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RANDOM SPANNING TREES OF CAYLEY GRAPHS AND AN
ASSOCIATED COMPACTIFICATION OF SEMIGROUPS

by STEVEN N. EVANS*

(Received 3rd December 1997, revised 20th March 1998)

A sequential construction of a random spanning tree for the Cayley graph of a finitely generated, countably
infinite subsemigroup V of a group G is considered. At stage n, the spanning tree T is approximated by a
finite tree Tn rooted at the identity. The approximation Tn+I is obtained by connecting edges to the points of
V that are not already vertices of Tn but can be obtained from vertices of Tn via multiplication by a random
walk step taking values in the generating set of V. This construction leads to a compactification of the
semigroup V in which a sequence of elements of V that is not eventually constant is convergent if the random
geodesic through the spanning tree T that joins the identity to the n'* element of the sequence converges in
distribution as n -*• oo. The compactification is identified in a number of examples. Also, it is shown that if
h(Tn) and jf(Tu) denote, respectively, the height and size of the approximating tree Tn, then there are constants
0 < ck < 1 and 0 < cs < Iog2 such that lim,,..,,, n~'h(TJ = ch and linv.^ n~' log#(Tn) = cs almost surely.

1991 Mathematics subject classification: Primary 60B99, 20F32; Secondary 20P05, 54D35.

1. Introduction

The Cayley graph of a finitely generated free group is a regular tree. This provides
a natural way of compactifying such a group: one just adjoins the collection of "ends".
That is, a sequence of group elements converges in the compactification if and only if
the sequence is either eventually constant or initial segments of the unique shortest
path connecting the identity to the n* element of the sequence converge as n -*• oo.

The Gromov compactification of word hyperbolic groups (cf. [1, 3, 4]) is a far-
reaching generalisation of this idea that is based on the observation that such groups
have Cayley graphs which in some sense are almost tree-like.

Our main aim in this paper is to carry something of the spirit of such constructions
over to a general finitely generated discrete subsemigroup of a group. We do this by
replacing the full Cayley graph with a natural randomly generated spanning tree and
declaring that a sequence of semigroup elements converges in the compactification if
and only if the sequence is eventually constant or initial segments of the random path
through the spanning tree joins the origin to the «* element of the sequence converges
in distribution as n -*• oo. We describe the spanning tree in Section 2 and give a
number of examples of the associated compactification in Section 3.
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612 STEVEN N. EVANS

The spanning tree is constructed from a sequence of finite approximating trees. The
asymptotic behaviour of the height and size of these approximating trees is studied in
Sections 4 and 5, respectively.

2. Construction of the spanning tree

Let G be a countable group with identity e. Fix a finite subset S c. G and write V
for the subsemigroup of G that consists of all finite products of elements of S (where
we interpret the empty product as e so that e e V). We will always suppose that V is
infinite.

Fix a probability measure p — (ps)Ses o n $ w ' t n P* '•= m^nses V, > 0- Let (-^O^N
 De a

sequence of independent S-valued random variables, each distributed according to p.
Define a rooted random tree, T, with root e, vertex set almost surely V, and

(random) directed edge set E by the following procedure. For g e V\{e} put

Ng := mf{N > 1 : 31 < m, < ... < mt = N such that Xm, • • • Xmi = g],

and declare that (gX^ ,g)eE.
Another way of putting this is that T is the limit of the increasing sequence of finite,

rooted, trees (Tn)Jjlo defined inductively as follows. The tree To has the single vertex
{e} (and no edges). Suppose that Tit 0 < i < n, have been defined with 7] having vertex
set Vf c V and directed edge set £, c ^ x Vt. Then Tn+t has vertex set

K+l = K U {gXn+l :geVn)

and directed edge set

En+l = En U {(g, gXn+l): g e Vn, gXn+] $ Vn).

Of course, it may happen that Tn = Tn+l for certain values of n.
Recall that the Cayley graph, say Y, of the semigroup V with respect to the

generating set S is the directed graph with vertex set V and edge set consisting of
ordered pairs (v, w) where w — vs for some s e S. The rooted tree T is a spanning tree
for F; that is, T has the same vertex set as F and the edge set of T is a subset of the
edge set of F.

Example 1. Suppose that G is the free group on n letters a,, . . . ,an. Put
S = {a,, aj"1 , . . . , an, a^1}, so that V = G. Then E is almost surely the fixed set of ordered
p a i r s o f t h e f o r m (gx • • • gk_x , g t - - - g k ) w i t h gt / g~+t f o r 1 < i < k - 1.

