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Abstract

We show that the restriction of the Dehornoy ordering to an appropriate free subgroup of the three-strand
braid group defines a left-ordering of the free group on k generators, k > 1, that has no convex subgroups.
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1. Introduction

A group G is said to be left-orderable if there exists a strict total ordering of its
elements such that g < h implies f g < f h for all f, g, h in G. To each left-ordering<
of a group G, we can associate the set P = {g ∈ G | g > 1}, which is called the positive
cone associated to the left-ordering <. The positive cone P satisfies P · P ⊂ P , and
P t P−1

t {1} = G. Conversely, any subset P satisfying these two properties defines
a strict total ordering of the elements of G via g < h if and only if g−1h ∈ P . Any
ordering defined in this way is easily seen to be invariant under left multiplication.

We may strengthen our conditions on a left-ordering < of G by requiring that, for
all g, h > 1 in G, there must exist a positive integer n such that g < hgn . In this case,
the ordering is called Conradian (after the work of Conrad in [2]). It has since been
observed that, equivalently, we may ask that this condition hold for n = 2 [9].

Finally, the strongest condition we may require of an ordering < of G is that the
ordering be invariant under multiplication from both sides, that is, g < h implies
f g < f h and g f < h f for all f, g, h in G. Equivalently, we may require that the
positive cone associated to the ordering < of G be preserved by conjugation. If either
of these equivalent conditions is satisfied by the ordering < of G, then the ordering is
said to be a bi-ordering.

An important structure associated to a given left-ordering < of G is the set of
convex subgroups of G. A subgroup H ⊂ G is said to be convex in G (with
respect to the ordering <) if whenever f, h are in H and g is in G, the implication
f < g < h⇒ g ∈ H holds.
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Owing to work of Conrad and Hölder, the convex subgroups of bi-orderings and
Conradian orderings are very well understood [2]. This leaves us with understanding
the set of convex subgroups for the case of left-orderings that are neither bi-orderings
nor Conradian orderings. This problem seems to be quite difficult, as constructing
Conradian orderings and bi-orderings of a group G is in general somewhat easier than
constructing left-orderings of a group that are not Conradian orderings.

Two of the primary methods for constructing non-Conradian orderings of a group
G are given by the following proposition and theorem.

PROPOSITION 1.1. Let G be a group, K a subgroup of G left-ordered by the ordering
≺, and G/K the set of left cosets of K in G. Suppose that G/K is ordered by the
ordering ≺′, satisfying gK ≺′ hK ⇒ f gK ≺′ f hK for all f, g, h in G. Then a left-
ordering < can be defined on G, according to the rule that, for every g in G, 1< g if
g ∈ K and 1≺ g, or if g /∈ K and K ≺′ gK .

THEOREM 1.2 (Conrad [2]). A group G is left-orderable if and only if G acts
effectively by order-preserving automorphisms on a linearly ordered set.

In both of these cases, at least some of the convex subgroups of the constructed
ordering are obvious. In Proposition 1.1, the subgroup K is a convex subgroup in the
left-ordering < of G. In Theorem 1.2, the stabilizers under the G-action of points
in the given linearly ordered set correspond to convex subgroups (see [2] or [9] for
details of the construction). In light of the fact that both of these known methods for
producing left-orderings of a group result in a left-ordering that (often) admits convex
subgroups, it is quite surprising to find that some non-Conradian left-orderings may
contain no proper, nontrivial convex subgroups whatsoever. In this paper, we will
left-order the free groups of finite rank in such a way that the free group contains
no proper, nontrivial convex subgroups with respect to our constructed ordering. The
construction relies heavily on the Dehornoy ordering of the braid group B3.

The existence and a construction of such orderings of the free groups seems to have
appeared only in [7]. The construction there, unlike our present setting, deals with
creating a very unusual effective action on the rationals. Our present approach is in
simpler algebraic terms.

It is also worth noting that admitting a Conradian or bi-ordering that has no proper,
nontrivial convex subgroups is a very restrictive condition on the group G, as the
following theorem shows.

