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Abstract

We obtain bounds for certain functionals defined on a class of meromorphic functions in the unit disc of
the complex plane with a nonzero simple pole. These bounds are sharp in a certain sense. We also discuss
possible applications of this result. Finally, we generalise the result to meromorphic functions with more
than one simple pole.
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1. Introduction and main result

We denote the set of all complex numbers byC. LetA be the class of analytic functions
in the unit disc D := {z ∈ C : |z| < 1} with the Taylor expansion

f (z) = z +
∞∑

n=2

anzn, z ∈ D (1.1)

and f (z) � 0 for z ∈ D \ {0}. We see that the functions in A must satisfy the
normalisation f (0) = 0 = f ′(0) − 1. For f ∈ A, we define

d f := inf
∣∣∣∣∣
f (z)
z

∣∣∣∣∣, z ∈ D,

and for f ∈ A that are bounded in D, let

D f := sup
∣∣∣∣∣
f (z)
z

∣∣∣∣∣, z ∈ D.

Lewin obtained the following result.

THEOREM 1.1 (Lewin, [4]). For f ∈ A with the expansion (1.1), d f ≤ exp(−|a2|/2). If
f is bounded, then D f ≥ exp(|a2|/2).
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102 B. Bhowmik and F. Parveen [2]

In the same article, Lewin established that the estimates in Theorem 1.1 are best
possible. He commented that although the bounds in Theorem 1.1 are not sharp in the
case of univalent or bounded univalent functions, they nevertheless supply information
which may be of help when dealing with conformal mappings (analytic and univalent
mappings).

In this article, we allow the functions inA to possess a nonzero simple pole inside
D and wish to see whether an analogue of Theorem 1.1 can be established after suitably
defining the quantities d f and D f in this case. Therefore, we consider functions f that
are meromorphic having a simple pole at z = p ∈ (0, 1) inside the unit disk D, with the
Taylor series expansion

f (z) = z +
∞∑

n=2

anzn, z ∈ Dp, (1.2)

where Dp := {z ∈ C : |z| < p} and such that f does not vanish in D other than at the
origin. Evidently, for such f, we have f (0) = 0 = f ′(0) − 1. We denote the class of
such functions by F (p). If g is a meromorphic function having a simple pole at peiβ,
β ∈ (0, 2π], p ∈ (0, 1), and g is nonvanishing in D \ {0} with g(0) = 0 and g′(0) � 0,
then

f (z) =
e−iβg(zeiβ)

g′(0)
∈ F (p). (1.3)

This shows that taking the pole p in the interval (0, 1) is sufficiently general. For f ∈
F (p), we define

dp( f ) := inf
z∈D

∣∣∣∣∣
(z − p) f (z)
z(1 − pz)

∣∣∣∣∣,
and if (z − p) f is bounded in D, we define

Dp( f ) := sup
z∈D

∣∣∣∣∣
(z − p) f (z)
z(1 − pz)

∣∣∣∣∣.
These quantities can be thought of as analogous to d f and D f in [4]. The reason
for multiplying f /z, f ∈ F (p), by the factor (z − p)(1 − pz) is to make the resulting
function holomorphic in D. In addition, if f has a holomorphic extension to the
boundary ∂D = {z ∈ C : |z| = 1} of D, then

∣∣∣∣∣
(eiθ − p) f (eiθ)
eiθ(1 − peiθ)

∣∣∣∣∣ = | f (eiθ)|, θ ∈ [0, 2π).

Thus, in such cases, finding the bounds of dp( f ) and Dp( f ) will essentially give
estimates for the distance between the origin and the image of the unit circle under f.
In the second part of this paper, we will generalise these results to functions having
more than one simple pole in D.

We now state and prove our main result. We will adopt the main idea of the proof
from [4], but as we approach the problem, we will realise that the proof itself and
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finding the extremal functions for which equalities hold in these estimates are not
straightforward.

THEOREM 1.2. Let f ∈ F (p) have the expansion (1.2) in Dp. Then

dp( f ) ≤ p exp(−|pa2 + p2 − 1|/2),

and if (z − p) f is bounded in D, then

Dp( f ) ≥ p exp(|pa2 + p2 − 1|/2).

These bounds are best possible.

PROOF. Let s > 1 be such that∣∣∣∣∣
(z − p) f (z)
pz(1 − pz)

∣∣∣∣∣ ≥ 1/s, z ∈ D.

