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Abstract

This paper deals with the first passage optimality and variance minimisation problems
of discrete-time Markov decision processes (MDPs) with varying discount factors and
unbounded rewards/costs. First, under suitable conditions slightly weaker than those in
the previous literature on the standard (infinite horizon) discounted MDPs, we establish
the existence and characterisation of the first passage expected-optimal stationary policies.
Second, to further distinguish the expected-optimal stationary policies, we introduce
the variance minimisation problem, prove that it is equivalent to a new first passage
optimality problem of MDPs, and, thus, show the existence of a variance-optimal policy
that minimises the variance over the set of all first passage expected-optimal stationary
policies. Finally, we use a computable example to illustrate our main results and also to
show the difference between the first passage optimality here and the standard discount
optimality of MDPs in the previous literature.
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1. Introduction

This paper is a first attempt to study the first passage optimality and the variance minimi-
sation for discrete-time Markov decision processes (MDPs) with varying discount factors and
unbounded rewards.

As is well known, infinite horizon discounted (discrete-time) MDPs have been widely
discussed according to the various forms of discount factors, which can be classified into
the following four groups: (i) MDPs with a fixed constant discount factor α, (ii) MDPs with
multiple constant discount factors α1, α2, . . . , αn, (iii) MDPs with randomised discount factors,
in which the process of randomised discount factors is assumed to be independent of the state
process of MDPs, (iv) MDPs with varying (state-dependent) discount factors α(x). In group (i),
the focus of study is on the conditions for the existence and computation of optimal stationary
policies (see, for instance, [9], [10], [20] and the references therein). Concerning group (ii),
an optimal Markov policy that is stationary from some finite time onwards was obtained in [3]
for the case of finite states and finite actions, and an algorithm for calculating such optimal
policies was given. In group (iii), the existence of asymptotically discounted optimal policies
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was proved in [1] and [4]. In group (iv), theory and applications on varying discount factors
are given in [18], [21], and [23] for the stationary MDPs and [7] for the nonstationary MDPs,
where the optimality equation and existence of optimal policies are established under suitable
conditions. In most of the existing works on the four groups of discounted MDPs, the time
horizon of MDPs is either finite or infinite. However, in real situations, we usually need to
find an optimal policy of the MDPs, in which the time horizon is random, such as the first
passage time to some given set. For instance, in portfolio or insurance optimisation it is usually
desirable to maximise the wealth before falling below a certain baseline capital or bankruptcy.
This motivates the work on the so-called first passage optimality of MDPs. This paper will
further study the first passage optimality problem and focus on the group (iv).

The first passage optimality problem of MDPs usually refers to maximising an expected
total reward until the first time that the state process enters a given target set, also known as a
stopping set. Evidently, the first passage criterion in the first optimality problem of MDPs is a
generalization of the standard discount criterion in group (i) above, see Remark 2.2 for details.
The first passage problem has been studied in [2], [7], [13], [14], [16], [17], and [24] for the
existence of the optimal policies and [21] for the applications to the so-called ruin problem, as
well as [1], [14], and [18] for the applications to reliability, maintenance, and quality control
problems. More precisely, Derman [2] studied a first passage problem for discrete-time MDPs
with finite state and action spaces, where a target state is absorbing, proving the existence of an
optimal stationary policy, and also giving successive approximations, policy improvement, and
linear programming to obtain optimal solutions. Furthermore, Liu and Liu [17] discussed the
first passage model for discrete-time MDPs with denumerable states and bounded rewards, and
proved that the uniqueness of the bounded solution to the optimality equation and the existence
of an optimal stationary policy under some assumptions. In addition, Liu and Huang [16] and
Yu et al. [24] discussed the first passage distribution function optimality criterion of MDPs
with countable state and action spaces, and then gave some properties of several kinds of
optimal policies and the existence and algorithms for these optimal policies. Afterwards,
Huang and Guo [13], [14] considered a first passage model for discounted semi-MDPs with
denumerable states and nonnegative costs, and proved that the optimal value function satisfies
the optimality equation and there exists an optimal stationary policy under suitable conditions
by using a minimum nonnegative solution approach. Recently, Guo et al. [7] have studied
the first passage problems for nonstationary nonlinear discrete-time stochastic control systems
with the time- and state-dependent discount factors and nonnegative unbounded or uniformly
bounded rewards, and proved that the optimal reward functions satisfy the optimality equations
and there exists an optimal Markov policy. It is worth noting that most of the above works
about the first passage problems focus on the MDPs with bounded or nonnegative unbounded
rewards. However, the first passage optimality problem of MDPs with state-dependent discount
factors and unbounded costs/rewards from above and below has yet to be studied.

As is well known, for a given standard discount or the first passage criterion of MDPs,
one can calculate the optimal policies under appropriate conditions. However, it is desirable to
distinguish the best policy when the optimal policies are not unique. Thus, to further distinguish
optimal policies, a decision-maker aims to take a policy that has minimal variance over the set
of the optimal policies. This is the variance minimisation problem of MDPs. There are many
papers on the variance minimisation problem of MDPs, see, for instance, [5], [6], [10], [11],
[15], and [19] for the expected average criterion in MDPs, and [8], [10], and [22] for the infinite
horizon discounted criterion of MDPs. To the best of the authors’ knowledge, the variance
minimisation problem for the first passage criterion of discounted MDPs with unbounded

https://doi.org/10.1239/jap/1437658608 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658608


Markov decision processes with varying discount factors 443

rewards has not been studied. Hence, this paper concerns the first passage optimality and the
corresponding variance minimisation problems of the MDPs with varying discount factors.
For the first passage optimality problem, we present some suitable conditions weaker than
those in [10] for the infinite horizon MDPs with a constant discount factor. Under these
conditions, we prove the existence of a first passage expected-optimal stationary policy and
the uniqueness of a solution to the first passage optimality equation (Theorem 3.2), and, thus,
extend the corresponding results in [10] to the case of MDPs with varying discount factors.
To solve the variance minimisation problem, we prove that this problem can be transformed
into an equivalent first passage optimality problem of another discounted MDP with a new
reward function and new action sets. Afterwards, we establish the optimality equation for
the variance minimisation problem, and show the existence of a so-called variance-optimal
policy (Theorem 5.1). Finally, to further illustrate the main results in this paper, we present
a computable cash-balance model (Example 6.1) with varying discount factors, for which we
obtain the different first passage expected-optimal policies and optimal value functions for
different target sets, and also obtain a variance-optimal policy. This also shows the difference
between the first passage optimality and the infinite horizon discounted optimality of MDPs
with varying discount factors; see Proposition 6.1 and Remark 6.1 for details.

The organization of this paper is as follows. In Section 2 we formulate the control model for
discrete-time MDPs and state the concerned first passage optimality and variance minimisation
problems. In Section 3 we establish the first passage optimality equation and give conditions for
the existence of the first passage expected-optimal stationary policies. After the establishment
of a relationship between the first passage variance and a new discounted expected reward of a
policy in Section 4, we obtain the variance optimality results in Section 5. Finally, we illustrate
our main results with an application example in Section 6.

2. The control model

The model of discount MDPs is of the form

{X, A, (A(x), x ∈ X), Q(· | x, a), B, α(x), r(x, a)}, (2.1)

where X and A are state and action spaces, which are assumed to be Borel spaces with Borel
σ -fields B(X) and B(A), respectively, and A(x) denotes the set of admissible actions at state
x ∈ X. Let K := {(x, a) | x ∈ X, a ∈ A(x)} be the set of all feasible state-action pairs
and suppose that K is a measurable Borel subset of X × A. The transition law Q(· | x, a)

is a stochastic kernel on X given K , which denotes the one-step (homogeneous) transition
probability. Moreover, B ∈ B(X) is a given set of target states, and α(x), the discount factors,
are measurable functions from X to [0, 1). Finally, r(x, a) is a real-valued reward function and
is assumed to be measurable on K .

Remark 2.1. In some cases, r(x, a) is allowed to take positive and negative values. So, it can
also be interpreted as a cost.

To introduce a policy, we require some notation. For each n ≥ 0, let Hn be the family of
admissible histories up to time n, that is, H0 := X and Hn := Kn × X = K × Hn−1.

Definition 2.1. A randomised history-dependent policy is a sequence π := {πn, n ≥ 0} of
stochastic kernels πn on A given Hn satisfying

πn(A(xn) | hn) = 1 for all hn := (x0, a0, x1, a1, . . . , xn) ∈ Hn, n ≥ 0.
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The set of all randomised history-dependent policies is denoted by �. Furthermore, we
denote by � the set of all stochastic kernels ϕ on A given X such that ϕ(A(x) | x) = 1 for all
x ∈ X, and F the set of all measurable functions f : X → A satisfying f (x) ∈ A(x) for all
x ∈ X. It is clear that F ⊂ �.

Definition 2.2. A policy π = {πn} ∈ � is said to be a randomised stationary policy if there is
a stochastic kernel ϕ ∈ � such that πn(· | hn) = ϕ(· | xn) for each hn ∈ Hn and n ≥ 0. Such
a randomised stationary policy will be denoted by ϕ. A randomised stationary policy ϕ ∈ � is
said to be (deterministic) stationary if there is a function f ∈ F such that ϕ(· | x) is the Dirac
measure at f (x) for all x ∈ X. We will denote such a stationary policy by f , and regard F as
the set of all stationary policies for simplicity.

For any initial distribution μ on X and π = {πn} ∈ �, by the well-known Tulcea’s
theorem [9, p. 178], there exist a unique probability space (�, F , P

π
μ) and a stochastic process

{xn, an, n ≥ 0} such that for each C ∈ B(X), D ∈ B(A) and n ≥ 0,

P
π
μ{x0 ∈ C} = μ(C), (2.2)

P
π
μ{an ∈ D | hn} = πn(D | hn), (2.3)

P
π
μ{xn+1 ∈ C | hn, an} = Q(C | xn, an). (2.4)

We will denote by E
π
μ the expectation with respect to P

π
μ in (2.2)–(2.4). In particular, if μ is the

Dirac measure concentrated at some state x, we write P
π
μ and E

π
μ as P

π
x and E

π
x , respectively.

In addition, for each (x, a) ∈ K and f ∈ F , let

r(x, f ) := r(x, f (x)) and Q(· | x, f ) := Q(· | x, f (x)).

For the target set B, we denote the first passage time of the state process {xn, n ≥ 0} into B

by τB := inf{n ≥ 0 | xn ∈ B} (with inf ∅ := ∞).

Definition 2.3. For each π ∈ � and x ∈ X, the first passage expected criterion in this paper is
defined as follows:

V (x, π) := E
π
x

{
r(x0, a0) +

τB−1∑
n=1

n−1∏
i=0

α(xi)r(xn, an)

}
, (2.5)

which is called the first passage discounted expected reward of π .

Remark 2.2. (a) In (2.5) and what follows for any sequence {yk}, we use the convention

m∑
k=n

yk := 0 and
m∏

k=n

yk := 1 if m < n.

(b) If B = ∅ then τB = ∞, and if α(·) ≡ α is a constant in (0,1) for all n ≥ 0, then V (x, π)

in (2.5) becomes the standard (infinite-horizon) α-discounted reward in [10, p. 43].

Definition 2.4. Denote by V ∗(x) the optimal value function, where V ∗(x) := supπ∈� V (x, π)

for all x ∈ Bc, and a policy π∗ ∈ � is called the first passage expected-optimal if V ∗(x) =
V (x, π∗) for all x ∈ Bc.
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The first passage optimality problem in this paper is to provide conditions for the existence
of first passage expected-optimal stationary policies and also characterise the optimal value
function V ∗. Under suitable conditions, the class of first passage expected-optimal stationary
policies, denoted by

F ∗ := {f ∈ F | V ∗(x) = V (x, f ) for all x ∈ Bc}, (2.6)

is nonempty. Moreover, in many situations we find that F ∗ has more than one element (see
Example 6.1 below). For this case, how do we further choose the best policy in F ∗? To deal
with such a question, as in [8], [10], and [11] for the infinite-horizon MDPs, we now introduce
a so-called first passage variance of a policy, which is used to distinguish the best policy in F ∗.

Definition 2.5. For a policy f ∈ F and x ∈ Bc, the first passage variance of f is given by

σ 2(x, f ) := E
f
x

{
r(x0, a0) +

τB−1∑
n=1

n−1∏
i=0

α(xi)r(xn, an) − V (x, f )

} 2

, (2.7)

and the variance minimisation problem is as follows:

P : minimise σ 2(x, f ) over f ∈ F ∗ for all x ∈ Bc.

Definition 2.6. A policy f ∗ ∈ F ∗ is called variance-optimal for the first passage criterion if

σ 2(x, f ∗) ≤ σ 2(x, f ) for all f ∈ F ∗, x ∈ Bc.

The minimal variance value is σ 2∗ (x) := minf ∈F ∗ σ 2(x, f ) for all x ∈ Bc.

Obviously, a variance-optimal policy f ∗ is a first passage expected-optimal policy, and it
has the minimal variance among all the policies in F ∗.

The main goal of this paper is to find conditions for the existence of a policy that minimises
the variance over the set of all stationary policies with the maximum first passage discounted
expected reward.

3. First passage discounted-reward optimality results

We assume throughout that ω : Bc → [1, ∞) denotes a Borel-measurable function that will
be referred to as a weight function, and denote by Bω(Bc) the Banach space of real-valued
measurable functions u on Bc with the finite norm ‖u‖ω := supx∈Bc(|u(x)|/ω(x)).

Since r(x, a) may be unbounded, in order to guarantee the finiteness of V (x, π), we need
the conditions below.

Assumption 3.1.

(a) There exists a constant α ∈ (0, 1) such that supx∈Bc α(x) ≤ α.

(b) There exist nonnegative constants β and γ , with 0 < γ < 1/α, and a weight function
ω ≥ 1 on Bc such that for each x ∈ Bc,

sup
a∈A(x)

|r(x, a)| ≤ βω(x) and sup
a∈A(x)

∫
Bc

ω2(y)Q(dy | x, a) ≤ γ 2ω2(x).

Remark 3.1. (a) Assumption 3.1(a) is satisfied when the set Bc is finite, and it is the general-
ization of the constant discount factor case α(x) ≡ α ∈ (0, 1). Assumption 3.1(b) implies that
the reward function is allowed to have neither upper nor lower bounds.
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(b) By the Jensen inequality, Assumption 3.1(b) implies that supa∈A(x)

∫
Bcω(y)Q(dy | x, a) ≤

γω(x), which is the same as Assumption 8.3.2 of [10, p. 44] for the case of B = ∅.

Lemma 3.1. Suppose that Assumption 3.1 holds. Then for any π ∈ � and x ∈ Bc,

|V (x, π)| ≤ β

1 − αγ
ω(x). (3.1)

Proof. For each x ∈ Bc, the definition of V (x, π) means

V (x, π) = E
π
x

{
r(x0, a0) 1{x0∈Bc} +

∞∑
k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k−1∏
i=0

α(xi)r(xk, ak)

}
, (3.2)

where 1{·} is the indicator function. ByAssumption 3.1(b) and the Markov properties, we obtain

E
π
x {1{x0∈Bc,x1∈Bc,...,xk∈Bc} ω(xk)} ≤ γ kω(x), k = 0, 1, 2, . . . . (3.3)

From (3.2) and Assumption 3.1, we obtain

|V (x, π)| ≤ βω(x) + β

∞∑
k=1

(αγ )kω(x) = β

1 − αγ
ω(x) for all x ∈ Bc, π ∈ �.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then for each fixed f ∈ F , V (x, f ) is the
unique solution in Bω(Bc) to the following:

V (x, f ) = r(x, f ) + α(x)

∫
Bc

V (y, f )Q(dy | x, f ) for all x ∈ Bc. (3.4)

Proof. For each x ∈ Bc and f ∈ F , by (11), we have

V (x, f ) = E
f
x

{
E

f
x

[
r(x0, a0) +

∞∑
k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k−1∏
i=0

α(xi)r(xk, ak)

] ∣∣∣∣ h1

}

= r(x, f ) +
∫

A(x)×Bc

α(x)E
f
x1

{
1{x1∈Bc} r(x1, a1)

+
∞∑

k=1

1{x1∈Bc,...,xk∈Bc}
k−1∏
i=1

α(xi)r(xk, ak)

}
Q(dx1 | x, f )

= r(x, f ) + α(x)

∫
Bc

V (y, f )Q(dy | x, f ).