THEOREM 1.3 [2]. Suppose that G admits a Conradian or bi-ordering which has no
proper, nontrivial convex subgroups. Then G is a subgroup of (R,+).

In the case where G admits a non-Conradian left-ordering having no proper,
nontrivial convex subgroups, it is not likely that the structure of G must be so restricted.
While we will see that free groups admit such left-orderings, there are also nonfree,
non-abelian groups that admit such left-orderings as well [1, Example 7.2.3]. It has
also recently been shown that the braid groups themselves admit many left-orderings
with no convex subgroups; see [10].
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2. A left-ordering of F2 having no convex subgroups

As a warm-up for the general case, which will be slightly more involved, we deal
first with the free group on two generators.

We begin by defining the Dehornoy left-ordering of the braid groups (also known
as the ‘standard’ ordering), whose positive cone we shall denote PD [3, 4]. Recall
that for each integer n ≥ 2, the Artin braid group Bn is the group generated by
σ1, σ2, . . . , σn−1, subject to the relations

σiσ j = σ jσi if |i − j |> 1, σiσ jσi = σ jσiσ j if |i − j | = 1.

DEFINITION 2.1. Let w be a word in the generators σi , . . . , σn−1. Then w is said to
be i-positive if the generator σi occurs in W with only positive exponents, i-negative
if σi occurs with only negative exponents, and i-neutral if σi does not occur in w.

We then define the positive cone of the Dehornoy ordering as follows.

DEFINITION 2.2. The positive cone PD ⊂ Bn of the Dehornoy ordering is the set

PD = {β ∈ Bn : β is i-positive for some i ≤ n − 1}.

Let β ∈ Bn be any braid. An extremely important property of this ordering is that
the conjugate βσkβ

−1 is always i-positive for some i , for every generator σk in Bn .
This property is referred to as the subword property [4].

Recall that the commutator subgroup [B3, B3] is isomorphic to the free group F2
on two generators. The commutator subgroup is generated by the braids β1 = σ2σ

−1
1

and β2 = σ1σ2σ
−2
1 [8]. Of course we can instead take as free generators the 1-positive

braids β−1
1 = σ1σ

−1
2 and β−1

2 β−1
1 = σ

2
1 σ
−2
2 , since any generating set of F2 with only

two elements will freely generate F2.
Define a positive cone P ⊂ F2 by P = [B3, B3] ∩ PD , with associated ordering <

of F2. Thus, the left-ordering < of F2 is the restriction of the Dehornoy ordering <D
of B3 to the (free) commutator subgroup [B3, B3].

THEOREM 2.3. The ordering < of F2 has no proper, nontrivial convex subgroups.

PROOF. Let C ⊂ F2 = [B3, B3] be a nontrivial convex subgroup. Then we may
choose 1< β ∈ F2 that is 1-positive (no nontrivial 1-neutral braids lie in [B3, B3],
because they do not have zero total exponent).

There are now two cases to consider.

Case 1. Suppose that β commutes with σ2. Then β =12p
3 σ

q
2 for some integers p, q

([5], here 1= σ1σ2σ1). Since β ∈ [B3, B3], we know that q =−6p, since β must
have zero total exponent, and p > 0 because we have chosen β to be 1-positive. Then
we have that12

3 <1
4p
3 σ
−12p
2 = β2, so that 〈β〉 is cofinal in the Dehornoy ordering [4].

Therefore, there exist integers k, l such that in F2 we have

1< σ1σ
−1
2 < βk and 1< σ 2

1 σ
−2
2 < βl ,
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and thus σ1σ
−1
2 , σ 2

1 σ
−2
2 ∈ C by convexity. Therefore we must have C = F2, as C

contains both generators of F2.

