EXOTIC LEFT-ORDERINGS OF THE FREE GROUPS FROM THE DEHORNOY ORDERING

ADAM CLAY

(Received 2 November 2010)

Abstract

We show that the restriction of the Dehornoy ordering to an appropriate free subgroup of the three-strand braid group defines a left-ordering of the free group on k generators, k > 1, that has no convex subgroups.

2010 *Mathematics subject classification*: primary 20F36; secondary 20F60, 20E05. *Keywords and phrases*: left-orderable groups, free groups, braid groups.

1. Introduction

A group *G* is said to be left-orderable if there exists a strict total ordering of its elements such that g < h implies fg < fh for all f, g, h in *G*. To each left-ordering < of a group *G*, we can associate the set $P = \{g \in G \mid g > 1\}$, which is called the positive cone associated to the left-ordering <. The positive cone *P* satisfies $P \cdot P \subset P$, and $P \sqcup P^{-1} \sqcup \{1\} = G$. Conversely, any subset *P* satisfying these two properties defines a strict total ordering of the elements of *G* via g < h if and only if $g^{-1}h \in P$. Any ordering defined in this way is easily seen to be invariant under left multiplication.

We may strengthen our conditions on a left-ordering < of G by requiring that, for all g, h > 1 in G, there must exist a positive integer n such that $g < hg^n$. In this case, the ordering is called Conradian (after the work of Conrad in [2]). It has since been observed that, equivalently, we may ask that this condition hold for n = 2 [9].

Finally, the strongest condition we may require of an ordering < of G is that the ordering be invariant under multiplication from both sides, that is, g < h implies fg < fh and gf < hf for all f, g, h in G. Equivalently, we may require that the positive cone associated to the ordering < of G be preserved by conjugation. If either of these equivalent conditions is satisfied by the ordering < of G, then the ordering is said to be a bi-ordering.

An important structure associated to a given left-ordering < of G is the set of convex subgroups of G. A subgroup $H \subset G$ is said to be convex in G (with respect to the ordering <) if whenever f, h are in H and g is in G, the implication $f < g < h \Rightarrow g \in H$ holds.

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

A. Clay

Owing to work of Conrad and Hölder, the convex subgroups of bi-orderings and Conradian orderings are very well understood [2]. This leaves us with understanding the set of convex subgroups for the case of left-orderings that are neither bi-orderings nor Conradian orderings. This problem seems to be quite difficult, as constructing Conradian orderings and bi-orderings of a group G is in general somewhat easier than constructing left-orderings of a group that are not Conradian orderings.

Two of the primary methods for constructing non-Conradian orderings of a group G are given by the following proposition and theorem.

PROPOSITION 1.1. Let G be a group, K a subgroup of G left-ordered by the ordering \prec , and G/K the set of left cosets of K in G. Suppose that G/K is ordered by the ordering \prec' , satisfying $gK \prec' hK \Rightarrow fgK \prec' fhK$ for all f, g, h in G. Then a left-ordering < can be defined on G, according to the rule that, for every g in G, 1 < g if $g \in K$ and 1 < g, or if $g \notin K$ and $K \prec' gK$.

THEOREM 1.2 (Conrad [2]). A group G is left-orderable if and only if G acts effectively by order-preserving automorphisms on a linearly ordered set.

In both of these cases, at least some of the convex subgroups of the constructed ordering are obvious. In Proposition 1.1, the subgroup K is a convex subgroup in the left-ordering < of G. In Theorem 1.2, the stabilizers under the G-action of points in the given linearly ordered set correspond to convex subgroups (see [2] or [9] for details of the construction). In light of the fact that both of these known methods for producing left-orderings of a group result in a left-ordering that (often) admits convex subgroups, it is quite surprising to find that some non-Conradian left-orderings may contain no proper, nontrivial convex subgroups whatsoever. In this paper, we will left-order the free groups of finite rank in such a way that the free group contains no proper, nontrivial convex subgroups with respect to our constructed ordering. The construction relies heavily on the Dehornoy ordering of the braid group B_3 .

