}}$ and Lemma 5.1, we identify $\ker^1(\mathbf{Z}, \mathbf{G})$ with the union of the cosets of j(T) in \bar{T} . Let $\ker^1_{\rho}(\mathbf{Z}, \mathbf{G})$ be the fiber over ρ under the map $H^1(k, \mathbf{Z}) \to H^1(k, \mathbf{T}_w)$ induced by inclusion. Corollary 7.3 asserts that if ξ is any generic character in $\Xi(\pi(\varphi, 1))$, then in the free $\ker^1(\mathbf{Z}, \mathbf{G})$ -orbit through ξ we have $$\ker^1_{\rho}(\mathbf{Z}, \mathbf{G}) \cdot \xi = \Xi(\pi(\varphi, \rho)).$$ To prove Proposition 7.2, we assume, as we may, that $\bar{\mathbf{G}}$ is simple. Let o be a hyperspecial vertex in \mathcal{A} such that some representation in the class $\pi(\varphi, 1)$ is induced from K_o . Let C be a ϑ -stable alcove in $\mathcal{A}(K)$ containing o in its closure. Let \mathcal{M} (for 'minuscule weight') be the set of $\nu \in \bar{X}$ such that $t_{\nu} \cdot o \in \bar{C}$. Then $\vartheta \mathcal{M} = \mathcal{M}$ and \mathcal{M}^{ϑ} contains a set of representatives for $\bar{X}^{\vartheta}/j(X^{\vartheta})$. We may assume that $\mu \in \mathcal{M}^{\vartheta}$. Then $t_{\mu} \cdot o$ is a hyperspecial vertex in $\bar{C}^{\vartheta} \subset \mathcal{A}$. Recall from Lemma 5.4 that ρ is the class of $\lambda \in X^{\circ}$, where $j\lambda = (1 - w)\mu$. Then the unique fixed point of $t_{\lambda}w\vartheta$ in $\mathcal{A}(K)$ is $x_{\lambda} = t_{\mu} \cdot o \in \bar{C}$. According to the recipe of [DR09, ch. 4] (using the notation therein) we have $$w_{\lambda} = t_{\lambda} w, \quad y_{\lambda} = 1, \quad F_{\lambda} = F.$$ The element $$p_{\lambda} := \operatorname{Ad}(\mu(\varpi)) p_0 \in \mathbf{G}(K)_{x_{\lambda}}$$ has the property that $p_{\lambda}^{-1}F(p_{\lambda})$ normalizes $\mathbf{T}(K)$ and is a lift of $t_{\lambda}w$. Let χ_{φ} be the character of T_w given by the abelian Langlands correspondence [DR09, Lan97, Ree08]. As in §2.6, the character χ_{φ} is determined by an element X_{φ} in the Lie algebra of T_w . If we set $$X_0 = \operatorname{Ad}(p_0)X_{\varphi}, \quad X_{\lambda} = \operatorname{Ad}(p_{\lambda})X_{\varphi},$$ then the class $\pi(\varphi, 1)$ contains $\pi(X_0)$ and the class $\pi(\varphi, \rho)$ contains $\pi(X_{\lambda})$. Since $\mathrm{Ad}(\mu(\varpi))X_0 = X_{\lambda}$, this implies Proposition 7.2. ## References - Adl98 J. D. Adler, Refined anisotropic K-types and supercuspidal representations, Pacific J. Math. 185 (1998), 1–32. - AD04 J. Adler and S. DeBacker, Murnaghan-Kirillov theory for supercuspidal representations of general linear groups, J. Reine Angew. Math. 575 (2004), 1–35. - Car84 H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. Éc. Norm. Sup. 17 (1984), 191–225. - Car85 R. Carter, Finite groups of Lie type (Wiley, New York, 1985). - DeB02 S. DeBacker, Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of Math. (2) 156 (2002), 295–332. - DeB06 S. DeBacker, Parametrizing conjugacy classes of maximal unramified tori, Michigan. Math. J. 54 (2006), 157–178. - DR09 S. DeBacker and M. Reeder, *Depth-zero supercuspidal L-packets and their stability*, Ann. of Math. (2) **169** (2009), 795–901. - Ger75 P. Gérardin, Construction des séries discrètes p-adiques, Lecture Notes in Mathematics, vol. 462 (Springer, Berlin, 1975). - Har99 Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, University Lecture Series, vol. 16 (American Mathematical Society, Providence, RI, 1999), (Preface and notes by Stephen DeBacker and Paul J. Sally, Jr). - How77 R. Howe, Tamely ramified supercuspidal representations of GL_n , Pacific J. Math. **73** (1977), 437–460. - KM03 J.-L. Kim and F. Murnaghan, Character expansions and unrefined minimal K-types, Amer. J. Math. 125 (2003), 1199–1234. - Kos77 B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 73 (1977), 437–460. - Kot95 R. Kottwitz, Course notes (1995). - Kot99 R. Kottwitz, Transfer factors for Lie algebras, Represent Theory 3 (1999), 127–138 (electronic). - Lan97 R. Langlands, Representations of abelian algebraic groups, Pacific J. Math. 61 (1997), 231–250. #### On some generic very cuspidal representations - MW87 C. Mæglin and J.-L. Waldspurger, Modèles de Whittaker dégénérées pour des groupes p-adiques, Math. Z. 196 (1987), 427–452. - MP94 A. Moy and G. Prasad, *Unrefined minimal K-types for p-adic groups*, Invent. Math. **116** (1994), 393–408. - Pra89 G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Publ. Math. Inst. Hautes Études Sci. **69** (1989), 91–114. - Ran72 R. Ranga Rao, Orbital integrals in reductive groups, Ann. of Math. (2) 96 (1972), 505–510. - Ree08 M. Reeder, Supercuspidal L-packets of positive depth and twisted Coxeter elements, J. Reine Angew. Math. **620** (2008), 1–33. - Rod73 F. Rodier, Whittaker models for admissible representations of reductive p-adic split groups, in Harmonic analysis on homogeneous spaces, Proceedings of Symposia in Pure Mathematics, vol. 26 (American Mathematical Society, Providence, RI, 1973), 425–430. - Ser79 J. P. Serre, Local fields (Springer, Berlin, 1979). - She65 D. Shelstad, Regular elements of semi-simple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 281–312. - She89 D. Shelstad, A formula for regular unipotent germs, Orbites unipotentes et representations, II, Astérisque 171–172 (1989), 275–277. - Tit79 J. Tits, Reductive groups over p-adic fields, in Automorphic forms, representations, and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 1, eds A. Borel and W. Casselman (American Mathematical Society, Providence, RI, 1979), 29–69. - Yu01 J.-K. Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622. ## Stephen DeBacker smdbackr@umich.edu Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA #### Mark Reeder reederma@bc.edu Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA