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NEW INEQUALITIES FOR PLANAR CONVEX SETS
WITH LATTICE POINT CONSTRAINTS

POH W. AWYONG AND PAUL R SCOTT

We obtain new inequalities relating the inradius of a planar convex set with interior
containing no point of the integral lattice, with the area, perimeter and diameter
of the set. By considering a special sublattice of the integral lattice, we also obtain
an inequality concerning the inradius and area of a planar convex set with interior
containing exactly one point of the integral lattice.

1. INTRODUCTION

Let K be a compact, planar convex set with interior K°, and having area A =
A[K), perimeter p = p(K), diameter d = d(K) and inradius r = r(K). Let T denote
the integral lattice and let G(K°, T) denote the number of points of T in K". We
prove new inequalities relating A, p, d and r.

THEOREM 1. Let K he a compact, planar, convex set with G(K", T) = 0. Then

(1) ( 2 r - l ) A ^ 2 ^ v / 2 - l ) « 0.828,

with equality when and only when K is congruent to the diagonal square shown in
Figure 1.

Figure 1.
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Figure 2.

COROLLARY 1. Let K be a compact, planar, convex set with G(K°,T) = 1.
Then

(2) (2r - \/2) A ^ 4(2 - y/2) « 2.343,

wiii equality when and only when K is the square shown in Figure 2.

THEOREM 2 . Let AT be a compact, planar, convex set with G(K°,T) = 0. Then

1
(3) (2r — 1) 1.4. — II < —

2'
(4) ( 2 r - l ) | p - 4 | < 2 ,

The limiting infinite strip shows that the stated bounds are best possible.

2. PROOFS OF THEOREM 1 AND COROLLARY 1

We first prove two useful lemmas.

LEMMA 1. Let Xi be the Steiner symmetral of X with respect to the line I.
Then r(X,) ^ r(X).

PROOF: We first show that if K C X, then K\ C X\. Let PQ be any chord of
K perpendicular to I. Since K C X, the line PQ intersects X in a chord AB with
\PQ\ ^ |-<4i?|- Now Steiner symmetrisation maps chord PQ to a chord P'Q' on the
line PQ, and having its midpoint on / (see for example [1, p.90]). Similarly, the chord
AB is mapped to the chord A'B' on the line PQ and having midpoint on /. Since
|P<2| ^ \AB\, the chord P'Q' is a subset of the chord A'B'. Hence Kt C Xi.

Now let C be an incircle of X. Then C C X and Cj C Xi. But C; is congruent
to C. It follows that Xi contains a circle of radius r(X). Therefore r(Xi) ^ r(X). u

LEMMA 2. Let K be a compact, planar, convex set with G(K°,T) = 0. Tien
iiere is a compact convex set K* with G(K°, F) = 0 satisfying the following conditions:

(b) K* is symmetric about tie lines x = 1/2, y = 1/2.
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PROOF: We use Steiner symmetrisation to obtain the set K*. We first symmetrise
K with respect to the line x = 1/2 to obtain the set Ki. We recall that Steiner
symmetrisation preserves convexity and areas so that K\ is a convex set with A(K\) =
A(K). Furthermore, by Lemma 1, r{K\) ^ r(K).

We now show that G(K°,T) = 0. Since G(K°,T) = 0, K° intersects the line
y = k, where k is an integer, either in the empty set or in a line segment of length at
most 1. Hence the symmetric set K° intersects the line y — k either in the empty set
or between the points (0,fc) and (l,ib). Clearly, G{K?,T) = 0.

We now symmetrise K\ with respect to the line y = 1/2 to obtain K*. Using the
same arguments as above, we have A(Kt) = A^Kt), r(K*) ^ r(A'i) and G(K°,T) = 0.
Hence A(K*) = A(K) and r{K*) ^ T{K)- By construction, K* is symmetric about
the lines x — 1/2 and y = 1/2 and the lemma is proved. U

Let f(K) = (2r(K) - l)A(K). By Lemma 2 we have f(K) ^ f(K*). It therefore
suffices to prove Theorem 1 for sets K which are symmetric about the lines x = 1/2
and y = 1/2.

To fully utilise the symmetry of K about the lines x = 1/2 and y = 1/2, we
move the origin to the point (1/2,1/2). If r ^ 1/2, (1) is trivially true. Hence
we may assume that r > 1/2. Since K° does not contain the points Pi(1/2,1/2),
P 2 ( - l /2 , l /2 ) , P 3 ( - l / 2 , - l / 2 ) and P 4 ( l /2 , - l /2) , it follows by the convexity of K
that for each i = 1,.. . ,4, K is bounded by a line U through the point Pi, with h
and I3 having negative slope and I2 and 1$ having positive slope. Furthermore since
K is symmetric about the coordinate axes, K is contained in a rhombus Q determined
by the lines h, i = 1,.. . ,4. Since K C Q, A{K) ^ A{Q) and r(K) ^ r{Q) we have
f(K) ^ f(Q)- It is therefore sufficient to maximise f(K) over the set of all rhombi,
K = Q, determined by the lines U, i = 1,. . . ,4 (see Figure 3).