Example 2. Suppose that G = Z x Z and S = {(1, 0), (0, 1)}, so that V = Z+ x Z+.
Put y0 := 0 and Yn := Xx -\ + Xn for n > 1. Write {Yn, Yn") for the components of

Yn. Note that

https://doi.org/10.1017/S0013091500020551 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020551


RANDOM SPANNING TREES 613

Vn = {{a, b):a< Ynt b < yn"}

a n d

{{Y0,Yl),(Y],Y2),...,(Yn.l,Yn)}CEn.

Put

V? := {(«, b) 6 Vn\{Yu ...,Yn}:a>Ym,b=YL for some 1 < m < n)

and

V: := {(a, b) eVn\{Y{ Yn) : a = Ym, b > XL for some 1 < m < «}.

Observe that if Xn+1 = (1,0), then F£i\*T = {(K + 1. 6) : 0 < 6 < X! ~ D. C = K,T,
and £n+1\£n = {((K. b), (X, + \,b)):0 <b < Fn" - 1}. Similarly, if Xn+l = (0, 1), then
K7i = K, VlAV: = {(a, Y: + 1) : 0 < a < X, ~ 1}, and £n+1\£n = {((a, 17). (a. K' + D) :
0 < a < 7 n ' - l } . It is now clear by induction that if (a, b)eV^, then ((a-l,b),
(a, b)) e En, and if (a, b) e Kn\ then ((a, b - 1), (a, b)) e En.

Thus ((a - 1, b), (a, b)) e E\{(YQ, Yx), (Yj, y2),...} if and only if Y, < a and yn" = fc for
some n, and ((a, b — 1), (a, b)) € £ if and only if yn' = a and yn" < b for some n.

Example 3. Suppose that G = Z x Z and S = {(±1,0), (0, ±1)}, so that V = Z x Z.
Consider (a, b) with a > 0 and b > 0. By definition of N(a t) exactly a of

A",,..., XN(j()) must have the value (+1,0) and exactly b must have the value (0, +1).
Hence, VN(ab) also contains the point (a — 1, b) and so ((a, b), (a — 1, b)) & E. A similar
argument shows that if a > 0 and b > 0, then ((a, ft), (a, b — 1)) 4 E- Thus for every
point (a, ft) e V++ := {(c, d ) : c > 0, d > 0} we have that ((a', b'), (a, b)) e E with (a', b') e K++

and either (a, b) = (a', b') + (1,0) or (a, b) = (a1, b') + (0, 1).
Let T++ be the subtree of T that has vertex set V++ and edge set £+ + := {(u, v) e

E : u e K++, t> e K++}. It is clear from what we have just observed that T++ has the same
description as T from the previous example, with the role of Yn being played by
yB

++ := Xt+ H + Ar++, where (JC+)B6N is the subsequence of (Xn)n£N consisting of
terms that take on the values (+1,0) and (0,+1). Similar remarks apply to the three
other quadrants, with the trees for adjacent quadrants intersecting in a ray that passes
through the vertices on the shared axis.

We remark that if the random walk e, Xu X{X2, •.. is recurrent, then the procedure
in [2] gives another mechanism for constructing a random spanning tree of V using

3. The associated compactification

Given a rooted tree T and a vertex v of x, let H(v, T) denote the height of v, that is,
the number of edges on the unique path joining the root to v. For v e V, define Zk(v),
0 < k < H(v, T), to be the successive vertices passed through by the unique path in T
that leads from e to v. That is, Z0(v) = e, ZH(vT)(v) = v, and (Zk(v), Zk+l(v)) e E for
0 < k < H(v, T) - 1. Put Zk(v) := v for k > H(v,T). Note that Zk(v) e Bk, the set of
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614 STEVEN N. EVANS

elements of V that can be written as the product of k or fewer elements of S. Set
Cm(v) := (Z0(i>) Z»).

Equip V with the metric

A(u, i>) :=

and let V denote the completion of V in this metric. Put dV := V\V.
Observe that a sequence (vn)neN drawn from V is Cauchy for A if and only if for all

m the distribution of Cm(O = (Z0(wB) Zm(vn)) converges weakly (or, equivalently, in
total variation) as n -* oo.

Lemma 4. The space V is compact.