Case 2. Suppose that β and σ2 do not commute. Let k > 0, and observe that βσ k
2 β
−1

is a 1-positive braid by the subword property, so that the commutator βσ k
2 β
−1σ−k

2
is also 1-positive. Next, because β is 1-positive, the braid σ k

2 β
−1σ−k

2 is 1-negative,
so that σ k

2 β
−1σ−k

2 < 1, and thus βσ k
2 β
−1σ−k

2 < β. Thus, we have shown that 1<
βσ k

2 β
−1σ−k

2 < β, so that βσ k
2 β
−1σ−k

2 must lie in the subgroup C , by convexity.
Now both the braids β and βσ k

2 β
−1σ−k

2 lie in the convex subgroup C , so the
braid σ k

2 β
−1σ−k

2 (and hence its inverse σ k
2 βσ

−k
2 ) must also lie in C , for any choice

of positive integer k.
We now refine our choice of braid β ∈ C . Suppose that β is represented by the

1-positive braid word σ u
2 σ1w, where u is any integer, and w is a 1-positive, 1-neutral

or empty word. Choose k > 0 so that u′ = k + u > 0, and set β ′ = σ k
2 βσ

−k
2 , so that

β ′ is represented by the 1-positive braid word σ u′
2 σ1wσ

−k
2 . Note that β ′ ∈ C , from our

work above.
We will now show that C must contain both generators of F2. Observe that the braid

represented by the word σ2σ
−1
1 σ u′

2 σ1wσ
−k
2 is 1-positive, as σ2(σ

−1
1 σ u′

2 σ1)wσ
−k
2 =

σ2(σ2σ
u′
1 σ
−1
2 )wσ−k

2 , and u′ > 0. Therefore

1< σ2σ
−1
1 σ u′

2 σ1wσ
−k
2 ⇒ σ1σ

−1
2 < σ u′

2 σ1wσ
−k
2 = β

′
∈ C,

and since 1< σ1σ
−1
2 , this implies that σ1σ

−1
2 ∈ C by convexity.

Considering the second generator σ 2
1 σ
−2
2 , observe that the braid represented by the

word σ 2
2 σ
−2
1 σ u′

2 σ1wσ
−k
2 is 1-positive, as we compute

σ 2
2 σ
−1
1 (σ−1

1 σ u′
2 σ1)wσ

−k
2 = σ

2
2 σ
−1
1 (σ2σ

u′
1 σ
−1
2 )wσ−k

2

and
σ 2

2 (σ
−1
1 σ2σ1)σ

u′−1
1 σ−1

2 wσ−k
2 = σ

2
2 (σ2σ1σ

−1
2 )σ u′−1

1 σ−1
2 wσ−k

2 ,

where u′ > 0. Therefore

1< σ 2
2 σ
−2
1 σ u′

2 σ1wσ
−k
2 ⇒ σ 2

1 σ
−2
2 < σ u′

2 σ1wσ
−k
2 = β

′
∈ C,

and since 1< σ 2
1 σ
−2
2 , we conclude from convexity of C that σ 2

1 σ
−2
2 ∈ C .

Thus, C contains both generators of F2, so that C = F2. 2

3. Left-ordering the free groups of rank greater than two

We now extend our results to cover those free groups Fk with k > 2. Let x = σ1σ
−1
2

and y = σ 2
1 σ
−2
2 denote the generators of F2, and we let Kn denote the kernel of

the map F2→ Zn−1 defined by y 7→ 0, x 7→ 1. Here Zn−1 is the cyclic group
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of order n − 1. We will employ a proof very similar to that of Theorem 2.3, by
considering Kn ⊂ F2 = [B3, B3], and showing that the restriction of the Dehornoy
ordering to Kn has no convex subgroups. First we need to find a generating set
for Kn .

LEMMA 3.1. The subgroup Kn is free of rank n, with basis

y, xn−1, xyxn−2, x2 yxn−3, . . . , xn−2 yx .

PROOF. From [11, Lemma 7.56] we know that Kn is finitely generated. Moreover,
we may compute a generating set of Kn as follows: consider the generating set g1 =

x, g2 = x−1, g3 = y, g4 = y−1 of F2, and let 1, x, x2, . . . , xn−2 be representatives of
the right cosets of Kn ⊂ F2. For all i, j , there exist hi j and some coset representative
xk(i, j) such that we may write x i g j = hi j xk(i, j). The elements hi j form a generating
set for Kn .

