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Abstract

Pointwise bounds for characters of representations of the compact, connected, simple, exceptional Lie
groups are obtained. It is a classical result that if n is a central, continuous measure on such a group,
then /i*™0 is absolutely continuous. Our estimates on the size of characters allow us to prove that the
exponent, dimension of G, can be replaced by approximately the rank of G. Similar results were obtained
earlier for the classical, compact Lie groups.
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1. Introduction

In 1972, Ragozin [7] proved the striking fact that if G was any compact, connected,
simple Lie group and /x was a central, continuous measure on G, then /xdimG e Ll{G)
(the product here being convolution). One consequence of this result is that it implies
that if g is not in the centre of the group, then TrX(g)/degX -> 0 as the degree of
the representation k tends to infinity (see [10]). Ragozin's result was first improved
by one of the authors in [2] where it was shown that if g was not in the centre of the
group, then

<c(g)(degX)-2/(dimG-rankG)

and that if it > dim G/2 and \x was any central, continuous measure, then (ik e Ll{G).
In [3] sharp estimates on the rate of decay of TrA(g)/degA. were found for the

classical Lie groups. The precise rate depends on the Lie group type, but in each
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case the sharp exponent in the formula above is —0(1/ rank G). This result implies
that nk e L1(G) for all central, continuous measures /x provided k is approximately
rank G.

In this paper we obtain similar estimates for the exceptional Lie groups. To be
precise, we obtain the following result:

THEOREM 1.1. Suppose G is one of the five compact, exceptional Lie groups G2,
F4, E6, E-j or E8- For every g not in the centre of G, there is a constant c(g) such that

degX

for all representations k, provided

1) ifG- En, n = 6, 7, 8;

s < • 1/5

2/5 ifG=G2.

We have not been able determine if these estimates are sharp, however, we can use
them to improve upon Ragozin's result.

COROLLARY 1.2. If \JL is any central, continuous measure on one of the compact,
exceptional Lie groups G, then /x" € L](G)ifG= En with n = 6, 7, 8, /x6 € LX(G)
ifG = F^ and ix3 e Ll(G)ifG = G2.

To contrast this with Ragozin's result we recall that the dimensions of the excep-
tional groups are:

Type G2 F4 E6 E7 £ 8

Dimension 14 52 78 133 248.

In Section 2 of this paper we explain our notation. Section 3 is devoted to proving
the theorem for E%. In Section 4 we give the proofs for the groups E6, £7, F4 and G2.
The corollary and applications are discussed in Section 5.

2. Notation

Let G be a compact, connected, simple Lie group and let W be its Weyl group. The
positive roots associated with the base of simple roots A will be denoted by <I>+, T
will denote the torus associated with <t>, the fundamental dominant weights relative to
A will be denoted by Xu ... ,kn, and A + will be the set of all dominant weights. The
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set A+ is in a 1-1 correspondence with the dual object G; ax e G is indexed by its
highest weight X e A+. The degree of ak will be denoted by dx. We set p = £™=1 Xj.
According to the Weyl dimension formula [11] the degree of A. is given by

(2.1) dk =
ae<J>+

For general facts about root systems we refer the reader to [4].
Given g e T we let 4>(g) = {a e 4> : a(g) G 2jrZ} and let <t>+(g) =

It is easily seen that <t>(g) is a subroot system of $ and that <t>+(g) is a complete set
of positive roots of this subroot system. It is known that Q>(g) = <t> if and only if g is
in the centre of the group ([1, page 189]).

For g in the torus, the Weyl character formula ([11]) states

eip(g) T,wewdet wexP*(P + *. w(g))

This determines Tr A. on G as characters are class functions.
When g belongs to the centre of the group an application of Schur's lemma shows

that | TrX(g)\ = dk, hence the interest is in non-central elements. It was shown in [2]
how one can evaluate the Weyl character formula (by considering suitable directional
derivatives if ^>+(g) is not empty) to obtain

„ „ , |TrX(g)|
(2.2) = c(g)

d
Consequently, if one can prove

(2.3) sup

is bounded over all A., then

|TrA.(g)l < c(g)

Thus in order to find pointwise bounds on the trace functions off the centre of G
it is useful to understand the structures of the subroot systems properly contained in
$ and how they are affected by the action of the Weyl group. This was the approach
(successfully) undertaken in [3] for the classical groups.

