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Abstract

A super edge-magic labeling of a graph G = (V, E) of order p and size ¢ is a bijection f: VUE —
{i}{’jﬁ such that: (1) f(u) + f(uv) + f(v) =k forall uv € E; and (2) f(V)={i}/_,. Furthermore,
when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property
that if uv € E(G), u’, v/ € V(G) and dg (u, u') = dg (v, v') < +oo, then f(u) + f(v) = f(u') + fQ').
In this paper we introduce the concept of strong super edge-magic labeling of a graph G with respect to
a linear forest F, and we study the super edge-magicness of an odd union of nonnecessarily isomorphic
acyclic graphs. Furthermore, we find exponential lower bounds for the number of super edge-magic
labelings of these unions. The case when G is not acyclic will be also considered.
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1. Introduction

Graphs considered in this paper are not necessarily simple, that is, they may contain
loops but multiple edges are not allowed. Also, for most of the graph theory terminol-
ogy and notation utilized, we refer the reader to either Chartrand and Lesniak [7] or to
West [16]. However, in order to make the paper reasonably self contained we mention
that by G = (V, E) we mean a graph with vertex set V and with edge set E. Also the
notation V(G) and E(G) will be used in order to denote the vertex set and the edge
set respectively of a given graph G. A (p, g)-graph is a graph of order p and size g.
For either a graph or a digraph D, we will denote its adjacency matrix by A(D)
and for a digraph D the notation und(D) denotes the underlying graph of D. The
seminal paper on edge-magic labelings was published in 1970 by Kotzig and Rosa [11]
who called these labelings magic valuations. These were later rediscovered by
Ringel and Lladé [14] who coined one of the most popular terms for them in current
use: edge-magic labelings. More recently, they have also been referred to as edge-
magic total labelings by Wallis [15]. For a (p, g¢)-graph G, a bijective function
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fV(G)UEG)—{1,2,..., p+q} is an edge-magic labeling of G if for each
uv € E(G), f(u) 4+ f(uv) + f(v) is a constant k called the valence of f. If such
a labeling exists, then G is said to be an edge-magic graph. In [8], Enomoto et al.
defined an edge-magic labeling f of a graph G to be a super edge-magic labeling of
G if f has the additional property that f(V(G)) = {i}l.p: |- Itis worthwhile mentioning
that an equivalent labeling had already been introduced by Acharya and Hedge in [1]
under the name of strongly indexable labeling. A super edge-magic graph is a graph
that admits a super edge-magic labeling. Super edge-magic graphs have been called
strong edge-magic total graphs by Wallis [15] although in this paper we will use the
term strong to denote a different concept, in the same manner as Baca et al. in [4].
Let G = (V, E) be a (p, gq)-linear forest. Assume that

fiVUE—{1,2,...,p+gq}

is a super edge-magic labeling of G with the extra property that if uv € E, u’, v’ €
V(G) and dg (u, u') = dg(v, V') < 400, then we have that f(u) + f(v) = f(u') +
f@"). In this case, the labeling f is said to be a strong super edge-magic labeling of
G and G a strong super edge-magic graph.

In this paper, following a similar reasoning, we define the concept of strong super
edge-magic labeling of a graph with respect to a linear forest. Let G = (V, E) be a
(p, g)-graph and let F be any linear forest contained in G. A strong super edge-magic
labeling of G with respect to F is a super edge-magic labeling f of G with the extra
property that if uv € E(F), u’, v' € V(F) and dr(u, u’) = dp(v, v') < +00 then we
have that f(u) + f(v) = f(u') + f(v'). If a graph G admits a strong super edge-
magic labeling with respect to some linear forest F, then we say that G is a strong
super edge-magic graph with respect to F.

At this point, we define the complementary labeling f of a strong super edge-
magic labeling with respect to a linear forest. Let G = (V, E) be a (p, g)-graph and
let f:VUE — {1,2,..., p+ g} be a strong super edge-magic labeling of G with
respect to some linear forest . Then the complementary labeling of f, denoted by f,
is the labeling defined by the rule

p+1— s, Vx € V(G),

Jx) = 2p+1+q— f(x), VxeE(G).