Then we must have

log
∣∣∣∣∣
(z − p) f (z)
pz(1 − pz)

∣∣∣∣∣ ≥ − log s,

where we choose that branch of logarithm for which log f ′(0) = 0. A minor simplifi-
cation of the above inequality yields

1 +
log |(z − p)/p(1 − pz)|

log s
+

log | f (z)/z|
log s

≥ 0.

Now define

F(z) = 1 +
log{(p − z) f (z)/pz(1 − pz)}

log s
, z ∈ D,

which is analytic in D by choosing that branch of the logarithm for which
log( f ′(0)) = 0. By virtue of the previous inequality, we have Re F(z) ≥ 0 with
F(0) = 1. Now we can expand F about the origin to get

F(z) = 1 +
(a2 + p − 1/p

log s

)
z +
(a3 − a2

2/2 + (p2 − 1/p2)/2
log s

)
z2 + · · · , z ∈ Dp. (1.4)

An application of Caratheodory’s lemma (see [3]) for the function F in Dp yields

|a2 + p − 1/p|
log s

≤ 2
p

.

Letting dp( f ) = p/s gives the first estimate of the theorem. To obtain the second
estimate of the theorem, we let

g(z) =
(pz)2(1 − pz)2

(z − p)2 f (z)
, f ∈ F (p), z ∈ D.

Note that g ∈ F (p) as (z − p) f is bounded in D and g has the Taylor expansion

g(z) = z + (2/p − 2p − a2)z2 + · · · , z ∈ Dp.
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We thus have dp(g)/p = p/Dp( f ). Therefore,

1
Dp( f )

=
dp(g)

p2 ≤ (1/p) exp(−|2 − 2p2 − pa2 + p2 − 1|/2)

= (1/p) exp(−|pa2 + p2 − 1|/2).

Consequently, the second inequality of the theorem follows.
The bounds obtained in the theorem are best possible in the following sense. We

consider the functions f ±α in F (p):

f ±α (z) = pψ(z) exp
(
± αψ(z)

1 + ψ(z)

)
, α ≥ 0, z ∈ D,

where ψ(z) = z(1 − pz)/(p − z). A quick computation yields

f +α (z) = z +
(
α

p
+

1
p
− p
)
z2 + · · · , z ∈ Dp.

Therefore, here a2 = α/p + 1/p − p, which gives |a2 p + p2 − 1| = α and

| f +α (eiφ)| = p exp(α/2) = p exp(|a2 p + p2 − 1|/2),

where φ ∈ (0, π) ∪ (π, 2π). Again for the function f −α , we have

f −α (z) = z +
(
− α

p
+

1
p
− p
)
z2 + · · · , z ∈ Dp,

which gives a2 = −α/p + 1/p − p or equivalently |a2 p + p2 − 1| = α and

| f −α (eiφ)| = p exp(−α/2) = p exp(−|a2 p + p2 − 1|/2),

where φ ∈ (0, π) ∪ (π, 2π). This shows that the estimates stated in the theorem are best
possible. This completes the proof of the theorem. �

REMARK 1.3. (i) Note that the quantity |pa2 + p2 − 1| in the bounds for dp( f )
and Dp( f ) in Theorem 1.2, may be replaced by |p2(a3 − 1

2 a2
2) + (p4 − 1)/2| as by

Caratheodory’s lemma, we also have

|a3 − a2
2/2 + (p2 − 1/p2)/2|

log s
≤ 2

p2 ,

for the function F defined in Dp. Furthermore, we comment here that if
pa2 + p2 − 1 = 0, then we need to use the first nonvanishing coefficient in the
expansion (1.4) to get the estimates for dp( f ) and Dp( f ).

(ii) We observe that we recover Lewin’s results (compare [4, Theorem A]) if we
pass to the limit as p→ 1− in the expression for the bounds obtained in Theorem 1.2.

We now illustrate the results obtained in Theorem 1.2 through some examples and
indicate possible applications of the bounds.
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EXAMPLE 1.4. Let

f (z) =
−p log(1 + z)

z − p
, z ∈ D.

We choose the branch of the logarithm such that log 1 = 0. One can check that f ∈
F (p) and has the expansion

f (z) = z + (1/p − 1/2)z2 + (1/p2 − 1/2p + 1/3)z3 + · · · .

Here, a2 = 1/p − 1/2 and as a result, an application of Theorem 1.2 yields

dp( f ) ≤ p exp(−|p2 − p/2|/2).

EXAMPLE 1.5. Let f (z) = −pz exp(z)/(z − p), z ∈ D, with the expansion

f (z) = z + (1 + 1/p)z2 + (1/2 + 1/p + 1/p2)z3 + · · · , z ∈ Dp.

