BULL. AUSTRAL. MATH. SOC. Vol. 54 (1996) [391-396]

NEW INEQUALITIES FOR PLANAR CONVEX SETS WITH LATTICE POINT CONSTRAINTS

Poh W. Awyong and Paul R Scott

We obtain new inequalities relating the inradius of a planar convex set with interior containing no point of the integral lattice, with the area, perimeter and diameter of the set. By considering a special sublattice of the integral lattice, we also obtain an inequality concerning the inradius and area of a planar convex set with interior containing exactly one point of the integral lattice.

1. INTRODUCTION

Let K be a compact, planar convex set with interior K^o , and having area A = A(K), perimeter p = p(K), diameter d = d(K) and inradius r = r(K). Let Γ denote the integral lattice and let $G(K^o, \Gamma)$ denote the number of points of Γ in K^o . We prove new inequalities relating A, p, d and r.

THEOREM 1. Let K be a compact, planar, convex set with $G(K^o, \Gamma) = 0$. Then

(1)
$$(2r-1)A \leq 2(\sqrt{2}-1) \approx 0.828,$$

with equality when and only when K is congruent to the diagonal square shown in Figure 1.

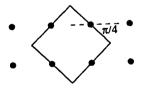


Figure 1.

Received 11th December, 1995

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

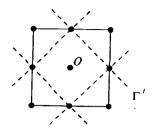


Figure 2.

COROLLARY 1. Let K be a compact, planar, convex set with $G(K^o, \Gamma) = 1$. Then

(2)
$$(2r-\sqrt{2})A \leq 4(2-\sqrt{2}) \approx 2.343,$$

with equality when and only when K is the square shown in Figure 2.

THEOREM 2. Let K be a compact, planar, convex set with $G(K^o, \Gamma) = 0$. Then

(3)
$$(2r-1)|A-1| < \frac{1}{2},$$

(4)
$$(2r-1)|p-4| < 2$$

(5)
$$(2r-1)(d-1) < 1.$$

The limiting infinite strip shows that the stated bounds are best possible.

2. PROOFS OF THEOREM 1 AND COROLLARY 1

We first prove two useful lemmas.

LEMMA 1. Let X_l be the Steiner symmetrial of X with respect to the line l. Then $r(X_l) \ge r(X)$.

PROOF: We first show that if $K \subseteq X$, then $K_l \subseteq X_l$. Let PQ be any chord of K perpendicular to l. Since $K \subseteq X$, the line PQ intersects X in a chord AB with $|PQ| \leq |AB|$. Now Steiner symmetrisation maps chord PQ to a chord P'Q' on the line PQ, and having its midpoint on l (see for example [1, p.90]). Similarly, the chord AB is mapped to the chord A'B' on the line PQ and having midpoint on l. Since $|PQ| \leq |AB|$, the chord P'Q' is a subset of the chord A'B'. Hence $K_l \subseteq X_l$.

Now let C be an incircle of X. Then $C \subseteq X$ and $C_l \subseteq X_l$. But C_l is congruent to C. It follows that X_l contains a circle of radius r(X). Therefore $r(X_l) \ge r(X)$.

LEMMA 2. Let K be a compact, planar, convex set with $G(K^o, \Gamma) = 0$. Then there is a compact convex set K_* with $G(K^o_*, \Gamma) = 0$ satisfying the following conditions:

- (a) $A(K_*) = A(K), r(K_*) \ge r(K),$
- (b) K_* is symmetric about the lines x = 1/2, y = 1/2.

Planar convex sets

PROOF: We use Steiner symmetrisation to obtain the set K_* . We first symmetrise K with respect to the line x = 1/2 to obtain the set K_1 . We recall that Steiner symmetrisation preserves convexity and areas so that K_1 is a convex set with $A(K_1) = A(K)$. Furthermore, by Lemma 1, $r(K_1) \ge r(K)$.