The following result is an easy observation.

REMARK 1.1. Let G=(V, E) be a (p,q)-graph and let f: VUE — {1,2,...,
p + g} be a strong super edge-magic labeling of G with respect to some linear forest
F in G. Then the complementary labeling f is also a strong super edge-magic labeling
of G with respect to F.

Next, we state the following result by Figueroa-Centeno et al. [9]

LEMMA 1.2 [9]. A (p, q)-graph G is super edge-magic if and only if there exists
a bijective function f :V(G)— {1,2, ..., p} such that the set S ={fu)+ f(v):
uv € E(G)} consists of q consecutive integers. In such a case, f can be extended to
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a super edge-magic labeling of G with valence k = p + q + s where s = min(S) and
S=tk—(p+D.k=(p+2),....k=(p+q}

At this point, we will state an adaptation of Lemma 1.2 for strong super edge-magic
labelings with respect to a linear forest.

LEMMA 1.3. A (p, q)-graph G is strong super edge-magic with respect to a linear
forest F if and only if there exists a bijective function f : V(G) — {1,2, ..., p} such
that the following conditions apply.

(1) ThesetS={fm)+ f(v):uv e E(G)} consists of q consecutive integers.

2) IfuveEF),u,vVeV(F) and dp(w', u) =dpr(', v) < +oo, then f(u)+

f)=fw)+ f@).

In such a case, f can be extended to a strong super edge-magic labeling with
respect to a linear forest F in G with valence k = p + q + s where s = min(S) and

S=tk—(p+1,k—=(p+2),....k—(p+g}

PROOF. The lemma follows immediately from Lemma 1.2 and the definition of strong
super edge-magic labeling with respect to a linear forest. O

Hence, due to Lemma 1.3, it is sufficient to exhibit the vertex labels of a strong
super edge-magic labeling of G with respect to a linear forest F'.

In his PhD thesis, Barrientos [6] introduced the concept of a path-like tree as
follows.

We embed the path P, as a subgraph of the two-dimensional grid, this is to say,
the cartesian product P. x P; of a path on r vertices with a path of ¢ vertices. Given
such an embedding we consider the ordered set of subpaths L1, L3, ..., L, which are
maximum straight segments in the embedding, where the end of L; is the beginning of
Liyiforanyi=1,2,...,h— 1. Suppose that L; = P, forsomei € {2, ..., h — 1},
V(L;) = {up, vo}, thus ug € V(Li_1) N V(L;) and vo € V(L;) N V(L;4+1). Letu e
V(Li—1)\{uo} and v € V(L;4+1)\{vo}, such that the distance of # and v in the grid
is 1. The replacement of the edge ugvg by the new edge uv is called an elementary
transformation of the path P,. We say that a tree T of order r is a path-like tree, when
it can be obtained after a sequence of elementary transformations of an embedding of
P, in the two-dimensional grid.

The labeling properties of path-like trees and the union of them have been studied
by many authors lately, for instance see [2, 3, 5, 6, 12, 13].

Motivated by the concept of path-like trees, now we introduce the concept of a
derived graph of a graph G with respect to a linear forest F' and, in this paper, we
consider paths to be also linear forests. Let G be a graph and let F' be any linear
forest in G. Consider the set S of all unions of path-like trees that can be obtained
by elementary transformations of F. That is to say, let F = [, PX, where P is
a path. Then |J, T* € & if and only if T* is a path-like tree that can be obtained
by elementary transformations of an embedding of P* in the two-dimensional grid.
A derived graph of G with respect to F is a graph G’ with V(G') = V(G) A E(G') =
(E(G)\E(F))UE(S), for some S €&. The set of all derived graphs of G with
respect to F is denoted by dG/d F. (See Figure 1 for illustration.)
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FIGURE 1. An illustration of the set of derived graphs.

The main goal in this paper is to prove the following statement.