In this paper we are interested in the exceptional Lie groups Gi, F4, E6, E-j and
£8- The root systems and bases we take follow the convention of Humphreys [5] and
are summarized below for the convenience of the reader. Note that in type G2 we
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TABLE 1. The exceptional Lie groups G2, F4, E6, £7 and £8.

[4]

Type

G2

FA

£ 8

E7

E6

Root system <t>

± ( 2 e , - e ; -ek):i*j / * €{1 ,2 ,3}

±e, ± ej, ±e,: : 1 < i ^ j < 4
\(±e\ ± e 2 ± e 3 ± e4)

±e, ±ej : 1 < i < j < 8,
\ Y^k=\ ^ek '• * minus signs even

±c, ± ej : 1 < / < j < 6,
±(e7 - e8),

±i(c7-e8 + ELi±c*):

# minus signs in sum odd
±et ±ej : 1 < i < j < 5,

±^(«8-«f7-«6 + Et- l =*=«*) :

# minus signs in sum even

Base A
a\ = ex - e2,
at = —2e\ +e2 + ei

ot\ = e2 -e3,a2 = e3 - e4,
a3 = e4,
«4 = 5(^1 - e2 - e-i - e 4 )

«i = | («i - «2 e7 + e8),
0C2 = ei+ e2,

a, = e,_i — e,_2 : 3 < j < 8

a,, J = 1 , . . . , 7 from £g

a,, i = 1 , . . . , 6 from £g

let e\, e2, e$ denote the standard basis vectors in K3, in F4 we denote by e\, e2, e3, e4

the standard basis vectors in K4, and in types E6, £7, f8, the vectors e,, / = 1 , . . . , 8
denote the standard basis vectors in K8 (see Table 1).

It clearly suffices to analyze those subroot systems which are maximal in the sense
that there is no other proper subroot system containing that system. Thus it suffices
to show that

( 2 4 )

is uniformly bounded over A. for <P+/ any maximal positive subroot system. The
diagrams of these subroot systems are subdiagrams of the extended diagram of the
original root system. The extended diagrams can be found in the appendix. Note that
the additional vertex, labelled 0, is identified with the highest root a0 which is equal to
e, + e2-2e3 in G2, ex + e2 in F4, e1 + e% in Eg,e7-e8 in E-, and \(£?=i et-e6-

3. Proof of Theorem 1.1 for the group E%

The technique used in [3] to estimate the size of the characters of the classical
groups involved finding the positive roots associated with maximal subroot systems by
considering the Weyl conjugates of the (standard) bases corresponding to subdiagrams
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of the extended diagrams. This method does not appear to work well with these
exceptional groups because their Weyl groups are very cumbersome and so a different
approach seems needed.

We will begin with Eg as this is the most difficult case. The maximal proper subroot
systems are of types A8, Aj x A7, A{ x A2 x A5, A4 x A4, D5 x A3, £ 6 x A2, Z>8 and
E7 x A, with 36, 29, 19, 20, 26, 39, 56 and 64 positive roots, respectively.

Our approach will be to consider the set of roots fi such that (A.,, fi) ^ 0 for the
fundamental dominant weights A.,-, i = 1 , . . . , 8, and to show that a suitable selection
of these do not belong to any maximal positive subroot system <t>+/. It is useful to
express the fundamental dominant weights A., in terms of the standard basis vectors e,
ofK8:

A-i = 2e&, A.4 = e3 + e4 + e5 + e6 + e7 + 5e8,

A.5 = e4 + e5 + e6 + e7 + 4e8,

A.7 = e6 + e-i + 2e%,

A.8 = e7 + e%.

Any representation A. can be written as 5Z*=1 m,A., for non-negative integers m,; we
will assume m* = max, m,.

Let S c <I>+ be the set of elements P for which (A.,, /?) ^ 0 for all i = 1 , . . . , 8. It
consists of 44 elements:

where the roots \{e% + e7 + £ !L , ^ e*) ^ a v e a n e v e n n u m b e r of minus signs. Let 58

be the set of positive roots /J for which (A.8, fi) ^ 0 and let 50 be the set of positive
roots for which (A.,, /}) £ 0 for all i = 1 , . . . , 7. Notice that Sg contains 5 as well as
the elements

, J , c7 ± e, : j = 1 , . . . , 6 | ,

and hence has cardinality at least 57. The set 50 contains 5 and the elements

^ \

-e7 + e6 + 2_!±e<)'
i=i /

where there are either one or three minus signs in the sum and therefore has at least 59
elements. If <t>+/ is any of the maximal positive subroot systems other than D8 or
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£ 7 x A | , then the cardinality of <t>+/ is at most 39 and hence there must be at least 18
positive roots in S,\<t>+/, i = 0, 8.

