Vol. 54 (1996) [391-396]

NEW INEQUALITIES FOR PLANAR CONVEX SETS WITH LATTICE POINT CONSTRAINTS

Poh W. Awyong and Paul R Scott

Abstract

We obtain new inequalities relating the inradius of a planar convex set with interior containing no point of the integral lattice, with the area, perimeter and diameter of the set. By considering a special sublattice of the integral lattice, we also obtain an inequality concerning the inradius and area of a planar convex set with interior containing exactly one point of the integral lattice.

1. Introduction

Let K be a compact, planar convex set with interior K°, and having area $A=$ $A(K)$, perimeter $p=p(K)$, diameter $d=d(K)$ and inradius $r=r(K)$. Let Γ denote the integral lattice and let $G\left(K^{o}, \Gamma\right)$ denote the number of points of Γ in K^{o}. We prove new inequalities relating A, p, d and r.

Theorem 1. Let K be a compact, planar, convex set with $G\left(K^{0}, \Gamma\right)=0$. Then

$$
\begin{equation*}
(2 r-1) A \leqslant 2(\sqrt{2}-1) \approx 0.828 \tag{1}
\end{equation*}
$$

with equality when and only when K is congruent to the diagonal square shown in Figure 1.

Figure 1.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$A2.00+0.00.

Figure 2.
Corollary 1. Let K be a compact, planar, convex set with $G\left(K^{o}, \Gamma\right)=1$. Then

$$
\begin{equation*}
(2 r-\sqrt{2}) A \leqslant 4(2-\sqrt{2}) \approx 2.343 \tag{2}
\end{equation*}
$$

with equality when and only when K is the square shown in Figure 2.
Theorem 2. Let K be a compact, planar, convex set with $G\left(K^{o}, \Gamma\right)=0$. Then

$$
\begin{align*}
& (2 r-1)|A-1|<\frac{1}{2} \tag{3}\\
& (2 r-1)|p-4|<2 \tag{4}\\
& (2 r-1)(d-1)<1 \tag{5}
\end{align*}
$$

The limiting infinite strip shows that the stated bounds are best possible.

2. Proofs of Theorem 1 and Corollary 1

We first prove two useful lemmas.
Lemma 1. Let X_{l} be the Steiner symmetral of X with respect to the line l. Then $r\left(X_{l}\right) \geqslant r(X)$.

Proof: We first show that if $K \subseteq X$, then $K_{l} \subseteq X_{l}$. Let $P Q$ be any chord of K perpendicular to l. Since $K \subseteq X$, the line $P Q$ intersects X in a chord $A B$ with $|P Q| \leqslant|A B|$. Now Steiner symmetrisation maps chord $P Q$ to a chord $P^{\prime} Q^{\prime}$ on the line $P Q$, and having its midpoint on l (see for example [$1, \mathrm{p} .90]$). Similarly, the chord $A B$ is mapped to the chord $A^{\prime} B^{\prime}$ on the line $P Q$ and having midpoint on l. Since $|P Q| \leqslant|A B|$, the chord $P^{\prime} Q^{\prime}$ is a subset of the chord $A^{\prime} B^{\prime}$. Hence $K_{l} \subseteq X_{l}$.

Now let C be an incircle of X. Then $C \subseteq X$ and $C_{l} \subseteq X_{l}$. But C_{l} is congruent to C. It follows that X_{l} contains a circle of radius $r(X)$. Therefore $r\left(X_{l}\right) \geqslant r(X)$. \square

Lemma 2. Let K be a compact, planar, convex set with $G\left(K^{o}, \Gamma\right)=0$. Then there is a compact convex set K_{*} with $G\left(K_{*}^{\mathbf{o}}, \Gamma\right)=0$ satisfying the following conditions:
(a) $A\left(K_{*}\right)=A(K), r\left(K_{*}\right) \geqslant r(K)$,
(b) K_{*} is symmetric about the lines $x=1 / 2, y=1 / 2$.

Proof: We use Steiner symmetrisation to obtain the set K_{*}. We first symmetrise K with respect to the line $x=1 / 2$ to obtain the set K_{1}. We recall that Steiner symmetrisation preserves convexity and areas so that K_{1} is a convex set with $A\left(K_{1}\right)=$ $A(K)$. Furthermore, by Lemma $1, r\left(K_{1}\right) \geqslant r(K)$.