In our present setting, for i < n − 2 we get

x i g1 = x i
· x = 1 · x i+1,

so that h(i, 1)= 1, and for i = n − 2 we get h(i, 1)= xn−1. Similarly, we compute
for i ≥ 1 that

x i g2 = x i
· x−1

= 1 · x i−1,

so that h(i, 2)= 1, and for i = 0 we compute h(i, 2)= x−(n−1).
Next, for all i , we compute

x i y±1
= x i y±1x−i

· x i ,

so that h(i, 3)= h(i, 4)−1
= x i yx−i . Eliminating inverses from this generating set

yields the set
y, xn−1, xyx−1, x2 yx−2, . . . , xn−2 yx−(n−2).

From [6, Proposition 3.9] we deduce that Kn is of rank n, and therefore the generating
set above must provide a basis for Kn . Right-multiplying those generators of the form
x i yx−i by the generator xn−1 yields the desired generating set. 2

Also important in the proof of Theorem 2.3 was the action of conjugation by σ2. In
order to generalize our theorem, we must make the following analysis.

Let F2 be the free group on two generators x and y, and define an automorphism
φ : F2→ F2 according to the formulas φ(x)= xy−1x and φ(y)= xy−1x2. Then the
following lemma holds.

LEMMA 3.2. Consider F2 as the commutator subgroup [B3, B3] with generators x =
σ1σ
−1
2 and y = σ 2

1 σ
−2
2 . Then the automorphism φ of F2 corresponds to conjugation

of [B3, B3] by the generator σ2 ∈ B3, so that φ(g)= σ−1
2 gσ2 for all g ∈ F2.
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PROOF. The proof is computational. First conjugating the generator x , we compute

φ(x) = xy−1x

= σ1σ
−1
2 σ 2

2 σ
−2
1 σ1σ

−1
2

= (σ1σ2σ
−1
1 )σ−1

2

= (σ−1
2 σ1σ2)σ

−1
2

= σ−1
2 σ1σ

−1
2 σ2

= σ−1
2 xσ2

and

φ(y) = xy−1x2

= σ1σ
−1
2 σ 2

2 σ
−2
1 σ1σ

−1
2 σ1σ

−1
2

= (σ1σ2σ
−1
1 )σ−1

2 σ1σ
−1
2

= (σ−1
2 σ1σ2)σ

−1
2 σ1σ

−1
2

= σ−1
2 σ 2

1 σ
−1
2

= σ−1
2 σ 2

1 σ
−2
2 σ2

= σ−1
2 yσ2.

This concludes the proof. 2

This computation allows us to show that Kn is fixed by the conjugation action of
σ 6

2 or σ−6
2 on the commutator subgroup [B3, B3].

LEMMA 3.3. Let φ : F2→ F2 be the map arising from conjugation of [B3, B3] by σ2,
namely φ(x)= xy−1x and φ(y)= xy−1x2. Then, for all n, φ6(Kn)= Kn .

PROOF. Consider the abelianization F2
ab
−−→ Z⊕ Z. We find that φ descends to a

map φ∗ : Z⊕ Z→ Z⊕ Z, and that relative to the basis {ab(x), ab(y)} the map φ∗ is
represented by the matrix (

2 3
−1 −1

)
.

The sixth power of this matrix is the identity. It follows that for any normal subgroup
K such that F2/K is abelian, we have φ6(K )= K . 2

Lastly, note that any generator of Kn , when we substitute x = σ1σ
−1
2 and y =

σ 2
1 σ
−2
2 , yields a product of braid group generators of the form

σ
l1
1 σ

k1
2 σ

l2
1 · · · σ

km−1
2 σ

lm
1 σ

km
2 ,

where ki < 0 and li > 0 for all i . Therefore, we require the following lemma in order
to compare the generators to different braids in Kn .
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LEMMA 3.4. Any braid represented by a word of the form

σ
k1
2 σ

l1
1 · · · σ

km
2 σ

lm
1 σ

n
2 σ1,

where ki > 0, li < 0 for all i , and n > 1, is 1-positive.