The sets S8 and So have the feature that there is a constant c > 0 such that if either
it = 8 and £ e 58, or k ^ 8 and £ e So, then (p + X, fi) > cm*. Hence, for any 5 < 1,

(p +A, « ) ' - ' <
oe*+\<l>+/

As (p + A., a) < O(mt) for any positive root a, we obtain the estimate

oe<t+' ae*+\<t>+'

and this is bounded provided s < 1/4.
The two remaining types of proper subroot systems, £>8 and £7 x A {, seem to be too

large to obtain good bounds by such elementary methods. Instead, we will analyze the
size of (4>+\<t>+/) n 5 more carefully, taking into account the possible inner products
which can arise between elements of S.

Consider the elements of 5,

y = - l e i
\ - — ell

and

1/ . . . A \
")

for 1 < j < j < 6. Put 5' = S\{v), where v = eg + en. Notice that xtj + yy = t>
and (u, a) = 1 for all a 6 5'. As inner products of roots are integral valued, the only
possible inner products of roots in E% can be 0, ±1, ±2, with the latter occuring only
if the two roots coincide or are negatives of one another. It follows from these remarks
that for all a e S'\{xy, yy}, either (jcy, a) = 0 and (vy, a) = 1, or (xy-, a) — 1 and
(ytj, a) = 0. Also, note Qcy, yy) = — 1.

We will be able to exploit this property by making use of the observation that
two subroot systems of the same type have the same set of inner products, and the
set of inner products of their positive roots can differ only by sign. Thus in making
arguments which depend only on inner products up to sign (as we will do for the
remaining two cases) we need only consider how the elements of a particular subroot
system of the required type can 'play the role' of the elements of S'. Therefore we
may as well assume the subroot system of type D8 was formed by removing a\ and
so has positive roots {e,• ± e}i : 1 < j < i < 8}, and that the subroot system of type
E7 x Ai was formed by removing a8 and so its positive roots are e7 + e% and the
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standard set of positive roots for E1 as described in Section 2. We will let $$ denote
these particular positive subroot systems.

Our goal is to find an upper bound for the number of elements of 4>J which can
play the role of elements in 5'. Since 5' consists of the 15 pairs xtj, yy- and 13 other
elements, if 4>J contains more than 28 elements of 5' there must be a pair a, ]3 e $ J
taking the role of a pair x^, yy. This means that (a, /i) = ± 1 and any other element,
r e $ J , playing the role of an element of S' must have the property that inner product
of one of a or p with r is zero and the other is modulus one. By counting the number
of r e $+ which has this property we will obtain an upper bound on the size of
*J n 5'.

The following lemma will make it easy to count the number of such r.

LEMMA 3.1. Suppose oc ^ ±fi and (a, yS) / 0. The number of x such that either
(a, r) = ±1 and (yS, r) = 0 or vice versa, is independent of the choice of a, 0.

PROOF. Since a ^ ±/J and (a, /}) / 0, one of a ± /} = y e <£' (the choice of ±
depends on the sign of (a, /5)). Similar arguments to those used above show that a
positive root r has the property that either (a, r) = ±1 and (/?, x) = 0 or vice versa
if and only if (y, r) = ±1 and r ^ a j . Thus the number of x having the required
property is equal to

£ l(y, T)| - l(y, Y)\ - I(K. «)l - l(y. P)\

If a', /S' is any other such pair with a'±fi' = y', then, of course, the number of x such
that either (a, r') = ±1 and (a, /$') = 0 or vice versa is equal to 5Ire<t>+ I07'' T)l ~ ̂ >
As the roots are all the same length, the Weyl group is transitive on 4>J, thus

and therefore the number of such r is constant over all these pairs. D

So it suffices to consider one choice of pair. For E-, it is convenient to choose

a = i(«j - e7 - et + E L i , ^ , ei) a n d P = \{e* ~ ei + e< ~ E L u * ei)- T h e n

y = a + fi = e% — e7. It is easy to check that (y, e, ± cy) = 0 if 1 < j < i < 6,
(y, y) = 2 and (y, r) = 1 for the remaining 32 elements in the positive root system
of ET. Hence the number of such r is 30, showing that there are at most 32 elements
of 5' among the positive roots of £7 (these 30 and the pair a, ft). As the positive root
of A i is orthogonal to every element of E-, it cannot belong to 5, and therefore there
can be at most 33 of the positive roots in £7 x A\ contained in 5.

