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Abstract
We derive formulae for the moments of the time of ruin in both ordinary and modified Sparre Andersen
risk models without specifying either the inter-claim time distribution or the individual claim amount
distribution. We illustrate the application of our results in the special case of exponentially distributed
claims, as well as for the following ordinary models: the classical risk model, phase-type(2) risk models,
and the Erlang(n) risk model. We also show how the key quantities for modified models can be found.
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1. Introduction
We start with a description of an ordinary Sparre Andersen (SA) model, sometimes called a
renewal risk model, which was introduced by Sparre Andersen (1957). Claims occur according
to a renewal process {N(t)}t≥0, with inter-claim times being a sequence of independent and iden-
tically distributed (i.i.d.) random variables. Specifically, let V1 be the time until the first claim, and
for j= 2, 3, 4, . . . letVj be the time between claims j− 1 and j. We assume that {Vj}∞j=1 are positive
random variables with distribution function K = 1− K̄, density function k, and a finite mean μV .
Individual claim amounts are modelled as a sequence of i.i.d. random variables {Xj}∞j=1 which are
also positive, with a density function which we denote f , and a finite mean μX .

The insurer receives premiums continuously at rate c= (1+ θ)μX/μV where θ > 0 is a loading
factor. The insurer’s surplus at time t, given initial surplus u, is

U(t)= u+ ct −
N(t)∑
i=1

Xi

and the time of ruin is defined as Tu = inf{t: U(t)< 0} with Tu = ∞ if U(t)≥ 0 for all t> 0. The
deficit at ruin is Yu = |U(Tu)|. The (defective) density of the time of ruin is defined for t> 0 as

w(u, t)= d
dt

Pr (Tu ≤ t).

DefiningW(u, y, t)= Pr (Tu ≤ t, Yu ≤ y), the (defective) joint density of the time of ruin and the
deficit at ruin is defined for t> 0 and y> 0 as

w(u, y, t)= d2

dt dy
W(u, y, t) .
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Further, we define ψ(u)= 1− φ(u)= Pr (Tu <∞) to be the probability of ultimate ruin, and
G(u, y)= Pr (Tu <∞, Yu ≤ y), with (defective) density g(u, y)= d

dy G(u, y) for y> 0. For n=
0, 1, 2, . . . define

ψn(u)= E[Tn I(Tu <∞)]=
∫ ∞

0
tn w(u, t) dt

to be the nth moment of the time of ruin, with ψ0(u)=ψ(u).
For δ ≥ 0, Lundberg’s fundamental equation for an ordinary SA risk model is

E
[
e−sX1−(δ−cs)V1

]
= 1 .

See, for example, Willmot & Woo (2017). The solutions of this equation are key in most of our
applications.

The modified SA model differs in only one respect from the ordinary model – the distribu-
tion of V1 is different to that of {Vj}∞j=2 with density function k1 �= k. In the special case when the
distribution of V1 is the equilibrium distribution of K, so that k1 = ke = K̄/μV , we have the equi-
librium SA model. For the modified and equilibrium models, we introduce superscripts m and e,
respectively, to functions defined for the ordinary model, so, for example, ψe(u) is the probability
of ultimate ruin for the equilibrium model.

Moments of the time of ruin have been studied for a large number of years. Gerber (1979)
gives the first moment of the time of ruin in the classical risk model with exponential claims,
while Drekic & Willmot (2003) found an easily implemented explicit formula for any moment
of the time of ruin in the same setting. A recursion formula for moments of the time of ruin in
the classical risk model was first given by Lin & Willmot (2000) who derived their result through
analysis of a defective renewal equation; a much simpler proof of their result was later given by
Albrecher & Boxma (2005).

Dickson & Hipp (2001) considered moments of the time of ruin in an ordinary SA model with
Erlang(2) inter-claim times. They showed how moments of Tu could be found from explicit solu-
tions for a Gerber-Shiu function defined as the Laplace transform of Tu, and they also derived
general expressions for the mean and variance of T0. In a pair of papers, Lee & Willmot (2014,
2016) find expressions satisfied by the moments of the time of ruin in dependent SA models with
particular assumptions. Independent models can be retrieved as special cases, and their results
provide an alternative method of obtaining some of the explicit results obtained below for ordi-
nary SA models, but not for modified models. Yu et al. (2010) obtain results for the moments of
the time of ruin for a Markovian risk model. Kim &Willmot (2016) show that the Laplace trans-
form of the time of ruin in a modified SAmodel satisfies a defective renewal equation, but they do
not give any results on moments of the time of ruin.

In this contribution, we take a completely different approach to the works mentioned above.
Without making any distributional assumptions, we obtain new general expressions for the
moments of the time of ruin in ordinary and modified SA models, and we apply these results
in a number of settings. The results presented for modified SA models cannot be obtained from
existing results in the literature, and although the results for ordinary SA models can, we believe
that our approach is more straightforward to apply than that of Lee &Willmot (2016). Our proofs
are certainly simpler. We also identify and implement an approach to finding moments of the
time of ruin in an equilibrium SA model for which k is the Erlang(n) density.

In the next section, we outline some preliminaries and then give the main results in section 3.
We then consider the application of these results, starting with the special case of exponen-
tially distributed individual claim amounts in section 4. The classical risk model is considered in
section 5, the phase-type(2) risk model in section 6, and the Erlang(n) risk model in section 8. In
section 7, we illustrate an approach to modified SA models.
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2. Preliminaries
In this section, we obtain some results for Laplace transforms which we will apply in the proofs
of Theorems 3.1 and 3.2, and it is convenient to deal with the ordinary and modified models
separately. Throughout, we use the notation ã to denote the Laplace transform of a function a,
with a second tilde when we consider a bivariate Laplace transform.

2.1. The ordinary SAmodel
By considering whether or not the surplus level ever falls below u, we have

φ(u)= φ(0)+
∫ u

0
g(0, y) φ(u− y) dy

(see, e.g. Willmot & Lin., 2001), so that

φ̃(s)= φ(0)
s

+ g̃(0, s) φ̃(s) (1)

giving

1
1− g̃(0, s)

= sφ̃(s)
φ(0)

= φ̃d(s)
φ(0)

+ 1 (2)

where φd(u)= d
du φ(u).

Second, the density of the time of ruin satisfies

w(u, t)=
∫ t

0

∫ u

0
w(0, y, τ )w(u− y, t − τ ) dy dτ +

∫ ∞

u
w(0, y, t) dy (3)

(see Dickson, 2008), and we define the bivariate Laplace transform of w(u, t) as

˜̃w(s, δ)=
∫ ∞

0

∫ ∞

0
e−su−δt w(u, t) dt du .

Further defining

˜̃w(0, s, δ)=
∫ ∞

0

∫ ∞

0
e−sy−δt w(0, y, t) dy dt

to be the bivariate Laplace transform of w(0, y, t) and defining

˜̃w1(s, δ)=
∫ ∞

0

∫ ∞

0
e−su−δt

∫ ∞

u
w(0, y, t) dy dt du ,

we see that
˜̃w(s, δ)= ˜̃w(0, s, δ) ˜̃w(s, δ)+ ˜̃w1(s, δ) . (4)

We next consider derivatives of these transforms with respect to δ as well as the transforms
evaluated at δ = 0. First,

dn

dδn
˜̃w(s, δ)

∣∣∣∣
δ=0

= (−1)n
∫ ∞

0
e−su

∫ ∞

0
tn w(u, t) dt du= (−1)n ψ̃n(s) .

Next we have

˜̃w(0, s, δ)
∣∣∣∣
δ=0

=
∫ ∞

0
e−sy

∫ ∞

0
w(0, y, t) dt dy=

∫ ∞

0
e−sy g(0, y) dy= g̃(0, s)

and
dn

dδn
˜̃w(0, s, δ)

∣∣∣∣
δ=0

= (−1)n
∫ ∞

0
e−sy

∫ ∞

0
tn w(0, y, t) dt dy= (−1)n ν̃n(s)
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where for n= 0, 1, 2, . . . we define

νn(y)=
∫ ∞

0
tn w(0, y, t) dt . (5)

We note that ν0(y)= g(0, y).
Finally,

˜̃w1(s, δ)
∣∣∣∣
δ=0

=
∫ ∞

0
e−su

∫ ∞

u

∫ ∞

0
w(0, y, t) dt dy du= ˜̄G(0, s)

where

Ḡ(0, u)=
∫ ∞

u
g(0, y) dy

and
dn

dδn
˜̃w1(s, δ)= (−1)n

∫ ∞

0
e−su

∫ ∞

u

∫ ∞

0
tn w(0, y, t) dt dy du= (−1)n ˜̄Nn(s)

where for n= 1, 2, 3, . . . we define

N̄n(u)=
∫ ∞

u
νn(x) dx .

2.2. The modified SAmodel
For themodified SAmodel, we need a smaller number of preliminary results. Using the arguments
that underpin equation (3), we find that

wm(u, t)=
∫ t

0

∫ u

0
wm(0, y, τ )w(u− y, t − τ ) dy dτ +

∫ ∞

u
wm(0, y, t) dy (6)

and we define

˜̃wm(0, s, δ)=
∫ ∞

0

∫ ∞

0
e−sy−δt wm(0, y, t) dy dt

to be the bivariate Laplace transform of wm(0, y, t). Next define

˜̃wm
1 (s, δ)=

∫ ∞

0

∫ ∞

0
e−su−δt

∫ ∞

u
wm(0, y, t) dy dt du ,

so that
˜̃wm(s, δ)= ˜̃wm(0, s, δ) ˜̃w(s, δ)+ ˜̃wm

1 (s, δ) . (7)
We then have

dn

dδn
˜̃wm(s, δ)

∣∣∣∣
δ=0

= (−1)n
∫ ∞

0
e−su

∫ ∞

0
tn wm(u, t) dt du= (−1)n ψ̃m

n (s) ,

dn

dδn
˜̃wm(0, s, δ)

∣∣∣∣
δ=0

= (−1)n
∫ ∞

0
e−sy

∫ ∞

0
tn wm(0, y, t) dt dy= (−1)n ν̃mn (s)

where for n= 0, 1, 2, . . . we define

νmn (y)=
∫ ∞

0
tn wm(0, y, t) dt ,

and
dn

dδn
˜̃wm
1 (s, δ)= (−1)n

∫ ∞

0
e−su

∫ ∞

u

∫ ∞

0
tn wm(0, y, t) dt dy du= (−1)n ˜̄Nm

n (s)
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where for n= 0, 1, 2, . . . we define

N̄m
n (u)=

∫ ∞

u
νmn (x) dx .

3. The Main Results
We now derive expressions for moments of the time of ruin for ordinary and modified SAmodels
in Theorems 3.1 and 3.2, respectively.
Theorem 3.1. For n= 1, 2, 3, . . ., the nth moment of the time of ruin for the ordinary SA risk model
is given by

ψn(u)=An(u)+ 1
φ(0)

∫ u

0
An(x) φd(u− x) dx (8)

where

An(u)= N̄n(u)+
n∑
j=1

(
n
j

) ∫ u

0
νj(x)ψn−j(u− x) dx . (9)

Proof. Differentiate equation (4) n times with respect to δ using Liebniz rule (e.g. Abramowitz
& Stegun, 1965) to get

dn

dδn
˜̃w(s, δ)= ˜̃w(0, s, δ) dn

dδn
˜̃w(s, δ)+

n∑
j=1

(
n
j

)
dj

dδj
˜̃w(0, s, δ) dn−j

dδn−j
˜̃w(s, δ)+ dn

dδn
˜̃w1(s, δ) ,

and setting δ = 0 we obtain

(−1)n ψ̃n(s)= (−1)n g̃(0, s) ψ̃n(s)+
n∑
j=1

(
n
j

)
(−1)j ν̃j(s) (−1)n−j ψ̃n−j(s)+ (−1)n ˜̄Nn(s)

giving

ψ̃n(s)= Ãn(s)
1− g̃(0, s)

(10)

whereAn(u) is as defined in the statement of the theorem. Then, using (2) to replace 1/(1− g̃(0, s))
in (10) we have for n= 1, 2, 3, . . .

ψn(u)=An(u)+ 1
φ(0)

∫ u

0
An(x) φd(u− x) dx .

Corollary 3.1.When the initial surplus is 0, for n= 0, 1, 2, . . . we have

ψn(0)=An(0)=
∫ ∞

0

∫ ∞

0
tn w(0, y, t) dt dy =

∫ ∞

0
tn w(0, t) dt.

Theorem 3.2. For n= 1, 2, 3, . . ., the nth moment of the time of ruin for the modified SA risk model
is given by

ψm
n (u)=

n∑
j=0

(
n
j

) ∫ u

0
νmj (x)ψn−j(u− x) dx+ N̄m

n (u) . (11)
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Proof. Differentiate equation (7) n times with respect to δ using Liebniz rule to get

dn

dδn
˜̃wm(s, δ)=

n∑
j=0

(
n
j

)
dj

dδj
˜̃wm(0, s, δ)

dn−j

dδn−j
˜̃w(s, δ)+ dn

dδn
˜̃wm
1 (s, δ) ,

and setting δ = 0 we get

(−1)n ψ̃m
n (s)=

n∑
j=0

(
n
j

)
(−1)j ν̃mj (s) (−1)n−j ψ̃n−j(s)+ (−1)n ˜̄Nm

n (s)

giving

ψm
n (u)=

n∑
j=0

(
n
j

) ∫ u

0
νmj (x)ψn−j(u− x) dx+ N̄m

n (u) .

To prove Theorems 3.1 and 3.2, we did not need to make any distributional assumptions.
However, our third result applies only when the equilibrium distribution of K is of a particular
form.
Theorem 3.3. Suppose that ke(t)= ∑r

i=1 pi κi(t) where
∑r

i=1 pi = 1, and {κi}ri=1 are density func-
tions. Let ψmi

n (u) denote the nth moment of the time of ruin for a modified SA process which has κi
as the density function of the time to the first claim for i= 1, 2, 3, . . . , r. Then for n= 0, 1, 2, . . .

ψe
n(u)=

r∑
i=1

pi ψmi
n (u) .

If there is value of i such that κi(t)= k(t), then we replace ψmi
n (u) with ψn(u).

