## THE GENUS OF THE $n$-CUBE

## LOWELL W. BEINEKE AND FRANK HARARY

The definition of the genus $\gamma(G)$ of a graph $G$ is very well known (König 2): it is the minimum genus among all orientable surfaces in which $G$ can be drawn without intersections of its edges. But there are very few graphs whose genus is known. The purpose of this note is to answer this question for one family of graphs by determining the genus of the $n$-cube.

The graph $Q_{n}$ called the $n$-cube has $2^{n}$ vertices each of which is a binary sequence $a_{1} a_{2} \ldots a_{n}$ of length $n$, where $a_{i}=0$ or 1 . Two of its vertices are adjacent (joined by an edge) whenever their sequences differ in exactly one place. Thus each vertex of $Q_{n}$ has degree $n$, i.e. it is adjacent with $n$ other vertices. Hence the number of edges of $Q_{n}$ is $n 2^{n-1}$.


Figure 1

Theorem. Whenever $n \geqslant 2$, the genus of the $n$-cube is given by

$$
\begin{equation*}
\gamma\left(Q_{n}\right)=(n-4) 2^{n-3}+1 . \tag{1}
\end{equation*}
$$

Let $\gamma_{n}=(n-4) 2^{n-3}+1$. The proof that $\gamma\left(Q_{n}\right) \geqslant \gamma_{n}$ will be seen to follow readily from Euler's classical polyhedron formula. To show that $\gamma\left(Q_{n}\right) \leqslant \gamma_{n}$, an inductive construction will be provided by which $Q_{n}$ can be embedded in an orientable surface of genus $\gamma_{n}$.

We first show that $\gamma\left(Q_{n}\right) \geqslant \gamma_{n}$. As mentioned in (1), it follows from Euler's formula that the genus $\gamma(G)$ of any even graph $G$ (having no cycles of odd length) with $p$ vertices and $q$ edges satisfies the inequality

[^0]\[

$$
\begin{equation*}
\gamma(G) \geqslant \frac{1}{4} q-\frac{1}{2}(p-2) \tag{2}
\end{equation*}
$$

\]

Since each $n$-cube, $Q_{n}$, is obviously an even graph, we have

$$
\begin{aligned}
\gamma\left(Q_{n}\right) & \geqslant \frac{1}{4} n 2^{n-1}-\frac{1}{2}\left(2^{n}-2\right) \\
& =(n-4) 2^{n-3}+1
\end{aligned}
$$

To demonstrate the converse inequality we prove by induction on $n$ that the following slightly stronger result holds:

Proposition. The n-cube $Q_{n}$ can be embedded on an orientable surface of genus $\gamma_{n}$ in such a way that every quadrilateral in $Q_{n}$ whose vertices differ only in the first and last places of their sequences is a face.

The proposition clearly holds for $Q_{2}$. Assume that it is true for $Q_{n-1}$. Take two orientable surfaces $S_{0}$ and $S_{1}$ both of genus $\gamma_{n-1}$ which have $Q_{n-1}$ embedded on each of them in such a way that (i) the resulting embeddings are "mirror images" of each other, and (ii) each of the embeddings satisfies the proposition. In both $S_{0}$ and $S_{1}$ each vertex $v$ lies on exactly one quadrilateral face $F(v)$ whose vertices differ only in their first and last ( $n-1$ )-st places.

We now construct a surface $S$ of genus $\gamma_{n}$. To the sequence of each vertex in $S_{0}$, suffix a 0 ; to each vertex in $S_{1}$, suffix a 1 . A "handle" can be placed from the face $F(00 \ldots 00)$ of $S_{0}$ to the face $F(00 \ldots 01)$ of $S_{1}$, thereby forming a surface of genus $2 \gamma_{n-1}$. There are $\frac{1}{4}\left(2^{n-1}-4\right)$ other faces on $S_{0}$ (and of course also on $S_{1}$ ) which are faces $F(v)$ for four vertices $v$. If "handles" are added joining corresponding faces from $S_{0}$ and $S_{1}$, we obtain a surface $S$ of genus $2 \gamma_{n-1}+\left(2^{n-3}-1\right)$, which is readily seen to equal $\gamma_{n}$. On this surface $S$ we can embed $Q_{n}$, because each point of $S_{0}$ can be joined to the corresponding point of $S_{1}$ (i.e. points differing only in the $n$th place can be joined) without intersections using the new handles, as shown in Figure 2. Moreover, each quadrilateral of $Q_{n}$ whose edges join vertices differing in the first and last (the $n$ th) places is a face.


Figure 2

Thus $Q_{n}$ is embedded in this surface $S$ of genus $\gamma_{n}$ in accordance with the proposition showing that $\gamma\left(Q_{n}\right) \leqslant \gamma_{n}$.

Both of the inequalities having been established, the theorem is proved.
Figure 3 illustrates this construction in detail by showing the embedding of $Q_{4}$ into a surface of genus $\gamma_{4}=1$, i.e. a torus, using two mirror-image copies of $Q_{3}$.


Figure 3

References

1. L. W. Beineke and F. Harary, Inequalities involving the genus of a graph and its thicknesses. Proc. Glasgow Math. Assoc. (1965), to appear.
2. D. König, Theorie der endlichen und unendlichen Graphen (Leipzig, 1936; reprinted New York, 1950).

The University of Michigan and
University College, London


[^0]:    Received December 30, 1963. The preparation of this article was supported by the National Science Foundation under a Graduate Fellowship and Grant GP-207.