THEOREM 1.4. Let m be an odd integer. Let G be an acyclic graph which is strong
super edge-magic with respect to a linear forest F. Then mG is strong super edge-
magic with respect to U;"zl F;, where F; >~ F fori=1,2,...,m.

Furthermore, mG admits an exponential number of strong super edge-magic
labelings with respect to the linear forest F1 U F> U - - - U F},. As a corollary we also
find that if G is an acyclic strong super edge-magic graph with respect to a linear
forest F, then an arbitrary odd union of graphs in the set dG/d F is super edge-magic.

In order to achieve our goal, we use a modification of the technique introduced
in [4] that has been also used in [12]. The key point in this technique is a digraph
operation that was defined by Figueroa et al. in [10]. Let D be a digraph and let
I'={F1, F, ..., Fs} be a family of digraphs such that V(F;) =V for every i =
1,2,...,s. Consider any function 4 : E(D) — I'. Then the product D ®, I is the
digraph with vertex set V(D ®, I') = V(D) x V and

((a, b), (c,d)) e E(D®,T") & [(a,c) e E(D) A (b, d) € E(h(a, ¢))].

Notice that the adjacency matrix of D ®; I', denoted by A(D ®; I'), can be
obtained by replacing every O entry of A(D) by the |V| x |V| null square matrix and
if there is a 1 in position (a, ¢) then we replace this 1 by A(h(a, c)). Notice that
when % is a constant function, then we have the classical Kronecker product of two
matrices.
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In [10] Figueroa-Centeno et al. called a digraph D super edge-magic if und(D) is
super edge-magic. In general, when we say that a digraph D admits any labeling f,
we mean that its underlying graph admits the labeling f. In the same paper, the authors
proved the following two results.

THEOREM 1.5 [10]. Let D be a super edge-magic digraph. Let Ty, = {R;}}_, be
the family of all super edge-magic 1-regular labeled digraphs (each R; is either a
cycle or a union of cycles where each component has been oriented cyclically for
i=1,2,...,s) of the same odd order m. Consider any function h : E(D) — I'p,.
Then the digraph D ®p Ty, is super edge-magic.

Assume that in D and in T’ each vertex takes the name of its label assigned by a
super edge-magic labeling. The labeling they used to prove the super edge-magicness
of D ®j, I'), assigned the label m(i — 1) + j to the vertex (i, j).

THEOREM 1.6 [10]. Let 7 be an oriented tree. Let '), = {R,-}‘l?:1 be the family of

1-regular digraphs of order m. Consider any function h : E (7) — I'yy. Then we have
—
und(7 ®;, Iy) =mT.

Also the following result found in [4] will be helpful in this paper.

THEOREM 1.7 [4]. Let C, be a cycle on n vertices, n > 11 odd. The number of
nonisomorphic super edge-magic labelings of C,, is at least %ZL”BJ + L

2. Trees and forests

In this section, we describe an algorithm that allows us to create odd unions of
isomorphic trees or forests, which are strong super edge-magic with respect to some
linear forest. We introduce the algorithm next.

Input. Let G be an acyclic graph and let f be a strong super edge-magic labeling
of G with respect to some linear forest . Assume that each vertex takes the name of
the label assigned by f.

(1)  Orient the acyclic graph Z}) in such a way that each path in F is oriented from
one leaf to the other.

(2) Let I'y={Ri, R}, R2, R}, ..., Ry2, R§/2} be the family of all 1-regular
digraphs of order m =2k + 1 for some positive integer k labeled in a super
edge-magic way. Assume that each vertex takes the name of its label. Each
couple (R}, R}), j=1,...,5/2comes from the same super edge-magic labeled
digraph but with opposite orientation. That is to say, if a component is orientated
clockwise in R;, then the corresponding component in R} is oriented counter
clockwise and vice versa. N N

(3) Consider a function h: E(G) — I';; with h(E(P)) € {R}, R’/.} in every path
P of F, such that two consecutive arcs in F, namely (x, y), (y, z), have
h(x,y) #h(y, 2).
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Algorithm 1.
— —
(1) Compute G ®, '), = Q.
—
(2) Takeund(Q)= Q.

Output.

(1) The outputis Q = mG labeled in a strong super edge-magic way with respect to
the linear forest | J/_; F; where F; is the corresponding copy of F in each of the
mcopiesof G,i =1,2,...,m.

PROOF OF THEOREM 1.4. It was proved in [10] that this algorithm gives a super
edge-magic labeling g of mG. The labeling can be obtained by assigning the label
m(i — 1) + j to the vertex (i, j) of the product. Thus, what remains to prove is the
strong property of g with respect to the linear forest | Ji"; F;. Let F= UL, F.

Let ((u, q), (v, r)) € E(F), (', 5), (', t) € V(F) and assume that

di((u, q), (W', $)) =dp((v, 1), V', 1)) < +oo.

Since every two consecutive arcs in F have different image in {R;, R;} we distinguish
two cases.

Case 1. If dp((u, q), W', s)) =dp((v,r), (', 1)) is odd then, s=r and r=gq.
Hence, we obtain that

g, )+, @) =m@ +v' =2)+r+q
=mu+v—=2)+r+q=gu,q)+g(v,r).

Case 2. If dg((u, q), (W', s)) =dp((v, r), (V', 1)) is even then s = ¢ and t =r and
we proceed as in Case 1. O

Next, we will see how this algorithm applies nicely to the following type of
caterpillar.

Let T be a caterpillar. The spine of 7', denoted by sp(T'), is the path that remains
after eliminating all pendent edges of 7. We define a caterpillar T to be regular if each
vertex of sp(7') is adjacent to the same number of pendent edges. Then we have the
following proposition.

PROPOSITION 2.1. Every regular caterpillar T is strong super edge-magic with
respect to its spine sp(T).

PROOF. Let T be the regular caterpillar with vertex set,
V(T)={u;:1<i<kjU{/:1<i<k 1<j<n)

and edge set

E(T)={ujuit1:1<i<k—-1}U{ujv] :1<i<k, 1<j<n}
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FIGURE 2. A strong super edge-magic labeling of a regular caterpillar 7 .

Each vertex of sp(7T') is adjacent to n leaves. Let f: V(T) — {1,2, ...,k + kn} be
the labeling defined as follows:

1+ —-Dm+1) ifv=uy_i,
L+j+0-Dn+1) if v =y,
k—1 14 (=1 . ;
fo) = 1+j+LTJ@HH%H(!—WH) fo=vj
k—1 14 (=1)F .
2+n+{TJ(n+1)+%n+(l—l)(n+l) ifv=uy,

where 1 <2/ — 1,2l <k.

This labeling was used by Kotzig and Rosa in [11] to prove the edge-magicness of
caterpillars. Moreover, f is a strong super edge-magic labeling of Tn]i ; With respect
to its spine, since every two alternating vertices on the spine form an arithmetic
progression. O

From the previous result we obtain the following corollary.

COROLLARY 2.2. Let T be any regular caterpillar. Then every tree T'e dT /d[sp(T)]
is a super edge-magic graph.

PROOF. Since T is strong super edge-magic with respect to its spine, every elementary
transformation of an embedding of the spine in the two-dimensional grid gives a super
edge-magic graph. O

In particular, from the Proposition 2.1 and the algorithm, we obtain the following
corollary.

COROLLARY 2.3. Let T be a regular caterpillar. Then any odd union of graphs in the
set dT /d[sp(T)] is a super edge-magic graph.

The following example illustrates the construction.

EXAMPLE 2.4. Let T be the oriented regular caterpillar shown in Figure 2. Note that
each vertex takes the labels of the strong super edge-magic labeling with respect to its
spine described in Proposition 2.1.

Let I's; = {A, B} be the family of all 1-regular digraphs of order three (Figure 3).
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1 1
- A:A’ A\:B
2 3 2 3

FIGURE 3. The family of all 1-regular digraphs of order 3.