We remark that we do not require positive values for each pi.
Proof. By conditioning on the time and the amount of the first claim, we have

Wmi(0, y, t)=
∫ t

0
κ i(s)

∫ cs

0
f (x)W(cs− x, y, t − s) dx ds+

∫ t

0
κ i(s)

∫ cs+y

cs
f (x) dx ds

for i= 1, 2, 3, . . . , r. Similarly,

We(0, y, t)=
∫ t

0
ke(s)

∫ cs

0
f (x)W(cs− x, y, t − s) dx ds+

∫ t

0
ke(s)

∫ cs+y

cs
f (x) dx ds

=
r∑

i=1
pi

∫ t

0
κ i(s)

∫ cs

0
f (x)W(cs− x, y, t − s) dx ds

+
r∑

i=1
pi

∫ t

0
κ i(s)

∫ cs+y

cs
f (x) dx ds

=
r∑

i=1
pi Wmi(0, y, t)

so that

we(0, y, t)=
r∑

i=1
pi wmi(0, y, t)
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and hence by (6)

we(u, t)=
r∑

i=1
pi

∫ t

0

∫ u

0
wmi(0, y, τ )w(u− y, t − τ ) dy dτ +

r∑
i=1

pi
∫ ∞

u
wmi(0, y, t) dy

=
r∑

i=1
pi wmi(u, t) .

Thus, for n= 0, 1, 2, . . .

ψe
n(u)=

∫ ∞

0
tn we(u, t) dt =

r∑
i=1

pi
∫ ∞

0
tn wmi(u, t) dt =

r∑
i=1

pi ψmi
n (u) .

In order to obtain explicit solutions from these results for particular distributions for inter-
claim times and individual claim amounts, it is clear that we need to know something about
w(0, y, t) and wm(0, y, t), but as we shall see in the following sections, we do not need explicit
formulae.

4. SA Models with Exponential Claims
We first consider any ordinary SA model with exponential individual claims, that is, with f (x)=
αe−αx, x> 0, since in this case we have the same general form of both the Laplace transform of Tu
and ψ(u) regardless of the form of k whenever the negative solution of Lundberg’s fundamental
equation exists. Specifically,

E
[
e−δTu I(Tu <∞)

]
=

(
1− R(δ)

α

)
e−R(δ)u (12)

where −R(δ) is the negative solution of Lundberg’s fundamental equation. See Willmot &
Woo (2017). The special case δ = 0 gives ψ(u)=ψ(0)e−Ru where R(= R(0)) is the adjustment
coefficient.

As w(0, y, t)=w(0, t) αe−αy by the memory-less property of the exponential distribution,

νn(y)=
∫ ∞

0
tn w(0, t) αe−αy dt =ψn(0) αe−αy

and

N̄n(u)=
∫ ∞

u
νn(y) dy=ψn(0) e−αu .

Setting n= 1 in equation (9) gives

A1(u)= N̄1(u)+
∫ u

0
ν1(x)ψ(u− x) dx=ψ1(0) e−Ru ,

and then equation (8) gives

ψ1(u)=A1(u)+ 1
φ(0)

∫ u

0
A1(x) φd(u− x) dx

=ψ1(0) e−Ru (1+ αuψ(0)) .
One way to find the moments of T0 is to set u= 0 in (12) and to note that

ψn(0)= (−1)n+1 dn

dδn
R(δ)
α

∣∣∣∣
δ=0

,

https://doi.org/10.1017/S1748499522000124 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000124


70 David C.M. Dickson

and we can find the derivatives of R(δ) from Lundberg’s fundamental equation given the dis-
tribution of V1. For example, using formulae given by Dickson & Hipp (2001) for the first two
derivatives of R(δ) evaluated when δ = 0 for the Erlang(2) risk model, we find thatψ1(0)= 4.0744
and ψ2(0)= 187.4743 when c= 1.2, α = 1 and the Erlang scale parameter is β = 2.

It is easily verified that when n= 2, equations (9) and (8) give

A2(u)=ψ2(0) e−Ru + 2ψ1(0)2 αu e−Ru

and

ψ2(u)= e−Ru
(
ψ2(0)+

(
2ψ1(0)2 +ψ2(0)ψ(0)

)
αu+ψ(0)(ψ1(0)αu)2

)
.

We remark that Borovkov & Dickson (2008) obtained a general expression for w(u, t) in terms
of the convolutions of the density k, and that in some cases, for example Erlang inter-claim times,
an explicit solution for w(u, t) exists. It is not an easy task to find the moments of the time of ruin
directly from such solutions when u> 0; this point is amply demonstrated by Drekic & Willmot
(2003) who consider the case of the classical risk model.

For a modified SA model, we have wm(0, y, t)=wm(0, t) αe−αy so that νmn (y)=ψm
n (0) αe−αy

and N̄m
n (u)=ψm

n (0) e−αu. Setting n= 1 in equation (11) gives

ψm
1 (u)= N̄m

1 (u)+
∫ u

0
νm0 (x)ψ1(u− x) dx+

∫ u

0
νm1 (x)ψ0(u− x) dx

leading to

ψm
1 (u)= (

ψm
1 (0)+ψm

0 (0)ψ1(0)αu
)
e−Ru .

Similarly, setting n= 2 in equation (11) gives the final result as

ψm
2 (u)= (

ψm
2 (0)+ (

ψm
0 (0)ψ2(0)+ 2ψm

1 (0)ψ1(0)
)
αu+ψm

0 (0)(ψ1(0)αu)2
)
e−Ru .

