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1. Introduction. Let G be a group. We define A(G) to be the smallest integer n
such that every element of the commutator subgroup G' is a product of n commutators.
Ito [4] has shown that A(AJ = 1 for all n. Thompson [7] has shown that A(SLn(q)) = 1 for
all n and q. In fact, there is no known simple group G such that A(G)>1. However,
there do exist such perfect groups (cf. [7]).

G is said to be a C- group if G is the commutator subgroup of some group. First we
show that if Gu..., Gs satisfy certain conditions, then there exists a group K with

K'= n G, and K(K)>k. As a consequence of this, we show that if G is a finite,
i = l

non-perfect C-group and k is a positive integer, then there exist a group K and a positive
s

integer s so that K'= \[ G and k(K)>k.
i = l

In the next section, we derive some applications to the case where G' is abelian,
and in particular where G' is cyclic. Finally, we construct nilpotent groups G of class 2
satisfying A(G)= n and either G' is finite of rank n2 or G' is finitely generated of rank
n 2 - n +1 (where the rank of a finitely generated abelian group is the minimal number of
elements in a generating set). The former improves a result of Gallagher [1], while the
latter answers a question of Liebeck [5].

2. Cp -groups.

DEFINITION. Let p be a prime. A group G is said to be a Cp-group if there exists a
group K with a subgroup H satisfying:

(i) K'=GcH,
(ii) HVG, and

(iii) [K:H] = p.

THEOREM 1. Suppose Gt is a Cp-group for i = 1,2,. . . , s = 1 + p + • • • + p2k. Then there
• s

exists a group K so that X'= I] d and \{K)>k.
i = l

Proof. Choose KhH, as in the definition above, l<i<s. Then Kt ={H,, u;),
5

where ufeHt. Pick elements x1,...,x2(t+1€ JjKj, where x{t = {u\",...,u)") and
i = 1 2lc + l

(Au, A2,,...,A2k+i,,), l^j^s, range over all s one dimensional subspaces of f| 2P.

Set K = (Hu...,Hs, xu...,x2fc+1)e f ] K, Clearly K1 = Y\ G,
i = l i = l
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Let w be a typical product of k commutators in K. Then we have
k r 2k+l 2k + l T

( = 1 L r = l

where y,, z, e K. Then y,- = (ay i , . . . , a/s) and z, = (bjU ..., bis) for / = 1 , . . . , k, where a,m,
6/m e Hm for m = 1 , . . . , s.

Since H; =>KJ, Hf <Kt, and hence H J ^ ^ . Thus H=Y[Hi<K. Consider (1) in K/H.
A straightforward calculation gives i=1

2k + l 2k+l

in K/H, where afj = £ e.rAri and j3,7 = X
r = l r = l

The system of 2fc equations
2k + l

£ e/rwr = 0,
r = l

in the unknowns w1,...,w2k+\ has a non-trivial solution in 2p. Hence there exists t,
1 < ( < S , such that (w, , . . . , w2fc+1) = (A,(,. . . , A2)c+i,,) is a solution. So a,jSp,j = 0 (modp)
for / = 1 , . . . . fc, and therefore the rth component of w in K/H is 1. Thus we have shown that
if C J E G J - H ; for i = l, . . . , s , then the element ( c 1 ; . . . , cs) is not a product of k
commutators in K.

As a corollary to this we get our desired result.

THEOREM 2. If G is a non-perfect, finite C-group, then, given a positive integer k, there
5

exist a positive integer s and a group K so that K' = f[ G and A (K) > k.
i = l

Proof. Macdonald [6] has shown that if G is a finite C-group, then there exists K
finite with K' = G. Choose K of minimal order such that K' = G. Since G is not perfect,
K^ G, and hence there exists a prime p so that p | [K : G]. Since K/G is a finite abelian
group whose order is a multiple of p, there exists a subgroup H ot K satisfying H e G and
[X: H] = p. By the minimality of K ,HV G, and thus G is a Cp -group. The result now
follows from Theorem 1.

3. Abelian commutator subgroups.

LEMMA 1. An abelian group is a C2-group.