1, «20 2, .21 3 .19

23| .4 24| ) 22| .0

74 $ 27 8, 025 9, .26
29, ,12 304,10 28| 011
13, .33 14, 31 15, e 32

35, .16 36. 7 34, .18

FIGURE 4. The graph obtained by replacing the arcs by edges in T Qn 3.

Assume that h : E(T) — I'3 is the function defined by

h(1,8)=A, h(,3)=B, h@3,100=A4, h(0,5)=B,
h(5,12)=A, h(1,7)=A, h@®,2)=B, h(3,9) =8,
h(10,4) = A, h(5,11)=B, h(12,6)=B.

Then, the graph und(? ®p I'3) = 3T 1is strong super edge-magic with respect
to Ui3:1 F;, where F; ~sp(T) for i =1,2,3. A super edge-magic labeling of
und(? ®p, I'3) can be obtained by assigning the label 3(i — 1) + j to the vertex (i, j).
(Figure 4.)

Moreover, if T1, Tp, T3 € dT /d[sp(T)] then the graph G =T U T, U T3 is super
edge-magic. An example is shown in Figure 5.

Notice that when we are applying the algorithm, there are many functions / that we
can use, so that each one of them will produce a strong super edge-magic labeling of
the resulting graph. In [10] it was shown that all the labelings that we obtain in this
manner are not isomorphic. Now, let us find a lower bound for the number of functions
h that we can use.

Let D be an acyclic digraph that is strong super edge-magic with respect to some
linear forest . Let |E(D)|=¢q and |E(F)| = qr. We denote by c(F) the number
of connected components of . Assume that we are applying Algorithm 1 with the
set I', of all 1-regular super edge-magic labeled digraphs of odd order m. Now,
if m > 11, we know that the number of super edge-magic labelings of C,, is lower
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120 2 2
123 4 124 5
72T 18 2
129 12 3010
|13 33 14 31
[35 .16 13617

FIGURE 5. A super edge-magic labeled graph that can be obtained from 37'.

bounded by % .2m/31 41 by Theorem 1.7. Hence || > % .2Lm/31 4 2 since each
cycle Cy, admits two strong orientations. Now, every arc in E (D) which is not an arc
of F, can be assigned any of these % .21m/31 42 digraphs. When we choose a digraph
for an arc of a path of the linear forest, then the rest of the images of the arcs in the
path depend on this choice. So we have at least (% 2lm/31 4 2)e(F) ways of choosing
the images of the arcs of F. Thus, in total we have at least

(% plm/3) 4 pya—ar+e(F)

distinct functions, and hence we have at least

(% . olm/3] + z)q—4F+C(F)

different strong super edge-magic labelings of the resulting graph. Therefore we obtain
the next theorem.

THEOREM 2.5. Let G be an acyclic graph which is strong super edge-magic with
respect to a linear forest F. Let |E(G)| = q, |E(F)| = qF and let c(F) be the number
of connected components of F. Then, any odd union of graphs in the set dT /d[sp(T)]

admits at least
(% .olm/3] + z)q—qp+c‘(F)

nonisomorphic super edge-magic labelings, where m is the number of the graphs in
the union.

Next, we consider another family of trees that we will denote by Tr{‘ I
PROPOSITION 2.6. Let Tr{(,l be the graph obtained from a path F =uiuy - - - ux of

k-vertices and k paths {P'};—1 i of n-vertices by identifying a vertex of P' at
distance | — 1 from a leaf with the vertex u; for i =1, ..., k. Then the graph Tr{‘ /

is strong super edge-magic with respect to F and with respect to Ule P
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1 20 6 25 11 30
16 5 21 10 26 15
2 19 7 24 12 29
17 4 22 9 27 14
3 18 8 23 13 28

FIGURE 6. The graph T;’Jf

PROOF. Let Pi = v’ivé e vfi for each i =1,...,k. Let P be the path obtained
from Uf-‘zl P! by adding the edges {v,’;v’ﬁl i=1,...,k—1}. Let f:V(P)—
{1, ..., nk} be the labeling defined by
n@i—1)+j+1
j 2
Ly —
T =1k =D+
2 2

Notice that this labeling is one of the two possible strong labelings of a path [12].
Also we can embed the path P into the two-dimensional grid Py x P,. From this
embedding we can recover the tree Trf" ; by elementary transformations. In particular,

forn(i — 1) + j odd,

forn(i — 1) 4+ j even.