We discuss an approach to finding ψm
n (0) in section 7, and in section 8, we show how ψm

n (0) can
be obtained for some modified Erlang risk models.

5. The Classical Risk Model
We now consider the classical risk model, so that {N(t)}t≥0 is a Poisson process with parameter λ.
For this model, we can apply formula (8) for individual claim amount distributions for which the
factorisation of f introduced by Willmot (2007) holds, namely

f (x+ y)=
m∑
j=1

ηj(x) τj(y) (13)

for functions {ηj , τj}mj=1. Willmot (2007) shows that if the individual claim amount distribution is
an infinite mixture of Erlang distributions with the same scale parameter then this factorisation
applies. See also Willmot &Woo (2007) for further applications.

The bivariate Laplace transform of w(0, y, t) is∫ ∞

0

∫ ∞

0
e−δt−sy w(0, y, t) dy dt = λ

c

∫ ∞

0

∫ ∞

0
e−ρt−sy f (t + y) dy dt

where ρ = ρ(δ) is the unique positive solution of λ+ δ − cs= λf̃ (s), which is Lundberg’s
fundamental equation for this model. See Gerber & Shiu (1998) for details. When (13)
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applies ∫ ∞

0

∫ ∞

0
e−δt−sy w(0, y, t) dy dt = λ

c

∫ ∞

0

∫ ∞

0
e−ρt−sy

m∑
j=1

ηj(t) τj(y) dy dt

= λ

c

m∑
j=1

η̃j(ρ) τ̃j(s)

and so w(0, y, t) is of the form w(0, y, t)= ∑m
j=1 hj(t) τj(y) where hj(t)= ληj(t)/c.

To evaluate νn(y) from (5), we require quantities Hn
j defined as

Hn
j =

∫ ∞

0
tn hj(t) dt

for n= 1, 2, 3, . . . and j= 1, 2, 3, . . . ,m, and we can find these quantities without identifying
{hj}mj=1. We have ∫ ∞

0
tn hj(t) dt = (−1)n

dn

dδn
h̃j(ρ)

∣∣∣∣
δ=0

(14)

since ρ = 0 when δ = 0; see Gerber & Shiu (1998). Further, the derivatives of ρ when δ = 0 are
easily found, and the first two are given in Dickson (2016).

Example 5.1. Let λ= 1, c= 1.2 and f (x)= 4
3 e

−2x + 1
6 e

−x/2. Then

f (x+ y)= 2
3 e

−2x 2e−2y + 1
3 e

−x/2 1
2 e

−y/2

and
w(0, y, t)= h1(t) 2e−2y + h2(t) 1

2 e
−y/2 ,

where

h̃1(δ)= 5
9(2+ ρ)

and h̃2(δ)= 5
9(1+ 2ρ)

.

Using (14) these lead to H1
1 = 25

36 and H1
2 = 50

9 . Further,

ψ(u)= 0.7990 e−R1u + 0.0343 e−R2u

where R1 = 0.1069 and R2 = 1.5598, leading to

A1(u)= 6.2317 e−R1u + 0.0183 e−R2u

and
ψ1(u)= (7.6152+ 3.1922u) e−R1u − (1.3652− 0.0059u) e−R2u ,

in agreement with Example 6.1 of Lin & Willmot (2000). Similarly we find that H2
1 = 5559 and

H2
2 = 52779 leading to

A2(u)= (584.79+ 49.793u) e−R1u − (1.4547− 0.0063) e−R2u

and
ψ2(u)= (705.93+ 360.36u+ 12.753u2) e−R1u − (122.60+ 0.4630u− 0.0010u2) e−R2u .

6. Phase-Type(2) Risk Models
We can follow a process very similar to that in the previous section when the distribution of
times between claims is phase-type(2) (also called Coxian(2)). However, we must now impose
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extra conditions on the individual claim amount distribution beyond the factorisation (13), but
these conditions are not particularly restrictive. Following Dickson & Li (2010), we consider the
situation when the functions {ηj}mj=1 satisfy the factorisation

ηj(x+ y)=
n∑

i=1
ξij(x) ζij(y) . (15)

In the previous section, wemade use of the unique positive solution ρ of Lundberg’s fundamen-
tal equation for the classical riskmodel.We know from Ji & Zhang (2012) that in the phase-type(2)
risk model, there are two distinct positive solutions to Lundberg’s fundamental equation, and we
can use these in a similar way.