PROOF. We use induction on m, the length of the product. For m = 0, the claim is
trivial. Assuming that the claim holds for those products of length m − 1, we use the
identities σ k

1 σ2σ1 = σ2σ1σ
k
2 and σ−1

1 σ k
2 σ1 = σ2σ

k
1 σ
−1
2 , and compute that

σ
k1
2 σ

l2
1 · · · σ

km
2 σ

lm
1 σ

n
2 σ1 = σ

k1
2 σ

l2
1 · · · σ

km
2 σ

lm+1
1 (σ−1

1 σ n
2 σ1)

= σ
k1
2 σ

l2
1 · · · σ

km
2 σ

lm+1
1 (σ2σ

n
1 σ
−1
2 )

= σ
k1
2 σ

l2
1 · · · σ

km
2 (σ

lm+1
1 σ2σ1)σ

n−1
1 σ−1

2

= σ
k1
2 σ

l2
1 · · · σ

km
2 (σ2σ1σ

lm+1
2 )σ n−1

1 σ−1
2

= σ
k1
2 σ

l2
1 · · · σ

km+1
2 σ1(σ

lm+1
2 σ n−1

1 σ−1
2 ).

The bracketed expression σ lm+1
2 σ n−1

1 σ−1
2 is 1-positive as n > 1, and the remaining

terms in the product above are representative of a 1-positive braid, by assumption. By
induction, the claim is proven. 2

THEOREM 3.5. Let n > 2. Then the restriction of the Dehornoy ordering to the
subgroup Kn ⊂ F2 = [B3, B3] has no proper, nontrivial convex subgroups.

PROOF. We proceed similarly to Theorem 2.3. Suppose that C ⊂ Kn is a nontrivial,
convex subgroup, and let β ∈ C be a 1-positive braid. Denote the generators of Kn by
g1, g2, . . . , gn; from Lemma 3.1 we know that gi > 1 for all i . There are two cases to
consider.

Case 1. The braid β commutes with σ2. In this case, we proceed as in Case 1 of
Theorem 2.3, to conclude that 〈β〉must be cofinal in the Dehornoy ordering. Thus, we
can find an integer k such that βk > gi > 1 for every generator gi of Kn . Then gi ∈ C
for all i , and we conclude that C = Kn .

Case 2. Suppose that β and σ2 do not commute, and we proceed as in Case 2 of
Theorem 2.3. Then, by the subword property of the Dehornoy ordering, we know
that βσ k

2 β
−1 > 1 for all k > 0, and hence βσ k

2 β
−1σ−k

2 > 1 as well. We deduce that
1< βσ k

2 β
−1σ−k

2 < β for all k > 0 as before. However, the braid βσ k
2 β
−1σ−k

2 is not
necessarily an element of Kn , but as conjugation by σ 6

2 preserves Kn by Lemma 3.3,
we have βσ 6k

2 β−1σ−6k
2 ∈ Kn for all k > 0. Hence, the inequality 1< βσ k

2 β
−1σ−k

2 <

β yields βσ 6k
2 β−1σ−6k

2 ∈ C for all k > 0. We conclude that σ 6k
2 β−1σ−6k

2 ∈ C for all
k > 0.

Proceeding as in the proof of Theorem 2.3, we may conjugate β by an appropriate
(sixth) power of σ2 to conclude that the convex subgroup C in Kn contains a braid
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represented by a word of the form σ u
2 σ1w, where u > 1, andw is a 1-positive, 1-neutral

or empty word. Then for each generator gi of Kn , consider the braid represented
by the word g−1

i σ u
2 σ1w. As each gi contains only positive powers of the braids

x = σ1σ
−1
2 and y = σ 2

1 σ
−2
2 , we see that g−1

i σ u
2 σ1 represents a 1-positive braid, by

Lemma 3.4. Therefore, the braid g−1
i σ u

2 σ1w is 1-positive, and we conclude that
1< gi < σ

u
2 σ1w ∈ C , hence gi ∈ C for all i , and C = Kn . 2
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