Thus, pa2 + p2 − 1 = p2 + p and dp( f ) ≤ p exp(−(p2 + p)/2).

EXAMPLE 1.6 (Univalent case). Consider f (z) = −zp/(z − p)(1 − pz), z ∈ D. It is a
simple exercise to check that f is one–one inD (see [1, 2]). The Taylor expansion of this
function yields the second Taylor coefficient as a2 = p + 1/p. Therefore, according to
Theorem 1.2, we must have dp( f ) ≤ p exp(−p2). Now for this function,∣∣∣∣∣

(z − p) f (z)
z(1 − pz)

∣∣∣∣∣|z|=1
=

p

|1 − peiθ|2
≥ p

(1 + p)2 .

Therefore, dp( f ) ≥ p/(1 + p)2. Now, if z = x, x ∈ (−1, 0), then

dp( f ) = lim
x→−1

p/(1 − px)2 = p/(1 + p)2 < p exp(−p2)

for all p ∈ (0, 1). Thus, the obtained bound in Theorem 1.2 is not sharp for this
univalent function.

In the above three examples, it is difficult to give the exact estimate for the distance
from the origin to the image of the unit circle under f, but nonetheless, we obtain some
information about this distance.

EXAMPLE 1.7 (Existence of a zero). As an application of Theorem 1.2, we wish to
investigate the existence of a zero for a meromorphic function f with a nonzero pole
other than at the origin. To this end, consider p = 1/2 and the function

f (z) =
z + 15z2 + iz3 + 2z4 − 4iz5 + 1

5 z6

(1 − 2z)
, z ∈ D.

Suppose f /z does not vanish in D \ {0}. Then it is clear that f ∈ F (1/2). Expanding f
in a Taylor series about the origin for |z| < 1/2 gives

f (z) = z + 17z2 + (34 + i)z3 + · · · .

Here, a2 = 17. Therefore, an application of Theorem 1.2 yields

Dp( f ) ≥ p e|a2 p+p2−1|/2 = 1
2 e31/8 = 24.08.
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However, then we see that
∣∣∣∣∣
(z − p) f (z)
z(1 − pz)

∣∣∣∣∣|z|=1
=

∣∣∣∣∣
(z − 1

2 )(z + 15z2 + iz3 + 2z4 − 4iz5 + 1
5 z6)

z(1 − z/2)(1 − 2z)

∣∣∣∣∣|z|=1
≤ 23.2.

This is a contradiction, and therefore f /z must vanish at a nonzero point in D.

2. Generalisation of the main result

In this section, we generalise Theorem 1.2 by allowing the functions in F (p) to have
more than one nonzero simple pole in D. This extension is possible if these poles in D
lie on a line passing through the origin, that is, all the poles have the same argument.
Thus, it will be sufficient to consider these nonzero poles in the interval (0, 1) as we
did for one nonzero pole in D (see (1.3)). More precisely, we consider functions f that
are meromorphic having simple poles at z = p1, p2, . . . , pn ∈ (0, 1) inside the unit disk
D with the Taylor series expansion

f (z) = z +
∞∑

n=2

anzn, z ∈ Dp, (2.1)

where p := min {p1, p2, . . . , pn}, Dp := {z ∈ C : |z| < p} and f does not vanish in D
other than at the origin. For such f, we have f (0) = 0 = f ′(0) − 1. We denote the class
of such functions by F . Let

B(z) =
n∏

i=1

z − pi

1 − piz
, z ∈ D.

For f ∈ F , we define

mp( f ) := inf
z∈D

∣∣∣∣∣
B(z) f (z)

z

∣∣∣∣∣,
and if (z − p1)(z − p2) . . . (z − pn) f is bounded in D, we define

Mp( f ) := sup
z∈D

∣∣∣∣∣
B(z) f (z)

z

∣∣∣∣∣.
In the next theorem, we obtain estimates for mp( f ) and Mp( f ).

THEOREM 2.1. Let f ∈ F have the expansion (2.1) in Dp. Then

mp( f ) ≤
( n∏

i=1

pi

)
exp
(
− 1

2
p
∣∣∣∣∣a2 +

n∑
i=1

(
pi −

1
pi

)∣∣∣∣∣
)
,

and if (z − p1)(z − p2) . . . (z − pn) f is bounded in D, then

Mp( f ) ≥
( n∏

i=1

pi

)
exp
(1
2

p
∣∣∣∣∣a2 +

n∑
i=1

(
pi −

1
pi

)∣∣∣∣∣
)
.