If a density k belongs to the phase-type(2) class, its Laplace transform is of the form

k̃(s)= λ1(1− p)s+ λ1λ2
(s+ λ1)(s+ λ2)

(16)

where 0< p≤ 1, λi > 0, for i= 1, 2 and λ2 �= λ1(1− p). (See, e.g. Willmot &Woo, 2017). From Li
& Garrido (2005), we know that

∫ ∞

0

∫ ∞

0
e−δt−sy w(0, y, t) dy dt =

2∑
j=1

bj
∫ ∞

0

∫ ∞

0
e−rjt−sy f (t + y) dy dt

where r1 = r1(δ) and r2 = r2(δ) are the positive solutions of Lundberg’s fundamental equation,

b1 = λ∗ + (δ− cr1)χ
c2(r2 − r1)

and b2 = λ∗ + (δ − cr2)χ
c2(r1 − r2)

,

λ∗ = λ1λ2 and χ = λ1(1− p).
Using the factorisation (13) of f , we get

∫ ∞

0

∫ ∞

0
e−δt−sy w(0, y, t) dy dt =

2∑
j=1

bj
m∑
l=1

η̃l(rj) τ̃l(s)=
m∑
l=1

2∑
j=1

bj η̃l(rj) τ̃l(s)

and so w(0, y, t)= ∑m
l=1 η

∗
l (t) τl(y) where

η̃∗
l (δ)=

2∑
j=1

bj η̃l(rj)

= λ∗ + (δ − cr1)χ
c2(r2 − r1)

η̃l(r1)− λ∗ + (δ− cr2)χ
c2(r2 − r1)

η̃l(r2)

= λ∗ + δχ

c2
η̃l(r1)− η̃l(r2)

r2 − r1
− χ

c
r1 η̃l(r1)− r2 η̃l(r2)

r2 − r1

= λ∗ + δχ

c2
η̃l(r1)− η̃l(r2)

r2 − r1
− χ

c
η̃′
l(r1)− η̃′

l(r2)
r2 − r1

.

We know that for a function α,∫ ∞

0

∫ ∞

0
e−rx−sy α(x+ y) dy dx= α̃(r)− α̃(s)

s− r
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(e.g. Dickson & Hipp, 2001) so when factorisation (15) applies
η̃l(r1)− η̃l(r2)

r2 − r1
=

∫ ∞

0

∫ ∞

0
e−r1x−r2y ηl(x+ y) dy dx

=
∫ ∞

0

∫ ∞

0
e−r1x−r2y

n∑
i=1

ξil(x) ζil(y) dy dx

=
n∑
i=1

ξ̃il(r1) ζ̃il(r2) .

Further, if a similar factorisation applies to η′
l, say

η′
l(x+ y)=

k∑
i=1

ϑil(x) ϕil(y) ,

then

η̃∗
l (δ)=

λ∗ + δχ

c2
n∑

i=1
ξ̃il(r1) ζ̃il(r2)− χ

c

k∑
i=1

ϑ̃il(r1) ϕ̃il(r2) ,

and we can differentiate this k times with respect to δ and then set δ = 0 to obtain quantities Hn
l

which are now defined as

Hn
l =

∫ ∞

0
tn η∗

l (t) dt .

We now illustrate ideas using the Erlang (2) distribution as our example. Although this is in
some sense the simplest case (as we set λ1 = λ2 = β and p= 1 in (16), giving χ = 0), it is actually
the case which yields most, as we can also obtain ψe

n(u) in this case.

Example 6.1. We consider the same set-up as in Example 5.1, except that the claim inter-arrival
times are Erlang(2) distributed and we set β = 2. The factorisation of f gave η1(x)= 2

3 e
−2x and

η2(x)= 1
3 e

−x/2 so we can set

ξ11(x)= 2
3 e

−2x, ζ11(y)= e−2y, ξ12(x)= 1
3 e

−x/2, ζ12(y)= e−y/2 ,

resulting in w(0, y, t)= η1(t) 2e−2y + η2(t) 1
2 e

−y/2 where

η̃1(δ)= ξ̃11(r1) ζ̃11(r2)= β2

c2
2

3(2+ r1)(2+ r2)
and

η̃2(δ)= ξ̃12(r1) ζ̃12(r2)= β2

c2
4

3(1+ 2r1)(1+ 2r2)
.

Differentiating η̃i(δ) with respect to δ for i= 1, 2, then setting δ = 0, we find thatH1
1 = 0.5312 and

H1
2 = 6.0399. We also have

ψ(u)= 0.7591 e−R1u + 0.0304 e−R2u

where R1 = 0.1253 and R2 = 1.6806, leading to

A1(u)= 6.5477 e−R1u + 0.0233 e−R2u
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and
ψ1(u)= (7.5751+ 2.9576u) e−R1u − (1.0040− 0.0057u) e−R2u .

Taking the second derivatives of η̃i(δ) for i= 1, 2, we then find that H2
1 = 33.8510 and H2

2 =
489.5552, giving

A2(u)= (524.95+ 51.020u) e−R1u − (1.5443− 0.0087u) e−R2u

and
ψ2(u)= (601.21+ 296.09u+ 11.523u2) e−R1u − (77.807+ 0.3682u− 0.0011u2) e−R2u .