https://doi.org/10.1017/S1446788700013604 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013604


240 Kathryn E. Hare and Karen Yeats [8]

For D8 choose a = e\ — e2, P = e2 — e3 and y = ex — e3. Then (y, r) = ±1 if
and only if x = e\ ± e^;, j ^ 1, 3, or e-} ± e3, j ^ 1, 3 (where in either case we mean
the positive root) or r = y. Consequently, 5Zie<t+- |(y, r ) | — 4 = 22. Thus if there is
a pair playing the role of xtj, y,,, then there can be at most 24 elements in <&£ n 5' and
otherwise there can be at most 28 elements.

In all cases, it follows that there must be at least 11 elements of 5 not in the positive
subroot system, thus we can conclude that

<p+*.«)' n (p+^r'<o(m

This is bounded if s < 1/7, completing the proof of the theorem for type E%.

4. The other exceptional groups

4.1. Proof of Theorem 1.1 for E6 For E6 and E1 we have not been able to find a
suitable pattern in the inner product table which we could exploit. Instead, we will use
the fact the definition of <t>(g) ensures that any integral linear combination of roots of
<t> (g), which is also a root, must belong to <t> (g). In particular, this implies that if the set
of roots generated by some subset (under integral linear combinations) is larger than the
given proper subroot system 4>(g), then the set itself cannot be completely contained
in <t>(g). By applying this argument to the subsets 5, = jj3 e $ + : (A.,-, /J) ^ 0 } ,
where A.,-, i = 1 , . . . , 6 denote the fundamental dominant weights we will again be
able to argue that a suitable number of elements of 5, are not in <I>+ (g) and thus
bound (2.4).

We recall that the fundamental dominant weights can be expressed in terms of the
ej as follows:

2
*i = r(eg - ei - ee), *4 = <?8 - e-i - e6 + e3 + e4 + e5,

1 1 5 2
*2 = 2^8 ~eT~ e6)+ 2^2 *" *5 = 5^ 8 ~ ei ~ ^ + e* + e*>

i = l

5 1 1 -^ 1
*3 = TC^S — e1 — e6) - -ei + - V* eh k6 = - ( e 8 - e7 - e6) + e5.

6 2 2 t ? 3

Put also

5 = {p e <J>+ : (A,, p) £ 0 for 1 < 1 < 6}
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The sets 5, can be described as follows:

- e7 - e6 + e5 - £*=1 e, j ,

5 (eg - e-i - e6 - e5 + £*=1 ±ek j : 1 or 3 minus signs J;

S 2 \S = [et + ej : 1 <j < i < 5;

- e7 - e6 - e5 + £*=1 ±ekj : 1 minus sign j ;

S 3 \ 5 = !«,• + «/, ek-ex:2<j < i < 5, 2 < it < 5;

5 (eg - e7-

| (c8 - e7 - e6 - e5 + X!i=2 ± e * - e i ) : 2 minus signs,

5 (eg - e7 - e6 - e5 + JZLi ± c * j : x n"11118 sig") ^

5 4 \ 5 = je, ± e; : ; = 1, 2, i = 3,4, 5; e5 + e4, e5 + e3, e4 + e3,

5 (e8 - e7 - e6 + e5 - 5D*=i e ' j - 5 (es - El=4 e' + e3 - e2 -

+ e3 + e2 + e, J ,

\ (e» - ELs e- + e* + E L i ± e * ) : 1 or 3 minus signs J ;

5 5 \S = [e, ± ej : ; = 1, 2, 3, i = 4, 5; e5 + e4,

; (e8 - e7 - e6 + e5 - £*=1 e, J ,

l=s e< + e* + E L i ± e * ) : ! or 3 minus signs J ;

- e7 - e6 + e5 - e4 - e3 - e2 - ex), e5 ± e,- : 1 < i < 4}.