We now show that $G(K_1^o, \Gamma) = 0$. Since $G(K^o, \Gamma) = 0$, K^o intersects the line y = k, where k is an integer, either in the empty set or in a line segment of length at most 1. Hence the symmetric set K_1^o intersects the line y = k either in the empty set or between the points (0, k) and (1, k). Clearly, $G(K_1^o, \Gamma) = 0$.

We now symmetrise K_1 with respect to the line y = 1/2 to obtain K_* . Using the same arguments as above, we have $A(K_*) = A(K_1)$, $r(K_*) \ge r(K_1)$ and $G(K_*^o, \Gamma) = 0$. Hence $A(K_*) = A(K)$ and $r(K_*) \ge r(K)$. By construction, K_* is symmetric about the lines x = 1/2 and y = 1/2 and the lemma is proved.

Let f(K) = (2r(K) - 1)A(K). By Lemma 2 we have $f(K) \leq f(K_*)$. It therefore suffices to prove Theorem 1 for sets K which are symmetric about the lines x = 1/2 and y = 1/2.

To fully utilise the symmetry of K about the lines x = 1/2 and y = 1/2, we move the origin to the point (1/2, 1/2). If $r \leq 1/2$, (1) is trivially true. Hence we may assume that r > 1/2. Since K^o does not contain the points $P_1(1/2, 1/2)$, $P_2(-1/2, 1/2)$, $P_3(-1/2, -1/2)$ and $P_4(1/2, -1/2)$, it follows by the convexity of K that for each i = 1, ..., 4, K is bounded by a line l_i through the point P_i , with l_1 and l_3 having negative slope and l_2 and l_4 having positive slope. Furthermore since K is symmetric about the coordinate axes, K is contained in a rhombus Q determined by the lines l_i , i = 1, ..., 4. Since $K \subseteq Q$, $A(K) \leq A(Q)$ and $r(K) \leq r(Q)$ we have $f(K) \leq f(Q)$. It is therefore sufficient to maximise f(K) over the set of all rhombi, K = Q, determined by the lines l_i , i = 1, ..., 4 (see Figure 3).

 $- \frac{1}{2} \frac{$

Figure 3.

Let side l_1 make an acute angle of α with the *x*-axis and let it intercept the *x* and *y* axes in the points X(x,0) and Y(0,y) respectively. Since l_1 passes through

(1/2, 1/2), similar triangles give

$$\frac{y}{x}=\frac{\frac{1}{2}}{x-\frac{1}{2}},$$

that is,

$$\frac{1}{x} + \frac{1}{y} = 2.$$

Multiplying both sides of the equation by r, we get

$$2r = \frac{r}{x} + \frac{r}{y} = \sin \alpha + \cos \alpha.$$

Now

$$A = 4.A(\triangle OXY)$$

= $2xy$
= $\frac{2r^2}{\sin \alpha \cos \alpha}$
= $\frac{4r^2}{(\sin \alpha + \cos \alpha)^2 - 1}$
= $\frac{4r^2}{4r^2 - 1}$
= $1 + \frac{1}{4r^2 - 1}$.

Hence

(6)
$$f(K) = 2r - 1 + \frac{1}{2r+1} = g(r).$$

Now $(1/2)g'(r) = 1 - 1/(2r+1)^2 > 0$. Hence g is an increasing function of r. Noting that $1/2 < r \le \sqrt{2}/2$, the maximal value of g is therefore attained at $r = \sqrt{2}/2$, that is, when and only when K is congruent to the diagonal square shown in Figure 1. In this case

$$f(K) \leq 2\left(\sqrt{2}-1\right) \approx 0.828.$$

We next use Theorem 1 to prove Corollary 1. Let K now be a convex set with $G(K^o, \Gamma) = 1$. Without loss of generality we may assume that the lattice point contained in K^o is the origin O. Let Γ' be the sublattice of Γ with fundamental cell having vertices $(0, \pm 1)$, $(\pm 1, 0)$. We first note that $G(K^o, \Gamma') = 0$ (see Figure 2). Hence letting A' and r' be the area and the inradius respectively of K measured in the scale of Γ' , and applying (1) to K with respect to Γ' , we have

$$(2r'-1)A' \leqslant 2\left(\sqrt{2}-1\right),$$

with equality when and only when K is congruent to the square of Figure 2. Since Γ' is a rotation of Γ scaled by a factor of $\sqrt{2}$, A' = (1/2)A and $r' = (1/\sqrt{2})r$ where A and r are the area and the inradius respectively of K measured in the scale of the integral lattice Γ . Hence

$$\left(2.\frac{1}{\sqrt{2}}r-1\right)\frac{A}{2} \leq 2\left(\sqrt{2}-1\right).$$