Note that, by (3.1), it is clear that V (x, f ) ∈ Bω(Bc). Now, for any u(x) ∈ Bω(Bc), we
define an operator Tf on Bω(Bc) as follows:

(Tf u)(x) := r(x, f ) + α(x)

∫
Bc

u(y)Q(dy | x, f ) for all x ∈ Bc.

Then, by Assumption 3.1, we have |(Tf u)(x)| ≤ βω(x)+αγ ‖u‖ωω(x). Furthermore, we can
prove that Tf is a contraction operator on Bω(Bc), and so Tf has a unique fixed point u∗ in
Bω(Bc), that is,

u∗(x) = (Tf u∗)(x) = r(x, f ) + α(x)

∫
Bc

u∗(y)Q(dy | x, f ) = V (x, f ) for all x ∈ Bc.

Hence, V (x, f ) is a unique solution to (3.4) in Bω(Bc).
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Theorem 3.1 provides a characterisation of V (x, f ). To further establish the existence of a
first passage expected-optimal policy, we consider the usual conditions below.

Assumption 3.2. For each x ∈ Bc,

(a) the set A(x) is compact;

(b) the reward function r(x, a) is upper semi-continuous (u.s.c.) in a ∈ A(x);
(c) for each x ∈ X and C ∈ B(X), the functions Q(C | x, a) and

∫
Bc ω(y)Q(dy | x, a)

are u.s.c. in a ∈ A(x).

Remark 3.2. Assumption 3.2 is referred to as the continuity-compactness conditions. If we
consider the reward function r(x, a) as −c(x, a), then Assumption 3.2 is essentially the same
as Assumptions 8.3.1 and 8.3.3 of [10, pp. 44–45].

In the following, we will show that underAssumptions 3.1 and 3.2, V ∗(x) = supπ∈� V (x, π)

is the unique solution in Bω(Bc) to the first passage optimality equation below:

u(x) = sup
a∈A(x)

{
r(x, a) + α(x)

∫
Bc

u(y)Q(dy | x, a)

}
for all x ∈ Bc, (3.5)

where u is in Bω(Bc).

Theorem 3.2. Under Assumptions 3.1 and 3.2, the following assertions hold.

(a) The optimal reward function V ∗ satisfies the first passage optimality equation (3.5), and
it is the unique solution in Bω(Bc) to (3.5).

(b) There exists a stationary policy f ∗ ∈ F such that

V ∗(x) = r(x, f ∗) + α(x)

∫
Bc

V ∗(y)Q(dy | x, f ∗) for all x ∈ Bc, (3.6)

and f ∗ is a first passage expected-optimal policy.

(c) A policy f ∈ F is in F ∗ if and only if f (x) attains the maximum in (3.5) (with the function
u replaced by V ∗) for every x ∈ Bc.

Proof. (a) Define the operator T on Bω(Bc) as follows:

T u(x) := sup
a∈A(x)

{
r(x, a) + α(x)

∫
Bc

u(y)Q(dy | x, a)

}
for all x ∈ Bc and u ∈ Bω(Bc).

Then, as in the proof of Theorem 3.1, we can conclude that T is a contraction map from
Bω(Bc) into itself. By Banach’s fixed point theorem, T has a unique fixed point u∗ in Bω(Bc),
i.e. T u∗ = u∗. Hence, to prove part (a) we need to verify that u∗ = V ∗ for each x ∈ Bc.
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First, we show that u∗(x) ≤ V ∗(x) for each x ∈ Bc. In fact, by the equality T u∗ = u∗ and
Lemma 8.3.8 of [10], there exists an f ∗ ∈ F such that

u∗(x) = r(x, f ∗(x)) + α(x)

∫
Bc

u∗(y)Q(dy | x, f ∗(x))

= E
f ∗
x {r(x0, f

∗(x0)) 1{x0∈Bc} +α(x0) 1{x0∈Bc,x1∈Bc} u∗(x1)}

= E
f ∗
x

{
r(x0, f

∗(x0)) +
N−1∑
k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k−1∏
i=0

α(xi)r(xk, f
∗(xk))

+ 1{x0∈Bc,x1∈Bc,...,xN∈Bc}
N−1∏
i=0

α(xi)u
∗(xN)

}
, (3.7)

where the last equality can be deduced by iteration. Since, by (3.3),

lim
N→∞

∣∣∣∣Ef ∗
x

{
1{x0∈Bc,...,xN∈Bc}

N−1∏
i=0

α(xi)u
∗(xN)

}∣∣∣∣ ≤ lim
N→∞(αγ )N‖u∗‖ωω(x) = 0, (3.8)

it follows from (3.2) and (3.7) that u∗(x) = V (x, f ∗), and so u∗ ≤ V ∗ for each x ∈ Bc.
Second, we show that u∗(x) ≥ V ∗(x) for each x ∈ Bc. Since

u∗(x) ≥ r(x, a) + α(x)

∫
Bc

u∗(y)Q(dy | x, a) for all x ∈ Bc and a ∈ A(x).

Then for each n ≥ 0, π ∈ �, and x ∈ Bc, we have

E
π
x {r(xn, an) 1{xn∈Bc} + 1{xn∈Bc,xn+1∈Bc} α(xn)u

∗(xn+1) − 1{xn∈Bc} u∗(xn) | hn, an} ≤ 0.