To find ψe
n(u), we apply results from Dickson & Li (2012) who consider modified Erlang(n)

risk models under which the distribution of the time to the first claim is Erlang(j) for j=
1, 2, 3, . . . , n − 1. In the case of the modified Erlang(2) risk model under which the distribution
of the time to the first claim is Erlang(1) with the same scale parameter β , we find from formula
(4.2) of Dickson & Li (2012) that wm(0, y, t)= ηm1 (t) 2e−2y + ηm2 (t)

1
2e

−y/2 where

η̃m1 (δ)=
2β
3c

⎛
⎝ 1
2+ r1

− β

c

√
4

3(2+r1) + 1
3(1+2r1)

(2+ r1)(2+ r2)

⎞
⎠

and

η̃m2 (δ)=
β

3c

⎛
⎝ 2
1+ 2r1

− 4β
c

√
4

3(2+r1) + 1
3(1+2r1)

(1+ 2r1)(1+ 2r2)

⎞
⎠ .

Extending the previous notation we find that H0,m
1 = η̃m1 (0)= 0.3560 and H0,m

2 = η̃m2 (0)= 0.5212
giving

νm0 (x)= 0.7119 e−2x + 1.0424 e−x/2 .

We next find that H1,m
1 = 0.3587 and H1,m

2 = 3.5965, and from (11) we then find that

ψm
1 (u)= (5.9902+ 3.1799u) e−R1u − (2.0350− 0.0114u) e−R2u .

As the equilibrium distribution of the Erlang(2,β) distribution is an equally weighted average of
the Erlang (1,β) and Erlang(2,β) distributions, Theorem 3.3 gives

ψe
1(u)= 1

2
(
ψ1(u)+ψm

1 (u)
)

= (6.7826+ 3.0687u) e−R1u − (1.5195− 0.0085u) e−R2u .

We then find H2,m
1 = 19.8204 and H2,m

2 = 286.3038 leading to

ψm
2 (u)= (461.17+ 301.56u+ 12.389u2) e−R1u − (155.04+ 0.7464u− 0.0021u2) e−R2u

and
ψe
2(u)= (531.19+ 298.83u+ 11.956u2) e−R1u − (116.42+ 0.5573u− 0.0016u2) e−R2u.

We remark that the differentiation of η̃i(δ) and η̃mi (δ) is easily done with mathematical software,
and the derivatives of ri(δ) when δ = 0 are easily computed – see Dickson & Hipp (2001).

The arguments that allow us to obtain the functions η̃mi (δ) for i= 1, 2 in the above example are
given in section 4 of Dickson & Li (2012). Unfortunately, similar arguments do not seem to apply
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for other phase-type(2) risk models. However, in the next section we show how the negative solu-
tions of Lundberg’s fundamental equation can be used to obtain the bivariate Laplace transform
of wm(0, y, t), giving us what we need to find ψm

n (u).

7. Modified SA Models
We now illustrate how we can find the Laplace transform of wm(0, y, t) (leading to the func-
tions νmn (u)) using the negative solutions of Lundberg’s fundamental equation. We can do this
by considering the Gerber-Shiu function with initial surplus 0 for a modified SA model of the
form

ϕm(0)= E[ exp{−δTm
0 − sYm

0 } I(Tm
0 <∞)]

=
∫ ∞

0
e−δt k1(t)

∫ ct

0
f (x) ϕ(ct − x) dx dt +

∫ ∞

0
e−δt k1(t)

∫ ∞

ct
f (x) e−s(x−ct) dx dt

where ϕ(u)= E[ exp{−δTu − sYu} I(Tu <∞)] is the equivalent Gerber-Shiu function for the
ordinary SA model. The objective is to first solve for ϕ(u) and then use this to express ϕm(0)
as a sum of products of Laplace transforms in δ and s. We illustrate the idea in the next example.
It seems difficult to give general results as we require an assumption for k1 in order to solve for
ϕm(0).

Example 7.1. Suppose that in an ordinary SA model, the claim inter-arrival times are distributed
as the sum of two independent exponential random variables with parameters λ1 and λ2 respec-
tively where λ1 <λ2, and f (x)= ∑2

i=1 qi αi e−αix where q1 + q2 = 1. Gerber & Shiu (2005) show
that for this model

ϕ(u)= C1 e−R1u + C2 e−R2u

where −Ri(= −Ri(δ)) for i= 1, 2 are the negative solutions of Lundberg’s fundamental
equation

(λ1 + δ − cs)(λ2 + δ − cs)= λ1 λ2 f̃ (s) , (17)

and
2∑

k=1

Ck
αi − Rk

= 1
αi + s

(18)

for i= 1, 2. Equations (18) are exactly the same equations that are solved in the context of the
classical risk model by Dickson & Drekic (2006), so we have

Cj =
2∑

k=1

γj,k(δ)
αk

αk + s

where

γ1,1(δ)= (α1 − R1)(α1 − R2)(α2 − R1)
α1(R2 − R1)(α1 − α2)

, γ1,2(δ)= −(α1 − R1)(α2 − R1)(α2 − R2)
α1(R2 − R1)(α1 − α2)

,

γ2,1(δ)= −(α1 − R1)(α1 − R2)(α2 − R2)
α2(R2 − R1)(α1 − α2)

, γ2,2(δ)= (α1 − R2)(α2 − R1)(α2 − R2)
α2(R2 − R1)(α1 − α2)

.