2 (*s - El

So |5| = 7, |S,| = 16, \S2\ = 21, |53| = 25, |54| = 29, |55| = 25 and |56| = 16.
The proper subroot systems in E6 are of types A5 x Ai with 16 positive roots,

A2 x A2 x A2 with 9 positive roots and D5 with 20 positive roots.
If X = £ m,A., has largest coefficient mk and k = 3,4, 5, we can use the sets S* in

the same manner as the easy Eg cases to obtain the inequality

.«>' n
This is bounded for s < 1/5.

This leaves three cases, k = 1, 2, 6, which will be settled by the generating subsets
argument briefly outlined above. We will show that in these cases, as well, at least
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five elements of 5* are not in the proper subroot system <t>+(g), so that the calculation
above can still be invoked to show s < 1/5 is sufficient.

Roots of the form e( ± ej we will call standard and the others, peculiar. Observe
that any set generated by the standard roots [e^ + es : j el] (or [e^ — e, : j el})
for some i0 ^ / , together with a single root e^ — e, (respectively, efe + ej) for some
j e / , will contain {et ± e, : i,j e / U {io}}. We will refer to this set as a standard
Dn, with n = | / | + 1, on the letters / U {io} (or, simply, a standard Dn if it is on the
letters { 1 , 2 , . . . , n}). For example, by considering differences of elements of 5 one
can readily see that the set generated by S contains a standard D4.

Our strategy will be to show that any subset of Sk, consisting of all but four of its
elements, will generate a standard D5. We can assume <t>+(g) also contains at least 3
elements of 5 (for otherwise we are done), none of which are in the standard D5. This
forces 4>+ (g) to have at least 23 elements which is impossible as the largest proper
positive subroot system of E6 has only 20 elements.

We consider each Sk separately.
S& : If all the peculiar elements of S6 belong to <t>+(g) (we will say we remove

no peculiar elements), then all of S and at least one element of the form e5 ± eh

i = 1 , . . . , 4, must belong to <&+(g). This set generates a standard D5 which, as we
remarked above, is not possible.

If we remove no standard elements, then we can generate a standard D5 by the
roots {e5 ± e, : / = 1 , . . . , 4).

Otherwise we remove 1, 2 or 3 peculiar roots. Then we keep either all e5 + et or
all e5 — e, for / belonging to a three element subset / ' of { 1 , . . . , 4}, and a root e5 — e,
(respectively, e5 + et) for one index i e I'. These generate a standard D4 on the letters
/ ' U {5}. If k is the missing index we can find two peculiar elements from among the
remainder which differ at this index, and using these we can generate a standard D5.

S2 : If we remove at most one peculiar root we keep either all of 5 or all of the
elements i (e8 — e7 — e6 — e5 + X)*=i ^ek) with one negative sign in the sum. As
well, we keep at least one e, + ej for i, j 6 { 1 , . . . , 4}. By taking differences of these
elements we can generate a standard Z)4. As we keep peculiar roots with both ±e5, a
standard D5 can be obtained.

Otherwise, at most two standard roots are removed. Then there must be four roots
of the form e, + ej, j ^ i, for some fixed i and at least one other root of the form
ej + ek, j ,k ^ i. But then e, — ek is in the generated set and consequently the set
generates a standard D5.

Si : If at most one peculiar root with a —e5 term is removed, then we are left with
either all of the peculiar roots | ( e g — e7 — e6 — e$ + Ylk=i ^ek) w i m o n e rrrinus sign
in the sum and one with three minus signs, or vice versa. These roots generate a
standard D4. Since there is also a peculiar root kept with a +e5 term, we generate a
standard D5.
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If at most one peculiar root with a +e5 term is removed we are left with (at least)
one of i(e8 — e7 — e6 + e5 — Ylt=i ek) o r \{es — e7 — e6 + Yll=\ ek)- This root, together
with those remaining in S and a peculiar root with a — e5 term, generate a standard D5.

Finally, if we remove two peculiar roots with a +e5 and two with — e5, then from the
remaining elements with a — e5 term we can take either 3 elements with one minus sign
in the sum, along with one other element which is negative in the position 1 < i < 4
which none of the first 3 are negative in, or 3 elements with three minus signs in the
sum, along with one other element which is positive in the position which none of the
first 3 are positive in. These 4 elements generate a standard D4 and since there is also
a peculiar root with a +e5 term, again we produce a standard £>5.