Proof. Let A be an abelian group. Consider G = (AxA)xs<x), where x2 = 1 and
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x(a, b)x = (b, a). Then G' = {(a, a"1): aeA} = A. Let H = A*A. Then H ' = l and
[G:H] = 2.

We remark that in the group above A(G) = 1 as [x, (1, a)] = (a, a"1). From Lemma 1
and Theorem 1 we have the following theorem.

THEOREM 3. Suppose G is a direct product of 22fc+1 - 1 abelian groups. Then there
exists a group K with K' = G and K(K)>k.

COROLLARY. If G is a cyclic group of order n, where n = p"1... p"-, s s 22lc+1 - 1 , then
there exists K with K' = G and A(K)> fc.

If 2 | n the result can be improved slightly. However, if n is odd, this is the best
possible example (cf. [3]). Macdonald [6] has proved the corollary in the case n is odd
and s > 2 2 k + 2 - l .

4. Nilpotent groups. Let R = M2n(Z) be the ring of 2nx2n matrices with integer
entries. Set Ek, = (<!;,)€£ where ^, = 0 if (i,;) # (k,/) and akl = l. Let l/ =
{(bij)€M3(R):bij = 0 if i>j, and bu = 1}. Then U is a group under matrix multiplication.

Let G be the subgroup of U generated by {(bj,)e U:b12 = b'23 = £ AkEki}. If we denote
k = l

the set of skew-symmetric matrices of R by S, then G' = {(by)e U:bl2 = b23 = 0, b13eS}.
However, x = (b;j) e G' is a commutator if and only if rank bl3s 2. Hence x = (bfj-) e G' is a
product of m commutators if and only if rank b13<2m. Clearly, then A(G) = n. Note also
that G'cZ(G), and hence G is nilpotent of class 2.

Let A={( i , / ) : l< i< /<2n , i + /<2n + l}. Notice that |A| = n2. Choose integers fey,
(i,;) e A, so that there exists a prime p with p | k̂ . Let H = {(a,,) e S: ai; is a multiple of ky

for (i, j)eA}. Note that H is an additive subgroup of S. Set xo = (ai;-)e S, where af/ = 0 if
i + ;>£2n + l, and ai( = 1 if i+/ = 2n + l and l < i < n . Then the coset xo + H consists only
of matrices of rank 2n, since if y€xo + H, d e t y ^ l (modp).

Now consider K = {(bj;)e G': fc13e H}. K is a central subgroup of G, and hence is
normal. By the above remarks, the element y = (bi;)€ G'/K and bn = x0 is not a product
of fewer than n commutators. Hence A(G/K) = n. Also {GIK)'=G'IK^ J[ 1 lkxjl.
Thus we have proved the following theorem. (i))eA

THEOREM 4. / / G is a finitely generated abelian group with rank G s n2, then there
exists a group K such that G = K'cZ(K) and A(K) = n.

If we take kj,- = p, a fixed prime for all (i,j)eA, then G'= n 2P. If T is a maximal
i = l

torsion-free central subgroup of G, then K=G/T is a finite nilpotent group such that
K'=G' and A(K) = A(G). Let L be the sylow p-subgroup of K. Then L' = K' and
A(L) = n. Gallagher [1] has shown that if G is a p-group and |G'|<pn(n+1), then A(G)< n.
Our example shows that n(n +1) can not be replaced by (n +1)2+1. For n = 1, p4 is the
best bound (cf. [2]).
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We now will construct another example. For each (i, /) e A, set ktj, = 0 if i + j < In +1
n

and kij = mi>l if i + / = 2n + l. Let Jfbe as above. If yexo + H, dety = II (l + A,m,)2^0.
i = l

Again set K = {(bij)eG':b13eH}. Arguing as above, we see that \(G/K)=n, and
n2—n n

(G/K)'= G'/K= II 2 x [] TLImJL. In particular, if we assume that the mk are pairwise
i = l i = l

relatively prime, then rank G'/K= n2—n + l. Hence we have constructed a group N of
nilpotency class 2 with A (N) = n, and JV' generated by n2 - n +1 elements. Liebeck [5]
showed that if N'cZ(N) can be generated by 2 elements, then A(N)=1. The above
example shows that 2 cannot be replaced by 3. This answers a question posed in [5].
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