Hence,

E
π
x

{
1{x0∈Bc,...,xn∈Bc}

n−1∏
i=0

α(xi)r(xn, an) + 1{x0∈Bc,...,xn+1∈Bc}
n∏

i=0

α(xi)u
∗(xn+1)

− 1{x0∈Bc,...,xn∈Bc}
n−1∏
i=0

α(xi)u
∗(xn) | hn, an

}

≤ 0.

Taking expectation E
π
x and then summing from 0 to N − 1, we obtain

E
π
x

{
r(x0, f (x0)) 1{x0∈Bc} +

N−1∑
n=1

1{x0∈Bc,...,xn∈Bc}
n−1∏
i=0

α(xi)r(xn, an)

+ 1{x0∈Bc,...,xN∈Bc}
N−1∏
i=0

α(xi)u
∗(xN)

}

≤ u∗(x).

Letting N → ∞ and using (3.8), we obtain V (x, π) ≤ u∗(x) for each π ∈ � and x ∈ Bc.
Then, it is clear that V ∗(x) ≤ u∗(x) for each x ∈ Bc. Therefore, part (a) holds.
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(b) Since V ∗(x) = V (x, f ∗) for every x ∈ Bc (with f ∗ as in (3.7)), by part (a) and Theorem 3.1,
we see that (3.6) holds.

(c) If f ∈ F is a first passage expected-optimal policy, then V ∗(x) = V (x, f ) for each x ∈ Bc,
together with (3.4) implies that f (x) attains the maximum in (3.5) for all x ∈ Bc. Conversely,
it obviously holds by the definition of the first passage expected-optimal policy.

Remark 3.3. (a) Theorem 3.2 extends Theorem 8.3.6 of [10, p. 47] for a constant discount
factor to the case of state-dependent discount factors, and also generalizes Theorem 3.2 of [23]
to the case of the first passage criterion.

(b) The uniqueness of the solution to the first passage optimality equation (3.5) plays a crucial
role in solving expected-optimal stationary policies (see the proof of Theorem 4.1(b) and
Example 6.1 below).

Since we will find the minimum of σ 2(x, f ) over F ∗ in this paper, it is helpful to characterise
the set F ∗. Let

A∗(x) :=
{
a ∈ A(x) | V ∗(x) = r(x, a) + α(x)

∫
Bc

V ∗(y)Q(dy | x, a)

}
for all x ∈ Bc,

(3.9)
where V ∗(x) is the optimal reward function.

Then, by Theorem 3.2(c), we have the following fact:

F ∗ = {f ∈ F | f (x) ∈ A∗(x) for all x ∈ Bc},
which gives an exact characterisation of F ∗ by means of A∗(x) defined in (3.9).

4. Transformation of the variance problem

In this section we will show that the variance of f (∈ F ∗) can be transformed into a first
passage discounted expected reward of f for a new reward function and other discount factors.

Theorem 4.1. For any x ∈ Bc and f ∈ F , let

R(x, f ) := r(x, f )[2V (x, f ) − r(x, f )] + α2(x)

∫
Bc

V 2(y, f )Q(dy | x, f ) − V 2(x, f ).

(4.1)
Under Assumptions 3.1 and 3.2, we have the following:

(a) for each f ∈ F , σ 2(x, f ) is the unique solution in Bω2(Bc) to the following equation

u(x) = R(x, f ) + α2(x)

∫
Bc

u(y)Q(dy | x, f ) for all x ∈ Bc, (4.2)

(b) for each f ∈ F and x ∈ Bc,

σ 2(x, f ) = E
f
x

{
R(x0, f ) +

τB−1∑
n=1

n−1∏
i=0

α2(xi)R(xn, f )

}
(4.3)

= E
f
x

{
r̃(x0, f ) +

τB−1∑
n=1

n−1∏
i=0

α2(xi)r̃(xn, f )

}
− V 2(x, f ), (4.4)

where r̃(x, f ) := r(x, f )[2V (x, f ) − r(x, f )].
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Proof. (a) For each f ∈ F and x ∈ Bc from (2.7), we obtain

σ 2(x, f ) = r2(x, f ) + 2E
f
x

{
r(x0, f )

∞∑
k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k−1∏
i=0

α(xi)r(xk, f )

}

+ E
f
x

{ ∞∑
k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k−1∏
i=0

α(xi)r(xk, f )

}2

− V 2(x, f ). (4.5)

Let

I1 := 2E
f
x

{
r(x0, f ) 1{x0∈Bc}

∞∑
k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k−1∏
i=0

α(xi)r(xk, f )

}

= 2α(x)r(x, f )E
f
x {V (x1, f ) 1{x1∈Bc}}

= 2α(x)r(x, f )

∫
Bc

V (y, f )Q(dy | x, f ),

which together with (3.4) gives

I1 = 2r(x, f )[V (x, f ) − r(x, f )] = 2r(x, f )V (x, f ) − 2r2(x, f ). (4.6)

Let

(4.7)I2 := E
f
x

{ ∞∑
k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k−1∏
i=0

α(xi)r(xk, f )

}2

= α2(x)E
f
x

{
E

f
x

[ ∞∑
k=1

1{x1∈Bc,x2∈Bc,...,xk∈Bc}
k−1∏
i=1

α(xi)r(xk, f )

]2 ∣∣∣∣ h1

}

= α2(x)

∫
Bc

σ 2(y, f )Q(dy | x, f ) + α2(x)

∫
Bc

V 2(y, f )Q(dy | x, f ). (4.8)

Hence, it follows from (4.1) and (4.5)–(4.8) that

σ 2(x, f ) = r2(x, f ) + I1 + I2 − V 2(x, f ) = R(x, f ) + α2(x)

∫
Bc

σ 2(y, f )Q(dy | x, f ).