Proof. It suffices to show that V is sequentially compact. Note that for each m the
distribution of (Z0(t>),..., Zm(y)) is supported on the finite subset Bo x B, x • • • Bm c K"+1.
The result now follows from a diagonal argument and the fact that the space of
probability measures on a finite set is compact for the coincident topologies of weak
and total variation convergence. •

Example 5. Suppose that G is the free group on n letters a,,...,aR. Put S =
{a,, aj~\ . . . , an, a"1}, as in Example 1. Then W is just the set of ends of the fixed tree
described in Example 1.

Example 6. Suppose that G — Z and S — {a, — /?}, where a and /? are positive and
relatively prime, so that V = Z.

Write

M := inf{« : #{1 < k < n : Xk = -0} = a - 1}.

Of course, M is finite almost surely. Observe that VM contains at least one repre-
sentative for every congruence class mod a. For n> M and r = 0, 1, . . . , a — 1, write Rr

n

for the largest element of Vn that is congruent to rmoda. Observe that if Xn+l = a.
(respectively, Xn+i = - / ? ) o r n>M, then Rr

n+x = Rr
n + tx and (Rr

n, R
r
n+]) e En+i

(respectively, Rr
n+i — Rr

n) for r — 0, 1 , . . . , a — 1. Therefore, if v s= rmoda and v > R'M,
then v = R'k for some k > M and (Zw ( r i r )_ t + M(u), . . . , Zw(oT)(t;)) = (Kr

M,..., Rr
k) = (Rr

M,...,
R'M + (^ ~ M)a). This, and a similar observation with the roles of a and — /? reversed,
shows that a sequence (O n 6 N

 t n a t is not eventually constant will be Cauchy if and only
if one of the following conditions holds:

(i) vn —>• +00 and, for some r = 0, 1 , . . . , a — l,vn = rmoda for all sufficiently large n,

(ii) vn —> - c o and, for some r = 0, 1 , . . . , 0 — \,vn = rmod/S for all sufficiently large n,

and each possibility leads to a different limit point. Thus dV consists of a + /? points,
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RANDOM SPANNING TREES 615

with "a boundary points at +oo and /? boundary points at — oo". Note that this
conclusion agrees with that of the previous example when a = ft = 1.

Example 7. Suppose that G — Z and V — Z+, so that S is a finite set of nonnegative
integers that contains 1. Let a denote the largest element of S. Note that with
probability one there are infinitely many times n such that Xn+l — ... = XnHJ = 1. It is
clear from the construction of T that if v > X{ H + Xn for such an n, then
Zk[v) = Zk{Xx + • • • + Xn) = AT, + • • • + Xk for 0 < k < n = H{Xi + • • • + Xn, T). There-
fore, a sequence (un)n6N that is not eventually constant will be Cauchy if and only if
vn -*• +oo, and each such sequence converges to the same limit point. Thus V coincides
with Z\ = Z+ U {+oo}, the usual one-point compactification of Z+.

Example 8. Suppose that G-Z-KZ and S = {(1,0), (0, 1)}, so that V = Z+ x Z+,
as in Example 2.

Define Yo, Yj,... as in Example 2. For v = (i/, v") e V put

M(v) = min{n :Tn = v' or K' = v").

Then Zk(v) = Yn for 0 < k < M(v). If 1^,., < v, then Zk(v) = (Y^v) + k- M(v), Y£M) for
M(v)+\<k<H(v,T). Similarly, if Y^v) < v", then Zk{v) = (I*w, TQM + k- M(v))
for M(y) + 1 < k < H(v, T).

It follows that a sequence (yn)neN = ((«£, ̂ '))neN
 t n a t is n o t eventually constant will

be Cauchy if and only if one of the following three conditions holds:

(i) there exists a such that v'n — a for all n sufficiently large and v"n —» +oo as
n —>• o o ,

(ii) v'n -*• +00 as n -*• oo and there exists b such that ^' = b for all « sufficiently
large,

(iii) v'H -*• +00 as n —*• cx> and t£ —»• +oo as n —> oo.

If two sequences satisfy (i) with the same (respectively, different) choice of a, then they
converge to the same (respectively, different) limit points. A similar remark holds for
(ii). Any two sequences satisfying (iii) converge to the same limit point. Finally, if a
sequence satisfies one of the conditions (i)-(iii) and another sequence satisfies one of
the other conditions, then the two sequences converge to different limit points.
Consequently, V is homeomorphic to Z*+ x Z'+.

Example 9. Suppose that G — ZxZ and S = {(±1,0), (0, ±1)}, so that V = Z x Z.
It is clear from the previous Example and Example 3 that V is homeomorphic to

Z* x Z', where Z* = ZU {-co, +00} is the usual two-point compactification of Z.