Figure 3.

Let side l\ make an acute angle of a with the x-axis and let it intercept the x
and y axes in the points X(x,0) and Y(0,y) respectively. Since Zi passes through
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(1 /2 ,1 /2 ) , similar triangles give

that is,

Now

y
X

1
- +
X

equation by

r r
2r = - + - =

x y

l
2

1 = 2 .
y
r, we get

= sin a + cos a.

A = A.A(AOXY)

2r2

sin a cos a

(sin a
4 r 2

Ar2 -

Ar2

•+• cos a ) — 1

' 4r» -

Hence

(6)

Now ( l /2)g ' ( r ) = 1 — l / (2 r + 1) > 0. Hence g is an increasing function of r.
Noting that 1/2 < r ^ \ / 2 / 2 , the maximal value of 5 is therefore attained at r = \ / 2 / 2 ,
that is, when and only when K is congruent to the diagonal square shown in Figure 1.
In this case

( y j 0.828.

We next use Theorem 1 to prove Corollary 1. Let K now be a convex set with
G(K°,T) = 1. Without loss of generality we may assume that the lattice point con-
tained in K° is the origin O. Let I" be the sublattice of T with fundamental cell
having vertices ( 0 , ± l ) , (±1 ,0 ) . We first note that G(K",T') = 0 (see Figure 2).
Hence letting A' and r' be the area and the inradius respectively of K measured in
the scale of I" , and applying (1) to K with respect to I", we have
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with equality when and only when K is congruent to the square of Figure 2. Since
r is a rotation of Y scaled by a factor of \ / 2 , A' = (1/2)4 and r' = ( l / \ / 2 ) r where
A and r are the area and the inradius respectively of K measured in the scale of the
integral lattice V. Hence

Simplifying, we get

(2r - \ /2) A ^ 4^2 - y/^j « 2.343,

with equality when and only when K is congruent to the square of Figure 2.

3. P R O O F OF THEOREM 2

We first note that if r ^ 1/2, inequalities (3) and (4) are trivially true. Hence we
need only consider those cases for which 1/2 < r ^ y/2/2.

To prove (3), we first consider . 4 ^ 1 . Since r > 1/2, we have A > TT/4 and so

Hence we may assume that A > 1. Using the same arguments as those given in Section
2, it suffices to consider a set K where K is a rhombus of the type described in Figure
3. Let Q(r) denote such a rhombus with inradius r. From (6) we have

Taking the infinite strip to be the limit of Q{r) as r tends to 1/2, it is seen that the
stated bound is best possible.

To prove (4), we first consider p ^ 4. Since r > 1/2, we have p > n and so

(2r - 1) \p - 4| = (2r - 1)(4 - p) < (v^2 - l)(4 - *) < 2.

Hence we may assume that p > 4. We note further that if if is a convex polygon, K
may be partitioned into triangles by joining each vertex of K to an in-centre of K.
Summing the areas of these triangles gives

(7) A > \pr,

with equality when and only when every edge of K touches the unique incircle. Since
any compact convex set may be approximated by a convex polygon, this inequality is
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valid for all compact convex sets in the plane. By combining inequality (7) with (3)
and noting that r > 1/2, we have

(2r - 1) \p - 4| = (2r - l)(p - 4) < (2r - 1) ( ^ - 4 ^ 4(2r - 1)(A - 1) < 4.^ = 2,

obtaining (4). As before, taking the infinite strip to be the limit of Q{r) as r tends to
1/2, the stated bound is best possible.

Finally, to prove (5), we note that (w — l)(d — 1 ) ^ 1 with equality when and only
when if is a triangle of the type shown in Figure 4 (see [2]).

Figure 4.

Since w ^ 2r, we have

Taking the infinite strip to be the limit of a sequence of triangles of the type shown in
Figure 4 as to tends to 2r, it can be seen that the stated bound is best possible.

REFERENCES

[1] H.G. Eggleston, Convexity (Cambridge University Press, Cambridge, 1958).
[2] P.R. Scott, 'Two inequalities for convex sets with lattice point constraints in the plane',

Bull. London Math. Soc. 11 (1979), 273-278.
[3] P.R. Scott, 'Further inequalities for convex sets with lattice point constraints', Bull. Aus-

tral. Math. Soc. 21 (1980), 7-12.

Department of Pure Mathematics
The University of Adelaide
South Australia 5005
e-mail: pawyong@maths.adelaide.edu.au

pscott@maths.adelaide.edua.au

https://doi.org/10.1017/S0004972700021808 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021808