The existence and a construction of such orderings of the free groups seems to have appeared only in [7]. The construction there, unlike our present setting, deals with creating a very unusual effective action on the rationals. Our present approach is in simpler algebraic terms.

It is also worth noting that admitting a Conradian or bi-ordering that has no proper, nontrivial convex subgroups is a very restrictive condition on the group G, as the following theorem shows.

THEOREM 1.3 [2]. Suppose that G admits a Conradian or bi-ordering which has no proper, nontrivial convex subgroups. Then G is a subgroup of $(\mathbb{R}, +)$.

In the case where G admits a non-Conradian left-ordering having no proper, nontrivial convex subgroups, it is not likely that the structure of G must be so restricted. While we will see that free groups admit such left-orderings, there are also nonfree, non-abelian groups that admit such left-orderings as well [1, Example 7.2.3]. It has also recently been shown that the braid groups themselves admit many left-orderings with no convex subgroups; see [10].

104

2. A left-ordering of F_2 having no convex subgroups

As a warm-up for the general case, which will be slightly more involved, we deal first with the free group on two generators.

We begin by defining the Dehornoy left-ordering of the braid groups (also known as the 'standard' ordering), whose positive cone we shall denote P_D [3, 4]. Recall that for each integer $n \ge 2$, the Artin braid group B_n is the group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$, subject to the relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 if $|i - j| > 1$, $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ if $|i - j| = 1$.

DEFINITION 2.1. Let w be a word in the generators $\sigma_i, \ldots, \sigma_{n-1}$. Then w is said to be *i*-positive if the generator σ_i occurs in W with only positive exponents, *i*-negative if σ_i occurs with only negative exponents, and *i*-neutral if σ_i does not occur in w.

We then define the positive cone of the Dehornoy ordering as follows.

DEFINITION 2.2. The positive cone $P_D \subset B_n$ of the Dehornoy ordering is the set

 $P_D = \{\beta \in B_n : \beta \text{ is } i \text{-positive for some } i \leq n-1\}.$

Let $\beta \in B_n$ be any braid. An extremely important property of this ordering is that the conjugate $\beta \sigma_k \beta^{-1}$ is always *i*-positive for some *i*, for every generator σ_k in B_n . This property is referred to as the subword property [4].

Recall that the commutator subgroup $[B_3, B_3]$ is isomorphic to the free group F_2 on two generators. The commutator subgroup is generated by the braids $\beta_1 = \sigma_2 \sigma_1^{-1}$ and $\beta_2 = \sigma_1 \sigma_2 \sigma_1^{-2}$ [8]. Of course we can instead take as free generators the 1-positive braids $\beta_1^{-1} = \sigma_1 \sigma_2^{-1}$ and $\beta_2^{-1} \beta_1^{-1} = \sigma_1^2 \sigma_2^{-2}$, since any generating set of F_2 with only two elements will freely generate F_2 .

Define a positive cone $P \subset F_2$ by $P = [B_3, B_3] \cap P_D$, with associated ordering < of F_2 . Thus, the left-ordering < of F_2 is the restriction of the Dehornoy ordering $<_D$ of B_3 to the (free) commutator subgroup $[B_3, B_3]$.

THEOREM 2.3. The ordering $< of F_2$ has no proper, nontrivial convex subgroups.

PROOF. Let $C \subset F_2 = [B_3, B_3]$ be a nontrivial convex subgroup. Then we may choose $1 < \beta \in F_2$ that is 1-positive (no nontrivial 1-neutral braids lie in $[B_3, B_3]$, because they do not have zero total exponent).

There are now two cases to consider.

Case 1. Suppose that β commutes with σ_2 . Then $\beta = \Delta_3^{2p} \sigma_2^q$ for some integers p, q ([5], here $\Delta = \sigma_1 \sigma_2 \sigma_1$). Since $\beta \in [B_3, B_3]$, we know that q = -6p, since β must have zero total exponent, and p > 0 because we have chosen β to be 1-positive. Then we have that $\Delta_3^2 < \Delta_3^{4p} \sigma_2^{-12p} = \beta^2$, so that $\langle \beta \rangle$ is cofinal in the Dehornoy ordering [4]. Therefore, there exist integers k, l such that in F_2 we have

$$1 < \sigma_1 \sigma_2^{-1} < \beta^k \quad \text{and} \quad 1 < \sigma_1^2 \sigma_2^{-2} < \beta^l,$$

and thus $\sigma_1 \sigma_2^{-1}$, $\sigma_1^2 \sigma_2^{-2} \in C$ by convexity. Therefore we must have $C = F_2$, as C contains both generators of F_2 .

Case 2. Suppose that β and σ_2 do not commute. Let k > 0, and observe that $\beta \sigma_2^k \beta^{-1}$ is a 1-positive braid by the subword property, so that the commutator $\beta \sigma_2^k \beta^{-1} \sigma_2^{-k}$ is also 1-positive. Next, because β is 1-positive, the braid $\sigma_2^k \beta^{-1} \sigma_2^{-k}$ is 1-negative, so that $\sigma_2^k \beta^{-1} \sigma_2^{-k} < 1$, and thus $\beta \sigma_2^k \beta^{-1} \sigma_2^{-k} < \beta$. Thus, we have shown that $1 < \beta \sigma_2^k \beta^{-1} \sigma_2^{-k} < \beta$, so that $\beta \sigma_2^k \beta^{-1} \sigma_2^{-k}$ must lie in the subgroup *C*, by convexity. Now both the braids β and $\beta \sigma_2^k \beta^{-1} \sigma_2^{-k}$ lie in the convex subgroup *C*, so the

Now both the braids β and $\beta \sigma_2^k \beta^{-1} \sigma_2^{-k}$ lie in the convex subgroup *C*, so the braid $\sigma_2^k \beta^{-1} \sigma_2^{-k}$ (and hence its inverse $\sigma_2^k \beta \sigma_2^{-k}$) must also lie in *C*, for any choice of positive integer *k*.

We now refine our choice of braid $\beta \in C$. Suppose that β is represented by the 1-positive braid word $\sigma_2^u \sigma_1 w$, where *u* is any integer, and *w* is a 1-positive, 1-neutral or empty word. Choose k > 0 so that u' = k + u > 0, and set $\beta' = \sigma_2^k \beta \sigma_2^{-k}$, so that β' is represented by the 1-positive braid word $\sigma_2^{u'} \sigma_1 w \sigma_2^{-k}$. Note that $\beta' \in C$, from our work above.

We will now show that *C* must contain both generators of F_2 . Observe that the braid represented by the word $\sigma_2 \sigma_1^{-1} \sigma_2^{u'} \sigma_1 w \sigma_2^{-k}$ is 1-positive, as $\sigma_2(\sigma_1^{-1} \sigma_2^{u'} \sigma_1) w \sigma_2^{-k} = \sigma_2(\sigma_2 \sigma_1^{u'} \sigma_2^{-1}) w \sigma_2^{-k}$, and u' > 0. Therefore

$$1 < \sigma_2 \sigma_1^{-1} \sigma_2^{u'} \sigma_1 w \sigma_2^{-k} \Rightarrow \sigma_1 \sigma_2^{-1} < \sigma_2^{u'} \sigma_1 w \sigma_2^{-k} = \beta' \in C,$$

and since $1 < \sigma_1 \sigma_2^{-1}$, this implies that $\sigma_1 \sigma_2^{-1} \in C$ by convexity. Considering the second generator $\sigma_1^2 \sigma_2^{-2}$, observe that the braid represented by the

Considering the second generator $\sigma_1^2 \sigma_2^{-2}$, observe that the braid represented by the word $\sigma_2^2 \sigma_1^{-2} \sigma_2^{u'} \sigma_1 w \sigma_2^{-k}$ is 1-positive, as we compute

$$\sigma_2^2 \sigma_1^{-1} (\sigma_1^{-1} \sigma_2^{u'} \sigma_1) w \sigma_2^{-k} = \sigma_2^2 \sigma_1^{-1} (\sigma_2 \sigma_1^{u'} \sigma_2^{-1}) w \sigma_2^{-k}$$

and

$$\sigma_2^2(\sigma_1^{-1}\sigma_2\sigma_1)\sigma_1^{u'-1}\sigma_2^{-1}w\sigma_2^{-k} = \sigma_2^2(\sigma_2\sigma_1\sigma_2^{-1})\sigma_1^{u'-1}\sigma_2^{-1}w\sigma_2^{-k},$$

where u' > 0. Therefore

$$1 < \sigma_2^2 \sigma_1^{-2} \sigma_2^{u'} \sigma_1 w \sigma_2^{-k} \Rightarrow \sigma_1^2 \sigma_2^{-2} < \sigma_2^{u'} \sigma_1 w \sigma_2^{-k} = \beta' \in C,$$

and since $1 < \sigma_1^2 \sigma_2^{-2}$, we conclude from convexity of *C* that $\sigma_1^2 \sigma_2^{-2} \in C$. Thus, *C* contains both generators of *F*₂, so that $C = F_2$.

3. Left-ordering the free groups of rank greater than two

We now extend our results to cover those free groups F_k with k > 2. Let $x = \sigma_1 \sigma_2^{-1}$ and $y = \sigma_1^2 \sigma_2^{-2}$ denote the generators of F_2 , and we let K_n denote the kernel of the map $F_2 \to \mathbb{Z}_{n-1}$ defined by $y \mapsto 0$, $x \mapsto 1$. Here \mathbb{Z}_{n-1} is the cyclic group

107

of order n - 1. We will employ a proof very similar to that of Theorem 2.3, by considering $K_n \subset F_2 = [B_3, B_3]$, and showing that the restriction of the Dehornoy ordering to K_n has no convex subgroups. First we need to find a generating set for K_n .

LEMMA 3.1. The subgroup K_n is free of rank n, with basis

$$y, x^{n-1}, xyx^{n-2}, x^2yx^{n-3}, \dots, x^{n-2}yx$$

PROOF. From [11, Lemma 7.56] we know that K_n is finitely generated. Moreover, we may compute a generating set of K_n as follows: consider the generating set $g_1 = x$, $g_2 = x^{-1}$, $g_3 = y$, $g_4 = y^{-1}$ of F_2 , and let $1, x, x^2, \ldots, x^{n-2}$ be representatives of the right cosets of $K_n \subset F_2$. For all *i*, *j*, there exist h_{ij} and some coset representative $x^{k(i,j)}$ such that we may write $x^i g_j = h_{ij} x^{k(i,j)}$. The elements h_{ij} form a generating set for K_n .

In our present setting, for i < n - 2 we get

$$x^i g_1 = x^i \cdot x = 1 \cdot x^{i+1},$$

so that h(i, 1) = 1, and for i = n - 2 we get $h(i, 1) = x^{n-1}$. Similarly, we compute for $i \ge 1$ that

$$x^{i}g_{2} = x^{i} \cdot x^{-1} = 1 \cdot x^{i-1},$$

so that h(i, 2) = 1, and for i = 0 we compute $h(i, 2) = x^{-(n-1)}$.

Next, for all *i*, we compute

$$x^{i} y^{\pm 1} = x^{i} y^{\pm 1} x^{-i} \cdot x^{i},$$

so that $h(i, 3) = h(i, 4)^{-1} = x^i y x^{-i}$. Eliminating inverses from this generating set yields the set

$$y, x^{n-1}, xyx^{-1}, x^2yx^{-2}, \dots, x^{n-2}yx^{-(n-2)}.$$

From [6, Proposition 3.9] we deduce that K_n is of rank n, and therefore the generating set above must provide a basis for K_n . Right-multiplying those generators of the form $x^i y x^{-i}$ by the generator x^{n-1} yields the desired generating set.