These bounds are best possible.
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PROOF. To prove this theorem, we use a similar technique to that in the proof of
Theorem 1.2. Let s > 1 be such that∣∣∣∣∣

B(z) f (z)
z
∏n

i=1 pi

∣∣∣∣∣ ≥ 1/s, z ∈ D.

Therefore, we must have

log
∣∣∣∣∣
B(z) f (z)
z
∏n

i=1 pi

∣∣∣∣∣ ≥ − log s,

where we choose that branch of the logarithm for which log f ′(0) = 0. A minor
simplification of this inequality yields

1 +
n∑

i=1

log |(z − pi)/pi(1 − piz)|
log s

+
log | f (z)/z|

log s
≥ 0.

For z ∈ D, we define

F(z) = 1 +
log(−B(z) f (z)/z

∏n
i=1 pi)

log s

= 1 +
n∑

i=1

log((pi − z)/pi(1 − piz))
log s

+
log( f (z)/z)

log s
,

which is analytic in D by choosing that branch of logarithm for which log( f ′(0)) = 0.
By virtue of the previous inequality, we have Re F(z) ≥ 0 with F(0) = 1. Now we can
expand F about the origin to get

F(z) = 1 +
(a2 +

∑n
i=1(pi − 1/pi)
log s

)
z + · · · , z ∈ Dp.

An application of Caratheodory’s lemma for the function F in Dp yields

|a2 +
∑n

i=1(pi − 1/pi)|
log s

≤ 2
p

.

Now, letting mp( f ) = (
∏n

i=1 pi)/s, we obtain the first estimate of the theorem. To obtain
the second estimate of the theorem, we let

g(z) =
(z
∏n

i=1 pi)2

(B(z))2 f (z)
, f ∈ F , z ∈ D.

Note that g ∈ F as (z − p1)(z − p2) . . . (z − pn) f is bounded in D and g has the Taylor
expansion

g(z) = z +
(
− a2 + 2

n∑
i=1

( 1
pi
− pi

))
z2 + · · · , z ∈ Dp.
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We thus have mp(g)/(
∏n

i=1 pi) = (
∏n

i=1 pi)/Mp( f ). Therefore, we deduce that

1
Mp( f )

=
mp(g)
(∏n

i=1 pi

)2

≤ 1∏n
i=1 pi

exp
(
− 1

2
p
∣∣∣∣∣ − a2 + 2

n∑
i=1

( 1
pi
− pi

)
+

n∑
i=1

(
pi −

1
pi

)∣∣∣∣∣
)

=
1∏n

i=1 pi
exp
(
− 1

2
p
∣∣∣∣∣a2 +

n∑
i=1

(
pi −

1
pi

)∣∣∣∣∣
)
.

The above inequality follows by applying the first part of the theorem to the function
g. Consequently, the second inequality of the theorem follows.

The bounds obtained in the theorem are best possible in the following sense. We
consider the following functions in F :

f ±α (z) =
z
∏n

i=1 pi

B(z)
exp
(
± αψ(z)

1 + ψ(z)

)
, α ≥ 0, z ∈ D,

where ψ(z) = z(1 − pz)/(p − z). A little computation yields

f +α (z) = z +
(
α

p
+

n∑
i=1

( 1
pi
− pi

))
z2 + · · · , z ∈ Dp.

Here, a2 = α/p +
∑n

i=1(1/pi − pi), which in turn implies p|a2 +
∑n

i=1(pi − 1/pi)| = α
and

| f +α (eiφ)| =
( n∏

i=1

pi

)
exp(α/2) =

( n∏
i=1

pi

)
exp
(1
2

p
∣∣∣∣∣a2 +

n∑
i=1

(
pi −

1
pi

)∣∣∣∣∣
)
,

where φ ∈ (0, π) ∪ (π, 2π). Again for the function f −α , we have

f −α (z) = z +
(
− α

p
+

n∑
i=1

( 1
pi
− pi

))
z2 + · · · , z ∈ Dp,

which gives a2 = −α/p +
∑n

i=1(1/pi − pi) or equivalently p|a2 +
∑n

i=1(pi − 1/pi)| = α
and

| f −α (eiφ)| =
( n∏

i=1

pi

)
exp(−α/2) =

( n∏
i=1

pi

)
exp
(
−1

2
p
∣∣∣∣∣a2 +

n∑
i=1

(
pi −

1
pi

)∣∣∣∣∣
)
,

where φ ∈ (0, π) ∪ (π, 2π). This shows that the estimates stated in the theorem are best
possible and completes the proof of the theorem. �

REMARK 2.2. We note that Theorem 2.1 reduces to Theorem 1.2 when n = 1.
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