This shows that σ 2(x, f ) satisfies (4.2). Furthermore, as the proof of the uniqueness of a
solution to (3.4), we can prove that the solution to (4.2) is also unique.

(b) Using the conditional expectation and Markov properties, we obtain

E
f
x

{
α2(x0)

∫
Bc

V 2(y, f )Q(dy | x0, f ) +
τB−1∑
n=1

n∏
i=0

α2(xi)

∫
Bc

V 2(y, f )Q(dy | xn, f )

}

= E
f
x

{
α2(x0) 1{x0∈Bc}

∫
Bc

V 2(y, f )Q(dy | x0, f )

+
∞∑

k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k∏

i=0

α2(xi)

∫
Bc

V 2(y, f )Q(dy | xk, f )

}
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= E
f
x

{
α2(x0) 1{x0∈Bc} E

f
x [1{x1∈Bc} V 2(x1, f )]

+
∞∑

k=1

1{x0∈Bc,x1∈Bc,...,xk∈Bc}
k∏

i=0

α2(xi)E
f
x [1{xk+1∈Bc} V 2(xk+1, f ) | hk]

}

= E
f
x

{
V 2(x0, f ) +

τB−1∑
n=1

n−1∏
i=0

α2(xi)V
2(xn, f )

}
− V 2(x, f ),

which together with (4.1) yields (4.4).
To complete the proof of part (b), it remains to prove (4.3). As in the proof of (3.3), we can

obtain for any π ∈ � and x ∈ Bc,

E
f
x {1{x0∈Bc,x1∈Bc,...,xk∈Bc} ω2(xk)} ≤ γ 2kω2(x), k = 0, 1, 2, . . . .

Then, by Lemma 3.1, we have

∣∣∣∣Ef
x

{
r̃(x0, f ) +

τB−1∑
n=1

n−1∏
i=0

α2(xi)r̃(xn, f )

}
− V 2(x, f )

∣∣∣∣

≤ β2
(

1 + 2

1 − αγ

)(
1 +

∞∑
n=1

(αγ )2n

)
ω2(x) + β2

(1 − αγ )2 ω2(x) ≤ Mω2(x),

where M is a finite constant. This implies that

E
f
x

{
R(x0, f ) +

τB−1∑
n=1

n−1∏
i=0

α2(xi)R(xn, f )

}
∈ Bω2(Bc).

Moreover, from Theorem 3.1 it follows that E
f
x {R(x0, f ) + ∑τB−1

n=1

∏n−1
i=0 α2(xi)R(xn, f )} is

the unique solution in Bω2(Bc) to (4.2), which together with part (a) yields (4.3).

Remark 4.1. Theorem 4.1 provides another expression of the variance of a policy f ∈ F , and
gives an exact relationship between the discounted expected reward and variance of the policy.
If we restrict ourselves to the class of stationary policies and consider R(x, f ) defined in (4.1)
as a new reward function, then the variance minimisation problem can be transformed into
an equivalent first passage optimality problem with r(x, a) and α(x) replaced by r̃(x, a) :=
r(x, a)[2V ∗(x) − r(x, a)] and α2(x), respectively.

By Theorem 4.1, the problem P is equivalent to the following problem:

P∗ : minimise Vα2(x, f ) over f ∈ F ∗ for all x ∈ Bc,

where F ∗ is from (2.6) and Vα2(x, f ) := E
f
x {r̃(x0, f ) + ∑τB−1

n=1

∏n−1
i=0 α2(xi)r̃(xn, f )}.

To solve problem P∗, we construct a new model

{X, A, (A∗(x), x ∈ X), Q(· | x, a), B, α2(x), r̃(x, a)}, (4.9)

where A∗(x) comes from (3.9). Then, all the results of the first passage optimisation can be
used to obtain the similar consequences for the variance minimisation problem.
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5. Variance-optimal policies

In this section we establish the existence of a variance-optimal stationary policy for the first
passage discounted reward criterion by means of the new model (4.9).

Theorem 5.1. Let V ∗ be the optimal value function. Under Assumptions 3.1 and 3.2, the
following assertions hold:

(a) σ 2∗ + (V ∗)2 is the unique solution in Bω2(X) to

u(x) = inf
a∈A∗(x)

{
r(x, a)[2V ∗(x) − r(x, a)]

+ α2(x)

∫
Bc

u(y)Q(dy | x, a)

}
for all x ∈ Bc, (5.1)

(b) there exists a stationary policy f ∗
v in F ∗ such that f ∗

v (x) attains the minimum of the
right-hand side in (5.1) for every x ∈ Bc, and f ∗

v is a variance-optimal policy,

(c) a stationary policy f ∈ F is variance-optimal if and only if f (x) attains the minimum
in (5.1) for every x ∈ Bc.

Proof. For each x ∈ Bc, let V ∗
α2(x) := inff ∈F ∗ Vα2(x, f ). Then, by Theorems 4.1(b) and

(2.6), we have V ∗
α2(x) = σ 2∗ (x) + (V ∗(x))2. Moreover, the model (4.9) satisfies the hypothesis

in Theorem 3.2 with ω and r(x, a) replaced by ω2 and −r̃(x, a), respectively. Thus, the results
in (a)–(c) follow from Theorem 3.2.