Also important in the proof of Theorem 2.3 was the action of conjugation by σ_2 . In order to generalize our theorem, we must make the following analysis.

Let F_2 be the free group on two generators x and y, and define an automorphism $\phi: F_2 \to F_2$ according to the formulas $\phi(x) = xy^{-1}x$ and $\phi(y) = xy^{-1}x^2$. Then the following lemma holds.

LEMMA 3.2. Consider F_2 as the commutator subgroup $[B_3, B_3]$ with generators $x = \sigma_1 \sigma_2^{-1}$ and $y = \sigma_1^2 \sigma_2^{-2}$. Then the automorphism ϕ of F_2 corresponds to conjugation of $[B_3, B_3]$ by the generator $\sigma_2 \in B_3$, so that $\phi(g) = \sigma_2^{-1} g \sigma_2$ for all $g \in F_2$.

 $=\sigma_1\sigma_2^{-1}\sigma_2^2\sigma_1^{-2}\sigma_1\sigma_2^{-1}$

 $=\sigma_1\sigma_2^{-1}\sigma_2^2\sigma_1^{-2}\sigma_1\sigma_2^{-1}\sigma_1\sigma_2^{-1}$

 $= (\sigma_1 \sigma_2 \sigma_1^{-1}) \sigma_2^{-1} \sigma_1 \sigma_2^{-1}$ $= (\sigma_2^{-1} \sigma_1 \sigma_2) \sigma_2^{-1} \sigma_1 \sigma_2^{-1}$

 $= \sigma_2^{-1} \sigma_1^2 \sigma_2^{-1}$ $= \sigma_2^{-1} \sigma_1^2 \sigma_2^{-2} \sigma_2$

PROOF. The proof is computational. First conjugating the generator x, we compute

 $= (\sigma_1 \sigma_2 \sigma_1^{-1}) \sigma_2^{-1}$ $= (\sigma_2^{-1} \sigma_1 \sigma_2) \sigma_2^{-1}$ $= \sigma_2^{-1} \sigma_1 \sigma_2^{-1} \sigma_2$

 $=\sigma_2^{-1}x\sigma_2$

 $\phi(x) = x v^{-1} x$

 $=\sigma_2^{-1}v\sigma_2.$

 $\phi(y) = xy^{-1}x^2$

This concludes the proof.

This computation allows us to show that K_n is fixed by the conjugation action of σ_2^6 or σ_2^{-6} on the commutator subgroup $[B_3, B_3]$.

LEMMA 3.3. Let $\phi: F_2 \to F_2$ be the map arising from conjugation of $[B_3, B_3]$ by σ_2 , namely $\phi(x) = xy^{-1}x$ and $\phi(y) = xy^{-1}x^2$. Then, for all $n, \phi^6(K_n) = K_n$.

PROOF. Consider the abelianization $F_2 \xrightarrow{ab} \mathbb{Z} \oplus \mathbb{Z}$. We find that ϕ descends to a map $\phi_* : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$, and that relative to the basis $\{ab(x), ab(y)\}$ the map ϕ_* is represented by the matrix

$$\begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}.$$

The sixth power of this matrix is the identity. It follows that for any normal subgroup K such that F_2/K is abelian, we have $\phi^6(K) = K$.

Lastly, note that any generator of K_n , when we substitute $x = \sigma_1 \sigma_2^{-1}$ and $y = \sigma_1^2 \sigma_2^{-2}$, yields a product of braid group generators of the form

$$\sigma_1^{l_1}\sigma_2^{k_1}\sigma_1^{l_2}\cdots\sigma_2^{k_{m-1}}\sigma_1^{l_m}\sigma_2^{k_m},$$

where $k_i < 0$ and $l_i > 0$ for all *i*. Therefore, we require the following lemma in order to compare the generators to different braids in K_n .

and

LEMMA 3.4. Any braid represented by a word of the form

$$\sigma_2^{k_1}\sigma_1^{l_1}\cdots\sigma_2^{k_m}\sigma_1^{l_m}\sigma_2^n\sigma_1,$$

where $k_i > 0$, $l_i < 0$ for all *i*, and n > 1, is 1-positive.