We now show that $G\left(K_{1}^{o}, \Gamma\right)=0$. Since $G\left(K^{o}, \Gamma\right)=0, K^{\circ}$ intersects the line $y=k$, where k is an integer, either in the empty set or in a line segment of length at most 1 . Hence the symmetric set K_{1}^{o} intersects the line $y=k$ either in the empty set or between the points ($0, k$) and ($1, k$). Clearly, $G\left(K_{1}^{o}, \Gamma\right)=0$.

We now symmetrise K_{1} with respect to the line $y=1 / 2$ to obtain K_{*}. Using the same arguments as above, we have $A\left(K_{*}\right)=A\left(K_{1}\right), r\left(K_{*}\right) \geqslant r\left(K_{1}\right)$ and $G\left(K_{*}^{o}, \Gamma\right)=0$. Hence $A\left(K_{*}\right)=A(K)$ and $r\left(K_{*}\right) \geqslant r(K)$. By construction, K_{*} is symmetric about the lines $x=1 / 2$ and $y=1 / 2$ and the lemma is proved.

Let $f(K)=(2 r(K)-1) A(K)$. By Lemma 2 we have $f(K) \leqslant f\left(K_{*}\right)$. It therefore suffices to prove Theorem 1 for sets K which are symmetric about the lines $x=1 / 2$ and $y=1 / 2$.

To fully utilise the symmetry of K about the lines $x=1 / 2$ and $y=1 / 2$, we move the origin to the point $(1 / 2,1 / 2)$. If $r \leqslant 1 / 2$, (1) is trivially true. Hence we may assume that $r>1 / 2$. Since K^{0} does not contain the points $P_{1}(1 / 2,1 / 2)$, $P_{2}(-1 / 2,1 / 2), P_{3}(-1 / 2,-1 / 2)$ and $P_{4}(1 / 2,-1 / 2)$, it follows by the convexity of K that for each $i=1, \ldots, 4, K$ is bounded by a line l_{i} through the point P_{i}, with l_{1} and l_{3} having negative slope and l_{2} and l_{4} having positive slope. Furthermore since K is symmetric about the coordinate axes, K is contained in a rhombus Q determined by the lines $l_{i}, i=1, \ldots, 4$. Since $K \subseteq Q, A(K) \leqslant A(Q)$ and $r(K) \leqslant r(Q)$ we have $f(K) \leqslant f(Q)$. It is therefore sufficient to maximise $f(K)$ over the set of all rhombi, $K=Q$, determined by the lines $l_{i}, i=1, \ldots, 4$ (see Figure 3).

Figure 3.

Let side l_{1} make an acute angle of α with the x-axis and let it intercept the x and y axes in the points $X(x, 0)$ and $Y(0, y)$ respectively. Since l_{1} passes through
($1 / 2,1 / 2$), similar triangles give

$$
\frac{y}{x}=\frac{\frac{1}{2}}{x-\frac{1}{2}}
$$

that is,

$$
\frac{1}{x}+\frac{1}{y}=2
$$

Multiplying both sides of the equation by r, we get

$$
2 r=\frac{r}{x}+\frac{r}{y}=\sin \alpha+\cos \alpha
$$

Now

$$
\begin{aligned}
A & =4 . A(\triangle O X Y) \\
& =2 x y \\
& =\frac{2 r^{2}}{\sin \alpha \cos \alpha} \\
& =\frac{4 r^{2}}{(\sin \alpha+\cos \alpha)^{2}-1} \\
& =\frac{4 r^{2}}{4 r^{2}-1} \\
& =1+\frac{1}{4 r^{2}-1} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
f(K)=2 r-1+\frac{1}{2 r+1}=g(r) \tag{6}
\end{equation*}
$$

Now $(1 / 2) g^{\prime}(r)=1-1 /(2 r+1)^{2}>0$. Hence g is an increasing function of r. Noting that $1 / 2<r \leqslant \sqrt{2} / 2$, the maximal value of g is therefore attained at $r=\sqrt{2} / 2$, that is, when and only when K is congruent to the diagonal square shown in Figure 1. In this case

$$
f(K) \leqslant 2(\sqrt{2}-1) \approx 0.828
$$

We next use Theorem 1 to prove Corollary 1 . Let K now be a convex set with $G\left(K^{\circ}, \Gamma\right)=1$. Without loss of generality we may assume that the lattice point contained in K^{o} is the origin O. Let Γ^{\prime} be the sublattice of Γ with fundamental cell having vertices $(0, \pm 1),(\pm 1,0)$. We first note that $G\left(K^{o}, \Gamma^{\prime}\right)=0$ (see Figure 2). Hence letting A^{\prime} and r^{\prime} be the area and the inradius respectively of K measured in the scale of Γ^{\prime}, and applying (1) to K with respect to Γ^{\prime}, we have