Remark 5.1. Although Theorem 5.1 ensures the existence of a variance-optimal stationary
policy (and the main goal of this paper is achieved), a complete calculation procedure of the
variance-optimal policy is not given yet. However, when Bc and A(x) are finite, we can use
the policy iteration algorithm [8], [20] to compute the variance-optimal policies.

6. Example of an application

It is easy to verify that Examples (8.6.2)–(8.6.4) of [10, pp. 68–71] satisfy Assumptions 3.1
and 3.2, and then the existence of the variance-optimal policies can be established. Besides the
existence of the variance-optimal policies, in this section we aim to obtain the exact forms of
the first passage expected-optimal stationary policies and variance-optimal policies in a cash-
balance model (6.1), which is considered in [12] and [23] for the infinite horizon discount
MDPs.

Example 6.1. (A cash-balance model) Consider the controlled cash-balance system

xn+1 = xn + an + εn, n = 0, 1, . . . , (6.1)

where the state xn and action an denote the amount of cash balance, and a withdrawal of size
−an (if an < 0) of the money in cash, or a supply in the amount an (if an > 0) at time n,
respectively. Suppose that the state of the system is x ∈ X := (−∞, +∞). A decision-maker
takes an action a in a given set A(x), which is assumed to be [−|x|, |x|]. The disturbances
{εn, n ≥ 0} are assumed to be independent standard normal random variables, that is, the
transition law Q(· | x, a) is given by

Q(C | x, a) =
∫

C

1√
2π

exp

(
− (y − x − a)2

2

)
dy for all (x, a) ∈ K, C ∈ B(X).
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Finally, the function r(x, a) is assumed to be u.s.c. in a ∈ A(x) for each state x in X.

Proposition 6.1. In Example 6.1, the following assertions hold.

(a) If the discount factors α(x) satisfy supx∈Bc α(x) < 1
4 , and there exists a constant M > 0

such that |r(x, a)| ≤ M(x2 + 1) for all x ∈ X and a ∈ [−|x|, |x|], then a variance-
optimal policy exists (by Theorem 5.1), and it is also first passage expected-optimal.

(b) (The special cases of varying discount factors.) Suppose that the discount factors α(x)

and reward function r(x, a) are given as follows:

α(x) := δe−x2/4 and r(x, a) := x2 − 1 − δe−x2/4[(a2 − x2)2 + (x + a)2]

for each x ∈ Bc and a ∈ A(x), where δ is a constant in (0, 1
4 ). Then, we have

(bi) (On the infinite horizon discounted criterion.) Take the target set B := ∅, then the
first passage expected-optimal policies are given by f ∗

1 (x) := −x and f ∗
2 (x) := x

for every x ∈ X, and the optimal value function is given by V ∗(x) = x2 − 1 for all
x ∈ X. Moreover, the policy f ∗

1 (x) = −x(x ∈ X) is a variance-optimal policy.

(bii) (On the first passage criterion.) Let Bc := [−m, m], where m is some positive
constant (such as m represents the boundary which makes the system cease to
be effective). Then, the first passage expected-optimal policy is only given by
f ∗(x) := −x, and the optimal reward function is given by

V ∗(x) = x2 − 1 − 2δme−m2/2

√
2π − (2

√
3πδ/3)[2φ((

√
6/2)m) − 1]e−x2/4, x ∈ X,

whereφ(x) := ∫ x

−∞(1/
√

2π)e−t2/2 dt (the standard normal distribution function).
Of course, the policy f ∗(x) = −x is also the variance-optimal policy.

(c) (The special cases of a fixed discount factor.) Suppose that the discount factors α(x) :≡
α ∈ (0, 1

4 ) and reward function r(x, a) is given by

r(x, a) := x2 − 1 − α[(a2 − x2)2 + (x + a)2] for all x ∈ Bc, a ∈ A(x).

Then, we have the following results.

(ci) (On the infinite horizon discounted criterion.) Take the target set B := ∅, then the
first passage expected-optimal policies are given by f ∗

1 (x) := −x and f ∗
2 (x) := x

for every x ∈ X, and the optimal value function is given by V ∗(x) = x2 − 1.

(cii) (On the first passage criterion.) Let Bc := [−m, m] with some constant m > 0,
then the first passage expected-optimal policy is given only by f ∗(x) = −x, and
the optimal value function is as follows

V ∗(x) = x2 − 1 − 2αme−m2/2

√
2π [1 − α(2φ(m) − 1)] .
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Proof. (a) Let ω(x) := x2 + 1 for each x ∈ Bc, then it follows that
∫

Bc

ω(y)Q(dy | x, a) ≤
∫ +∞

−∞
ω(y)Q(dy | x, a) = (x + a)2 + 2 < 4ω(x),

∫
Bc

ω2(y)Q(dy | x, a) ≤
∫ +∞

−∞
ω2(y)Q(dy | x, a)

= (x + a)4 + 8(x + a)2 + 6

< 16ω2(x),

|r(x, a)| ≤ Mω(x)

for all x ∈ X, a ∈ A(x). Since Assumption 3.2(c) has been verified from Proposition 4.1 of
[23], it follows from the three inequalities (just established) that Assumptions 3.1 and 3.2 are
satisfied. Thus, Theorem 5.1 ensures the existence of a variance-optimal stationary policy.