4.2. Proof of Theorem 1.1 for Z?7 A similar argument can be used for £7 . A simple
calculation shows that the fundamental dominant weights are given by

A-i = e% — e7> A4 = 2^8 ~ 2e7 + e$ + e4 + e$ + e^,

, 6 _ 3
5 2

1=1 A6 = es — e7 + e5 + e6,
3 1 1 -T-A i

= -(eg - e,) - -a + - 2_ *<> XT = - ( e 8 - e,) + e6.

S = {p e <$>+ : (A.,, £ ) ^ 0 for 1 < i < 7}

: 1 or 3 minus signs in sum= {ei-eT,-\ei-eT + e6 +

and let 5, = {fi e 4>+ : (A.,, /3) ^ 0 } . For example,

- I e% — e7 — e6 + ^ ±ek I : even # minus signs in sum i ;
V k=\ I j

One can verify that | 5 | = 16, |Sj | = 33, |5 2 | = 42, |5 3 | = 47, |5 4 | = 53,
|SS| = 54, \S6\ = 42 and |57 | = 27. The proper subroot systems in E-, are of types
Aj, A3 x A3 x A,, A5 x A2, A] x D6 and E6 with 28, 13, 18, 31 and 36 positive roots
respectively.
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If X = J3 mt^i has largest coefficient m* and k = 3, 4 or 5 we can use Sk and the
cardinality argument as in the easy Es cases to establish that

This is bounded if s < 1/5.
For the remaining cases, k = 1, 2, 6,7, we can show that there must be at least 8

elements of S* not in the subroot system <J>+(g) by using the same basic reasoning as
in E6. This will prove s < 1/7 suffices for all cases.

We proceed by contradiction and so assume that at least 9 elements of 5 will belong
to &+(g). If we can prove there is a standard D6 in <J>+(g), then as none of these
belong to 5 this will imply <t>+(g) contains at least 39 elements and gives the required
contradiction.

Any set containing all but three of the elements of S will generate a standard D5.
Together with any peculiar element with a — e6 term, or an element of the form e6 ± et,
(at least one of which we can find among the elements in S* C\ <t>+(g)), a standard D6

is produced. Consequently, at least four elements of S must not belong to ^>+(g).
A similar argument shows that at least four elements from 5 i \ 5 must not belong

to the positive subroot system, thus at least eight elements of Si are not in <J>+(g).
For 57 we note that any set of all but three elements of {e6 ± e, : i e {1, . . . , 5}}

will contain a subset of the form e6 + e't, where e't = ±e, and i runs over four values
out of {1, 2, 3, 4, 5), as well as an element e6 — e', for one choice of j chosen from the
values of i. These five elements generate D5 on the letter 6 and the four letters taken
on by the index i. By choosing two peculiar elements from 57 D <t>+(g) which differ
at the missing index we generate a standard D6. This proves 8 elements from 57 are
not contained in the subroot system.

For the cases S2 and 56 a simple cardinality argument shows at least 6 elements are
not in the subroot system, but similar reasoning to that above will yield the desired
improvement.

4.3. Proof of Theorem 1.1 for F4 The same technique can be used for F4, as well.
Recall that the fundamental dominant weights are k\ = e\ + e2, X2 = 2e\ + e2 + e3,
A.3 = (3ei + e2 + e3 + e4)/2 and kA = e\. As usual let

5 = {/3 € <t>+ : (A.,-,0) ^ O f o r l < i < 4} and 5,• = {j8 e <t>+ : (A.,-, 0) ^ 0}.

Their cardinalities are \S\ = 10, | 5 , | = 15, \S2\ = 20, |53 | = 20 and \SA\ = 15.
The maximal proper subroot systems in F* are of types Ai x C3, A2 x A2, A 3 x A i

and B4 with 10, 6, 7 and 16 positive roots respectively. If the set 5, corresponding
to the A, with the largest coefficient contains at least four elements that are not in the
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subroot system <t>+(g), then

Y\(p + k, aY f [ (p + X, ay1 < c/n<16+4)j-\
ae<t>+' ae* + \< t> + /

and this is bounded if s < 1/5. This is clearly the case if the subroot systems are type
A! x Q, A2 x A2 or A3 x A, (in these cases s < 1/3 will actually suffice) or if the
system is type B4 and mk is the maximal coefficient of k with k = 2,3.