F is the path ”11 U5+1—1”13”3+1—1 -+ -. By construction, f is also a super edge-magic
labeling of T rf‘ ;- What remains to prove is that this labeling is strong with either F
or | ; P!. However, this is clear since for each path the labels of alternating vertices
form an arithmetic progression, of difference 1 in P' and of difference n in F'. O

Figure 6 shows the graph T564 with the labeling described in the proof of
Proposition 2.6.

COROLLARY 2.7. With the same notation as before. For all positive integers [, m, n
and k, the graph (2m + l)Trf‘ | s super edge-magic with respect to the linear forest

(2m + 1)F and with respect to Uf:1(2m + 1P,
PROOF. Since Tn]i ; 1s an acyclic strong super edge-magic graph with respect to F, by

Theorem 1.4 we obtain the result. |

3. Graphs with cycles

The goal of this section is to generalize the algorithm introduced in the previous
section to graphs with cycles. We begin this section by introducing an example.
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1 11 4 14 7 2 125 15 8 3 10 6 13 9

FIGURE 7. A strong super edge-magic labeling with respect F = G’ \ {{2, 7}, {3, 8}, {1, 9}}.

EXAMPLE 3.1. Let G be the oriented cycle | >4 —2—5—3— 1landlet '3 =
{A, B} be the family of all 1-regular digraphs of order three (see Figure 3). Note that,
G is strong super edge-magic with respect to the path F defined as V(F) = V(G),
E(F) = E(G)\(G, D).

Leth: E(G) — {A, B} be the function defined by

h(l,4)=A, h4,2)=B, h2,5=A, h5,3)=B, h3E,1)=A.

Then the graph G' =und(G ®), I'3) is strong super edge-magic with respect to F,
where F is the linear forest obtained from G ®j; I'3 by removing the arcs

{(3. D, (1,2)), (3, 2), (1, 3), (3, 3), (I, D)}

Notice that, F = F ®;, I'3. A strong super edge-magic labeling of G’ with respect to F
can be obtained by assigning the label 3(i — 1) 4 j to the vertex (i, j) of the product
(see Figure 7). Moreover, any sequence of elementary transformations in the paths of
F gives a super edge-magic graph.

Our goal is to generalize this example to any graph which contains cycles as
subgraphs and that is strong super edge-magic with respect to some linear forest.

THEOREM 3.2. Let G be a graph that is strong super edge-magic with respect to
some linear forest F. Let Iy, be the family of all 1-regular digraphs of odd order
m. Consider any orientation of G, namely G, such that in each component of
F it is possible to travel from one leaf to the other following the direction of the
arrows. Consider a function h : E(E) — Iy, with h(E(T*"))) € {R;, le} such that two
consecutive arcs in ? namely (x, v), (v, z) have h(x, y) £ h(y, z). Then the graph
und(g ®n i) is strong super edge-magic with respect to \ Ji-| F;, where F; > F for
i=1,...,m

PROOF. We know that 8 ®pn ')y 1s super edge-magic by Theorem 1.5 and that, since
F is acyclic, by Theorem 1.4 we obtain that und(? ®npry 'm) = UL, Fi, where
F; >~ F fori =1, ..., m. Moreover, assuming that each vertex takes the name of its
label by a super edge-magic labeling, we know that the labeling that assigns the label
m(i — 1) + j to the vertex (i, j) of the product produces a super edge-magic labeling
of ?}) ®p 'y Finally, by the same argument as in the proof of Theorem 1.4, we obtain
the strong property of f with respect to the linear forest [ J/_, F;. O
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