$$
\left(2 r^{\prime}-1\right) A^{\prime} \leqslant 2(\sqrt{2}-1)
$$

with equality when and only when K is congruent to the square of Figure 2. Since Γ^{\prime} is a rotation of Γ scaled by a factor of $\sqrt{2}, A^{\prime}=(1 / 2) A$ and $r^{\prime}=(1 / \sqrt{2}) r$ where A and r are the area and the inradius respectively of K measured in the scale of the integral lattice Γ. Hence

$$
\left(2 \cdot \frac{1}{\sqrt{2}} r-1\right) \frac{A}{2} \leqslant 2(\sqrt{2}-1)
$$

Simplifying, we get

$$
(2 r-\sqrt{2}) A \leqslant 4(2-\sqrt{2}) \approx 2.343
$$

with equality when and only when K is congruent to the square of Figure 2.

3. Proof of Theorem 2

We first note that if $r \leqslant 1 / 2$, inequalities (3) and (4) are trivially true. Hence we need only consider those cases for which $1 / 2<r \leqslant \sqrt{2} / 2$.

To prove (3), we first consider $A \leqslant 1$. Since $r>1 / 2$, we have $A>\pi / 4$ and so

$$
(2 r-1)|A-1|=(2 r-1)(1-A)<(\sqrt{2}-1)\left(1-\frac{\pi}{4}\right)<\frac{1}{2}
$$

Hence we may assume that $A>1$. Using the same arguments as those given in Section 2, it suffices to consider a set K where K is a rhombus of the type described in Figure 3. Let $Q(r)$ denote such a rhombus with inradius r. From (6) we have

$$
(2 r-1)|A-1|=(2 r-1)(A-1)=\frac{1}{2 r+1}<\frac{1}{2}
$$

Taking the infinite strip to be the limit of $Q(r)$ as r tends to $1 / 2$, it is seen that the stated bound is best possible.

To prove (4), we first consider $p \leqslant 4$. Since $r>1 / 2$, we have $p>\pi$ and so

$$
(2 r-1)|p-4|=(2 r-1)(4-p)<(\sqrt{2}-1)(4-\pi)<2
$$

Hence we may assume that $p>4$. We note further that if K is a convex polygon, K may be partitioned into triangles by joining each vertex of K to an in-centre of K. Summing the areas of these triangles gives

$$
\begin{equation*}
A \geqslant \frac{1}{2} p r \tag{7}
\end{equation*}
$$

with equality when and only when every edge of K touches the unique incircle. Since any compact convex set may be approximated by a convex polygon, this inequality is
valid for all compact convex sets in the plane. By combining inequality (7) with (3) and noting that $r>1 / 2$, we have

$$
(2 r-1)|p-4|=(2 r-1)(p-4) \leqslant(2 r-1)\left(\frac{2 A}{r}-4\right) \leqslant 4(2 r-1)(A-1) \leqslant 4 \cdot \frac{1}{2}=2
$$

obtaining (4). As before, taking the infinite strip to be the limit of $Q(r)$ as r tends to $1 / 2$, the stated bound is best possible.

Finally, to prove (5), we note that $(w-1)(d-1) \leqslant 1$ with equality when and only when K is a triangle of the type shown in Figure 4 (see [2]).

Figure 4.
Since $w \geqslant 2 r$, we have

$$
(2 r-1)(d-1) \leqslant(w-1)(d-1) \leqslant 1
$$

Taking the infinite strip to be the limit of a sequence of triangles of the type shown in Figure 4 as w tends to $2 r$, it can be seen that the stated bound is best possible.

References

[1] H.G. Eggleston, Convexity (Cambridge University Press, Cambridge, 1958).
[2] P.R. Scott, 'Two inequalities for convex sets with lattice point constraints in the plane', Bull. London Math. Soc. 11 (1979), 273-278.
[3] P.R. Scott, 'Further inequalities for convex sets with lattice point constraints', Bull. Austral. Math. Soc. 21 (1980), 7-12.

Department of Pure Mathematics
The University of Adelaide
South Australia 5005
e-mail: pawyong@maths.adelaide.edu.au
pscott@maths.adelaide.edua.au

[^0]: Received 11th December, 1995