One can check that any set consisting of all but three of the elements of Sk will
generate a standard D4. As these 12 roots are of length \ /2 , as are the 4 (additional)
peculiar roots contained in 5, and B4 has only 12 roots of length -J2, this shows Sk

must contain at least four elements which are not in B4.

REMARK. We note that this is the best result that can be obtained using this technique
as the standard roots of 5i all belong to a standard B4 and there are only four peculiar
roots in S\.

4.4. Proof of Theorem 1.1 for G2 The arguments for G2 are very simple. We note
that ki = e3 - e2 and k2 = 2e3 - ex - e2, thus if 5, = {£ e 4>+ : (A,, /3) 7̂  0},
i = 1,2, then |5i| = |52 | = 5.

The maximal subroot systems in G2 have either 2 or 3 positive roots. By simply
counting leftover terms in the set 5,- corresponding to the A, with the largest coefficient
we obtain the desired result.

REMARK. In [3] the optimal rate of decay of the characters was determined for the
classical Lie groups. One step in establishing this was to prove that

detwsignl ]~[ (p + k, w(a)) I expi(p + k, w(g))

was constant over all w e W, for an appropriate g e G and suitable number of
representations k. We have not been able to determine if this is true with the exceptional
groups.

5. Smoothness of convolution powers of central measures

A measure \x on G is called central if /x commutes with all other measures on G
under the action of convolution. Central measures are characterized by the fact that
their Fourier transforms are scalar multiples of identity matrices:

Trkjx) J
where ak

f
= /

JG
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We will simply write ~fl(X.) in place of a^.
The orbital measure, fig, supported on the conjugacy class C(g) containing g e G,

is defined by

ffdng=ff (tgr1)dmG(t) for / e C(G).
JG JG

Orbital measures are examples of singular, central measures and are continuous if and
only if g does not belong to the centre of G. Moreover, they have the property that

In [7] Ragozin proved that if /A was any central, continuous measure, then ^d i m C e
L' (G). By appealing to the sharper estimates of this paper on the rate of decay of the
characters we can improve this result.

PROPOSITION 5.1. Suppose G is one of the compact, exceptional Lie groups and ixg

is a central, continuous orbital measure. Then fik belongs to L2(G) ifk > k0, where

n if G is type En\

6 if G is type F4;

3 if G is type G2.

PROOF. From the Peter-Weyl theorem it is known that /z* e L2 if

Ik

keG
d

It was shown in [2, Corollary 9] that £X egrf{ < oo when t < - r ank G/|<t>+|. The
proposition follows by combining these facts with the estimates on the rate of decay
of the characters given in the theorem. •

COROLLARY 5.2. Suppose / x j , . . . , /z* are central continuous measures on one of

the compact, exceptional Lie groups G and k > yfco. Then ^ • • • • * / J i 6

PROOF. The proof is essentially the same as [2, Theorem 11], but uses the stronger
results obtained in the proposition above. •

Note that the corollary stated in the introduction is a special case.

https://doi.org/10.1017/S1446788700013604 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013604


[15] Size of characters 247

1 3 4 5 6 7 8 0

0 1 3 4 5 6 7

o—o—o—a—o
1 3 4 5 6

0 1 2 3 4

1 2 0

FIGURE 1. Extended Dynkin diagrams

REMARK. Ragozin observed that /j.kg is singular to Haar measure on G for all
k < d imG/dimC(g) . As dim C(g) = 2(|<t>+| - \<t>+(g)\) (see [6]) the corollary
above can be seen to be sharp for G2. This observation also implies that exponent 3
is necessary for E6, E7 and £8> and exponent 4 is required for F4.

REMARK. A measure /x is called V -improving if there is some p < 2 such that
ix*Lp c L2. A question of current interest is to understand which singular measures
on compact groups are V -improving. For example, surface measures on analytic
manifolds which generate G were shown to be Lp -improving in [8] and in [9] the
optimal choice of p was found for orbital measures fxg with <&+(g) empty. Sufficient
conditions on the size of p which are valid for all continuous, orbital measures were
found for the classical Lie groups in [3]. Similar arguments based on our theorem can
be used to obtain results for the exceptional Lie groups.
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