PROOF. We use induction on *m*, the length of the product. For m = 0, the claim is trivial. Assuming that the claim holds for those products of length m - 1, we use the identities $\sigma_1^k \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2^k$ and $\sigma_1^{-1} \sigma_2^k \sigma_1 = \sigma_2 \sigma_1^k \sigma_2^{-1}$, and compute that

$$\begin{split} \sigma_{2}^{k_{1}}\sigma_{1}^{l_{2}}\cdots\sigma_{2}^{k_{m}}\sigma_{1}^{l_{m}}\sigma_{2}^{n}\sigma_{1} &= \sigma_{2}^{k_{1}}\sigma_{1}^{l_{2}}\cdots\sigma_{2}^{k_{m}}\sigma_{1}^{l_{m}+1}(\sigma_{1}^{-1}\sigma_{2}^{n}\sigma_{1})\\ &= \sigma_{2}^{k_{1}}\sigma_{1}^{l_{2}}\cdots\sigma_{2}^{k_{m}}\sigma_{1}^{l_{m}+1}(\sigma_{2}\sigma_{1}^{n}\sigma_{2}^{-1})\\ &= \sigma_{2}^{k_{1}}\sigma_{1}^{l_{2}}\cdots\sigma_{2}^{k_{m}}(\sigma_{1}^{l_{m}+1}\sigma_{2}\sigma_{1})\sigma_{1}^{n-1}\sigma_{2}^{-1}\\ &= \sigma_{2}^{k_{1}}\sigma_{1}^{l_{2}}\cdots\sigma_{2}^{k_{m}}(\sigma_{2}\sigma_{1}\sigma_{2}^{l_{m}+1})\sigma_{1}^{n-1}\sigma_{2}^{-1}\\ &= \sigma_{2}^{k_{1}}\sigma_{1}^{l_{2}}\cdots\sigma_{2}^{k_{m}+1}\sigma_{1}(\sigma_{2}^{l_{m}+1}\sigma_{1}^{n-1}\sigma_{2}^{-1}). \end{split}$$

The bracketed expression $\sigma_2^{l_m+1}\sigma_1^{n-1}\sigma_2^{-1}$ is 1-positive as n > 1, and the remaining terms in the product above are representative of a 1-positive braid, by assumption. By induction, the claim is proven.

THEOREM 3.5. Let n > 2. Then the restriction of the Dehornoy ordering to the subgroup $K_n \subset F_2 = [B_3, B_3]$ has no proper, nontrivial convex subgroups.

PROOF. We proceed similarly to Theorem 2.3. Suppose that $C \subset K_n$ is a nontrivial, convex subgroup, and let $\beta \in C$ be a 1-positive braid. Denote the generators of K_n by g_1, g_2, \ldots, g_n ; from Lemma 3.1 we know that $g_i > 1$ for all *i*. There are two cases to consider.

Case 1. The braid β commutes with σ_2 . In this case, we proceed as in Case 1 of Theorem 2.3, to conclude that $\langle \beta \rangle$ must be cofinal in the Dehornoy ordering. Thus, we can find an integer *k* such that $\beta^k > g_i > 1$ for every generator g_i of K_n . Then $g_i \in C$ for all *i*, and we conclude that $C = K_n$.