Simplifying, we get

$$\left(2r-\sqrt{2}\right)A\leqslant4\left(2-\sqrt{2}
ight)pprox2.343,$$

with equality when and only when K is congruent to the square of Figure 2.

3. PROOF OF THEOREM 2

We first note that if $r \leq 1/2$, inequalities (3) and (4) are trivially true. Hence we need only consider those cases for which $1/2 < r \leq \sqrt{2}/2$.

To prove (3), we first consider $A \leq 1$. Since r > 1/2, we have $A > \pi/4$ and so

$$(2r-1)|A-1| = (2r-1)(1-A) < (\sqrt{2}-1)(1-\frac{\pi}{4}) < \frac{1}{2}$$

Hence we may assume that A > 1. Using the same arguments as those given in Section 2, it suffices to consider a set K where K is a rhombus of the type described in Figure 3. Let Q(r) denote such a rhombus with inradius r. From (6) we have

$$(2r-1)|A-1| = (2r-1)(A-1) = \frac{1}{2r+1} < \frac{1}{2}.$$

Taking the infinite strip to be the limit of Q(r) as r tends to 1/2, it is seen that the stated bound is best possible.

To prove (4), we first consider $p \leq 4$. Since r > 1/2, we have $p > \pi$ and so

$$(2r-1)|p-4| = (2r-1)(4-p) < (\sqrt{2}-1)(4-\pi) < 2.$$

Hence we may assume that p > 4. We note further that if K is a convex polygon, K may be partitioned into triangles by joining each vertex of K to an in-centre of K. Summing the areas of these triangles gives

(7)
$$A \ge \frac{1}{2}pr,$$

with equality when and only when every edge of K touches the unique incircle. Since any compact convex set may be approximated by a convex polygon, this inequality is

[6]

valid for all compact convex sets in the plane. By combining inequality (7) with (3) and noting that r > 1/2, we have

$$(2r-1)|p-4| = (2r-1)(p-4) \leqslant (2r-1)\left(\frac{2A}{r}-4\right) \leqslant 4(2r-1)(A-1) \leqslant 4.\frac{1}{2} = 2,$$

obtaining (4). As before, taking the infinite strip to be the limit of Q(r) as r tends to 1/2, the stated bound is best possible.

Finally, to prove (5), we note that $(w-1)(d-1) \leq 1$ with equality when and only when K is a triangle of the type shown in Figure 4 (see [2]).

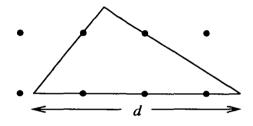


Figure 4.

Since $w \ge 2r$, we have

$$(2r-1)(d-1) \leq (w-1)(d-1) \leq 1.$$

Taking the infinite strip to be the limit of a sequence of triangles of the type shown in Figure 4 as w tends to 2r, it can be seen that the stated bound is best possible.

References

- [1] H.G. Eggleston, Convexity (Cambridge University Press, Cambridge, 1958).
- [2] P.R. Scott, 'Two inequalities for convex sets with lattice point constraints in the plane', Bull. London Math. Soc. 11 (1979), 273-278.
- [3] P.R. Scott, 'Further inequalities for convex sets with lattice point constraints', Bull. Austral. Math. Soc. 21 (1980), 7-12.

Department of Pure Mathematics The University of Adelaide South Australia 5005 e-mail: pawyong@maths.adelaide.edu.au pscott@maths.adelaide.edua.au