Example 10. Suppose that G is the semidirect product of an arbitrary finite group
H and Z. Recall that this means that as a set G can be identified with the Cartesian
product H x Z and there is some automorphism n of H such that the group operation
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616 STEVEN N . EVANS

is given by (h, z)(h', z) = (hnz(hr), z + z). "Write / for the identity of H. Take
S = {(a,, 0) , . . . , (am, 0), (/ + 1), (/, — 1)}, where a,,.. . , am generate H as a semigroup, so
that F = G.

With probability one there exist times / < J such that X,,..., X3 e {(a,, 0) (am, 0)}
and the set of products of the form Xu • • • Xik with / + 1 < i, < . . . < ik < J is all of
Hx(0) . Put

K := max{fc eZ:(h,k)e V, for some h e H]

and

L := min{£ e Z : ( M ) e V, for some /i e H).

Note that V} contains (h, K) for every choice of h e H and no point of the form (g, r)
for g e H and r > K. Similarly, F, contains (h, L) for every choice of h e H and no
point of the form (g, r) for g e H and r < L. It follows that if y = (h, z) e V with z > K,
then Zt(t;) = Z4((fc, K)) for 0 < fc < H((/J, X), 7) and Zk(v) = (fc, H((*, K), T) + k-K)
for H((7i, K), T)<k< H(v, T) = H((h, K), T) + z-K. Similarly, if v = (h, z) e V with
z<L, then Z«(t;) =Z<((/J, L)) for 0< £< //((/J, L), T) and Zt(v) = (h, H((h, L),T) +L - I)
for H((h, L),T) <k< H(v,T) = H((h, L),T) -\-L-z. Consequently, V is homeomorphic
toHxZ*.

Example 11. Suppose that G is the semidirect of product of Z and Z2 (that is, the
infinite dihedral group DM). More specifically, G can be identified with Z x Z2 as a set
and if Z2 is written "multiplicatively" as {+1,-1}, then the group operation is given
by (z, e)(z\ (!) = (z + tz', ee'). Take S = {(0, - 1 ) , (1, +1)}, so that V = G.

It is not hard to see that with probability one T is the fixed tree with

£ ={((0, +1), (0, -1)), ((1, +1), (1, -1)), ((2, +1), (2, -1)),...}

U {((-1, -1), ( -1 , +1)), ((-2, -1) , (-2, +1)), ((-3, -1), (-3, +1)),...}

U {((0, +1), (1, +1)), ((1, +1), (2, +1)), ((2, +1), (3, +1)),...}

U {((0, -1), ( -1 , -1)), ( ( -1 , -1) , (-2, -1)), ((-2, -1), (-3, -1)),. . .}.

The following observations follow immediately:

(i) If v = (z, +1) (respectively, (z,-1)) with z > 0, then H(v,T) = z (respectively,
H(v, T) = z + \) and Zk(v) = (fc, +1) for 0 < fc < z.

(ii) If v = (z, -1) (respectively, v = (z, +1)) with z < 0, then H(v,T) = -z + \
(respectively, H(v, T) =-z + 2) and Zk(J) — (-fc + 1, -1) for 1 < k < - z 4-1.

Thus dV has only two points and V is not homeomorphic to Z* x Z2.
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RANDOM SPANNING TREES 617

Remark 12. In all of the above examples, the compactification only depends on
the set S and not on the probability distribution p. Also, the left and right actions of
the semigroup V on itself have continuous extensions to V. It would be interesting to
know to what extent these two observations hold generally.

4. Growth of the height

For a rooted tree T, define h(j) to be the supremum of the heights of vertices of T.
Recall that p* := minJ£Sp, > 0.

Theorem 13. There exists a constant ch e [pm, 1] such that

lim n~lh(Tn) = ch

almost surely.

Proof. Clearly, h(Tn) < n.
For m, n e N, write Tn

m for the tree built from Xm+l,... Xm+n in the same manner that
Tn is built from Xu...,Xn. Write Vn

m for the vertex set of Tn
m. For v e Vm, H(v, Tm) is

the minimum of those integers k for which we can find \ <£t < ... < £k<m such that
v = Xti. ..Xtt, and similar comments apply to Tm+n and Tn

m. If u e ^ + n , then there
exists v e Vm and w e Kn

m such that u = vw and we have H(u, Tm+n) < H(y, Tm) +
H(w, Tn

m) for all choices of v and w. Consequently, /i(Tm+n) < fe(Tm) + ^j(Tn
m). Kingman's

subadditive ergodic theorem [5] now shows that ri~xh{Tn) converges almost surely as
n ->• oo.