Case 2. Suppose that β and σ_2 do not commute, and we proceed as in Case 2 of Theorem 2.3. Then, by the subword property of the Dehornoy ordering, we know that $\beta \sigma_2^k \beta^{-1} > 1$ for all k > 0, and hence $\beta \sigma_2^k \beta^{-1} \sigma_2^{-k} > 1$ as well. We deduce that $1 < \beta \sigma_2^k \beta^{-1} \sigma_2^{-k} < \beta$ for all k > 0 as before. However, the braid $\beta \sigma_2^k \beta^{-1} \sigma_2^{-k}$ is not necessarily an element of K_n , but as conjugation by σ_2^6 preserves K_n by Lemma 3.3, we have $\beta \sigma_2^{6k} \beta^{-1} \sigma_2^{-6k} \in K_n$ for all k > 0. Hence, the inequality $1 < \beta \sigma_2^k \beta^{-1} \sigma_2^{-k} < \beta$ yields $\beta \sigma_2^{6k} \beta^{-1} \sigma_2^{-6k} \in C$ for all k > 0. We conclude that $\sigma_2^{6k} \beta^{-1} \sigma_2^{-6k} \in C$ for all k > 0.

Proceeding as in the proof of Theorem 2.3, we may conjugate β by an appropriate (sixth) power of σ_2 to conclude that the convex subgroup *C* in K_n contains a braid

A. Clay

represented by a word of the form $\sigma_2^u \sigma_1 w$, where u > 1, and w is a 1-positive, 1-neutral or empty word. Then for each generator g_i of K_n , consider the braid represented by the word $g_i^{-1}\sigma_2^u\sigma_1 w$. As each g_i contains only positive powers of the braids $x = \sigma_1 \sigma_2^{-1}$ and $y = \sigma_1^2 \sigma_2^{-2}$, we see that $g_i^{-1} \sigma_2^u \sigma_1$ represents a 1-positive braid, by Lemma 3.4. Therefore, the braid $g_i^{-1} \sigma_2^u \sigma_1 w$ is 1-positive, and we conclude that $1 < g_i < \sigma_2^u \sigma_1 w \in C$, hence $g_i \in C$ for all i, and $C = K_n$.

References

- R. Botto Mura and A. Rhemtulla, *Orderable Groups*, Lecture Notes in Pure and Applied Mathematics, 27 (Marcel Dekker Inc., New York, 1977).
- [2] P. Conrad, 'Right-ordered groups', Michigan Math. J. 6 (1959), 267–275.
- [3] P. Dehornoy, 'Braid groups and left distributive operations', *Trans. Amer. Math. Soc.* 345(1) (1994), 115–150.
- [4] P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, *Ordering Braids*, Surveys and Monographs, 148 (American Mathematical Society, Providence, RI, 2008).
- [5] R. Fenn, D. Rolfsen and J. Zhu, 'Centralisers in the braid group and singular braid monoid', *Enseign. Math.* (2) 42(1–2) (1996), 75–96.
- [6] R. C. Lyndon and P. E. Schupp, *Combinatorial Group Theory*, Classics in Mathematics (Springer, Berlin, 2001), reprint of the 1977 edition.
- [7] S. H. McCleary, 'Free lattice-ordered groups represented as *o*-2 transitive *l*-permutation groups', *Trans. Amer. Math. Soc.* 290(1) (1985), 69–79.
- [8] J. Mulholland and D. Rolfsen, 'Local indicability and commutator subgroups of artin groups', Preprint, available via http://arxiv.org/abs/math/0606116.
- [9] A. Navas, 'On the dynamics of (left) orderable groups', Ann. Inst. Fourier (Grenoble) 60(5) (2010), 1685–1740.
- [10] A. Navas and B. Wiest, 'Nielsen–Thurston orderings and the space of braid orderings', Preprint, available via http://arxiv.org/pdf/0906.2605.
- [11] J. J. Rotman, An Introduction to the Theory of Groups, 4th edn, Graduate Texts in Mathematics, 148 (Springer, New York, 1995).

ADAM CLAY, CIRGET, Université du Québec à Montréal, Case postale 8888, Succursale Centre-ville, Montréal QC, Canada H3C 3P8 e-mail: aclay@cirget.ca