(bi) Since

|r(x, a)| ≤ x2 + 1 + 1

4

(a2 − x2)2 + (x + a)2

1 + (x2/4)
< 10ω(x)

for all x ∈ X and a ∈ A(x), by Theorem 3.2, the optimality equation (3.5) becomes

V ∗(x) = sup
a∈A(x)

{
x2 − 1 − δe−x2/4[(a2 − x2)2 + (x + a)2]

+ δe−x2/4
∫ +∞

−∞
V ∗(y)

1√
2π

e−(y−x−a)2/2 dy

}
. (6.2)

Now, suppose that V ∗(x) = k1x
2 + k2x + k3, then, we have

∫ +∞

−∞
V ∗(y)

1√
2π

e−(y−x−a)2/2 dy =
∫ +∞

−∞
(k1y

2 + k2y + k3)
1√
2π

e−(y−x−a)2/2 dy

= k1[(x + a)2 + 1] + k2(x + a) + k3,

which together with (6.2) yields k1 = 1, k2 = 0, k3 = −1 (i.e. V ∗(x) = x2 − 1), and
the maximum in (6.2) is attained at f ∗

1 (x) := −x and f ∗
2 (x) := x for each x ∈ X.

Because of the uniqueness of the solution in Bω(X) to (6.2), by Theorem 3.2 the policies
f ∗

1 and f ∗
2 are first passage expected-optimal and the optimal reward function is given

by V ∗(x) = x2 − 1.
In order to distinguish the variance-optimal policy between f ∗

1 and f ∗
2 , we need only to

find the policy which makes Vα2(x, f ) attain the optimal value V ∗
α2(x) in problem P ∗.

For each x ∈ X, let A∗(x) := {f ∗
1 (x), f ∗

2 (x)}. Then, we have

r(x, a)[2V ∗(x) − r(x, a)] = (x2 − 1)2 − δ2e−x2/2(x + a)4 for all a ∈ A∗(x).

Thus, by Theorem 5.1 for each x ∈ X,

V ∗
α2(x) = inf

a∈A∗(x)

{
(x2 − 1)2 − δ2e−x2/2(x + a)4

+ δ2e−x2/2
∫ +∞

−∞
V ∗

α2(y)
1√
2π

e−(y−x−a)2/2 dy

}
. (6.3)
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Furthermore, we suppose that V ∗
α2(x) := (x2 − 1)2 + k4e−x2/2, then

∫ +∞

−∞
V ∗

α2(y)
1√
2π

e−(y−x−a)2/2 dy

=
∫ +∞

−∞
y4 − 2y2

√
2π

e−(y−x−a)2/2 dy + 1 + k4e−(x+a)2/4
∫ +∞

−∞
e−(y−(x+a)/2)2

dy

= (x + a)4 + 6(x + a)2 + 3 − 2[(x + a)2 + 1] + 1 + k4√
2

e−(x+a)2/4. (6.4)

Note that the function h(y) := 4y2 + (k4/
√

2)e−y2/4 attains the minimum at y=0 as
k4 ≤ 16

√
2, which together with (6.4) implies that the minimum in (6.3) is attained at

f ∗
1 (x) = −x, and yields k4 = 2

√
2δ2/(

√
2 − δ2) (≤ 16

√
2), that is,

V ∗
α2(x) = (x2 − 1)2 + 2

√
2δ2

√
2 − δ2

e−x2/2 for all x ∈ X.

Because of the uniqueness of the solution in Bω2(X) to (6.3), it follows from Theorem 5.1
that the policy f ∗

1 (x) = −x(x ∈ X) is a variance-optimal policy.

(bii) For the case of Bc = [−m, m], the optimality equation (6.2) becomes

V ∗(x) = sup
a∈A(x)

{
x2 − 1 − δe−x2/4[(a2 − x2)2 + (x + a)2]

+ δe−x2/4
∫ m

−m

V ∗(y)
1√
2π

e−(y−x−a)2/2 dy

}
. (6.5)

Using the arguments in (bi), by a straightforward calculation we can verify that the
maximum in (6.5) is only attained at f ∗(x) := −x, and

V ∗(x) := x2 − 1 − 2δme−m2/2

√
2π − (2

√
3πδ/3)[2φ((

√
6/2)m) − 1]e−x2/4,

where φ(x) is the standard normal distribution function. Because of the uniqueness of
the solution in Bω(Bc) to the equation (6.5), by Theorem 3.2 the policy f ∗(x) = −x

is first passage expected-optimal. Evidently, the unique first passage expected-optimal
policy f ∗(x) = −x is also the variance-optimal policy.

(ci) As the same calculations of Proposition 6.1 (bi), we see that (ci) is true.

(cii) For the case of Bc = [−m, m], it follows that the first passage expected-optimal policy
is given only by f ∗(x) = −x, and the optimal reward function is given by

V ∗(x) = x2 − 1 − 2αme−m2/2

√
2π [1 − α(2φ(m) − 1)] ,

and so (cii) follows.

Remark 6.1. Proposition 6.1(bi) shows that there are indeed more than one first passage
expected-optimal policies for the case of varying discount factors, and it presents an exact
variance-optimal policy. Moreover, the difference of the optimal value functions in Proposi-
tion 6.1(b) further shows the difference between the first passage criterion here and the infinite
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horizon criterion for the discrete-time MDPs with varying discount factors [23]. Furthermore,
the difference of the optimal value functions in Proposition 6.1(c) implies that in general the first
passage criterion is also different from the (well known) infinite horizon expected discounted
criterion for discrete-time MDPs with a constant discount factor given in [9], [10], and [20].
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