We next show that the limit is almost surely at least p*. Let (gk)keN be the sequence
of elements of S guaranteed by Lemma 14 below. Define a sequence of independent
random variables (Wk)k^N by

and

WM = i n f { £ > 1 : XW{+...+Wk+t = g M ) , k > l .

Observe that Wk has a geometric distribution with success probability pgr Hence Wk is
stochastically dominated by a random variable having a geometric distribution with
success probability p*. By the strong law of large numbers,

limsup(W, + • • • Wk)/k < 1/p*.
I—oo

Note that
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618 STEVEN N. EVANS

{h(TJ <k) Q {Wt +••• + Wk> n]

and so

lim sup h(Tn)/n > p*.
n-*oo

Finally, we show that the limit is almost surely constant. In the notation above,

h(Tn
m) < h(Tm+n) < fc(TJ + h{Tn

m) < m + h(Jn
m).

Thus, h(Tm+n) -m< h{Tn
m) < h(Tm+n), and we conclude that

lim h(Tn)/n = lim h{T™)/n
n—*oo n—*oo

for all m. Therefore lim,,.^ h(Tn)/n is a tail random variable for (Xn)nsIi, and the
Kolmogorov zero-one law gives the result. •

For ft = 0 , 1 , . . . set dBk = Bk\Bk_u where we put B_, = 0. A straightforward
compactness argument establishes the following result.

L e m m a 1 4 . T h e r e e x i s t s a s e q u e n c e ( f i r f c ) t e N of e l e m e n t s of S s u c h t h a t g x - • • gk e dBk

f o r a l l ft.

Remark 15. Both the upper and lower bounds on the limit in Theorem 13 are
attainable. To see that the upper bound is attainable, take G to be the free group on
two generators a, fi and put pa = pf = \. Then h(Tn) — n for all n. To see that the lower
bound is attainable, take G to be Z and p+1 = p_, = \. It is easy to see that

KTn) = #{1 < i < n : Xt = +1} v #{1 < i < n : Xt = -1}

and

i < n : X, = - 1

5. Growth of the size

Observe that #(3BJ < (#(S))" for all n, and from Lemma 14 that 3Bn ^ 0 for all n.
Also, 3Bra+n c {uv : u 6 3Bm, v s dBn) for all m,n so that #(9Bm+n) < #(8BJ#(3Bn). A
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standard subadditivity argument shows that there is 0 < b < log #(S) such that
limn_^oon~i log#(3Bn) = b. It is not hard to see that b is zero when G is abelian. An
example of a situation in which b is not zero is when V contains two or more free
elements.

We will write #(Tn) for #(Vn).

Theorem 16. There is a constant c# e [0, log 2] such that

= c#) a.s.

The constant c# is nonzero if and only ifb is nonzero.

Proof. It is clear from the construction that #(KAKi-i) < #(Yn-\) for all n and so
WO < 2" for all n.

In the notation of the proof of Theorem 13, Vm+n — VmVn
m, and hence log#(V^,+n) <

l°g#(Kn) + l°g#(K.m)- An application of the subadditive ergodic theorem shows that
n~'log#(7^) converges almost surely as n —> oo. An appeal to the Kolmogorov zero-
one law similar to the one in the proof of Theorem 13 shows that the limit is
constant.

As c# < b, it only remains to show that if b is not zero, then neither is c#. For this
it certainly suffices to show that if we choose K sufficiently large, then with probability
one Bn c VKn for all n sufficiently large.

Consider v e Bn\{e] written as a product v = gx • • • gm of elements of S, where
1 < m < n. Define a sequence of independent random variables (Wt)™=1 by

and

Wk+X = i

Observe that Wk has a geometric distribution with success probability pgk.
Note that

The random variable Wx H \-Wm is stochastically dominated by a random variable
of the form Wt H Wn, where Wx,...,Wn are iid with common distribution the
geometric distribution with success probability p*. Thus, by Markov's inequality,

where
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620 STEVEN N. EVANS

" I - O - P V

for 0 < A < — log(l — p*). Therefore

VKn} <

The sequence of terms given by the righthand side is summable when K is sufficiently
large, and the result follows from the Borel-Cantelli lemma. •
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