Suppose that we want to find the moments ψe
n(u). As both k and ke are combinations of expo-

nentials, it is sufficient to consider the case when k1(t)= λe−λt for t> 0, as we can then find the
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required quantities using Theorems 3.2 and 3.3. We get

ϕm(0)=
2∑

i=1

2∑
j=1

∫ ∞

0
λ e−(λ+δ)t

∫ ct

0
qi αi e−αix Cj e−Rj(ct−x) dx dt

+
2∑

i=1

∫ ∞

0
λ e−(λ+δ)t

∫ ∞

ct
qi αi e−αix e−s(x−ct) dx dt

= λ

2∑
i=1

2∑
j=1

qi αi Cj

∫ ∞

0
e−(λ+δ+cRj)t 1− e−(αi−Rj)ct

αi − Rj
dt

+ λ

2∑
i=1

qi αi
∫ ∞

0

e−(λ+δ+αic)t

αi + s
dt

= λ

2∑
i=1

2∑
j=1

qi αi Cj

(λ+ δ + cRj)(αi − Rj)
− λ

2∑
i=1

2∑
j=1

qi αi Cj

(λ+ δ + αic)(αi − Rj)

+ λ

2∑
i=1

qi αi
(λ+ δ + αic)(αi + s)

= λ

2∑
i=1

2∑
j=1

qi αi Cj c
(λ+ δ + cRj)(λ+ δ + αic)

+ λ

2∑
i=1

qi αi
(λ+ δ + αic)(αi + s)

= λ

2∑
i=1

2∑
j=1

qi αi c
(λ+ δ + cRj)(λ+ δ + αic)

2∑
k=1

γj,k(δ)
αk

αk + s

+ λ

2∑
i=1

qi αi
(λ+ δ + αic)(αi + s)

.

So

wm(0, y, t)=
2∑

l=1

ηl(t) αle−αly

where

η̃l(δ)= λ

2∑
i=1

2∑
j=1

qi αi c γj,l(δ)
(λ+ δ + cRj)(λ+ δ + αic)

+ λ ql
(λ+ δ + αlc)

.

We can evaluate η̃l(0) and by differentiating Lundberg’s fundamental equation (17) we can find
the derivatives of Ri(δ) when δ = 0, and we can insert these into the derivatives of η̃l(δ) to evaluate
the quantities Hi,m

l for l= 1, 2 and i= 1, 2, 3, . . .. All other details required to find ψn(u) for this
example can be found in Gerber & Shiu (2005).

We remark that this approach can also be used to find the bivariate transform of w(0, y, t). For
this, we simply require to find ϕ(u). However, as in the above example, the transforms with respect
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to δmay be complicated expressions in terms of the negative solutions of Lundberg’s fundamental
equation.

It is also possible to use this approach to find an expression for the Laplace transform with
respect to δ of the time of ruin for the modified process, and to then find the moments of the
time of ruin for the modified process by differentiating this Laplace transform. However, this can
be a very cumbersome process; interested readers can try to reproduce the results for ψm

n (u) in
Example 6.1 using this approach.

8. The Erlang(n) Risk Model
In this section, we consider the Erlang(n) risk model and take a different approach to finding
the quantities for this model that are equivalent to Hn

j in section 5 and Hn,m
j in section 6. We

extend ideas from Dickson & Li (2012), and we start with some definitions from that paper. For
m= 0, 1, 2, . . . let

pm(t)= e−βt (βt)
m

m! ,

where β is the scale parameter of the Erlang(n) distribution, and for j= 0, 1, 2, . . . , n − 1 define

gn ,j(x, t)=
∞∑
r=1

prn+j(t)f r∗(x)

where f is still the density function for individual claims and f r∗ is the r-fold convolution of f with
itself. Dickson & Li (2012) show that when the factorisation (13) holds, for a modified Erlang(n)
risk model under which the distribution of the time to the first claim is Erlang(j) with scale param-
eter β , then, withmj denoting this modification, the joint density of the time of ruin and deficit at
ruin when the initial surplus is zero is of the form

wmj(0, y, t)=
m∑
l=1

hj,l(t) τl(y) , (19)

and this holds for j= 1, 2, 3, . . . , n − 1. They give an expression for h̃j,l(δ) (the final formula in
their section 3.1), but this expression does not appear helpful for our purpose. It is convenient to
adopt the notation wmn (0, y, t) for the joint density of T0 and Y0 for the ordinary Erlang(n) risk
model.

Using the arguments in Dickson & Li (2012), for this modified Erlang(n) risk model claims
occur at occurrences j, n + j, 2n + j, . . . of an underlying Poisson process, and we find that

wmj(0, y, t)= β pj−1(t) f (ct + y)+ β

∞∑
r=1

prn+j−1(t)
∫ ct

0
f r∗(x) f (ct − x+ y) dx

− c
n−1∑
i=0

∫ t

0
gn ,j+i−n (cs, s)wmn−i(0, y, t − s) ds .

The first two terms in the above consider the situation when a claim occurs in the interval (t, t +
dt), while the third term adjusts for upcrossings of the surplus process through level 0 prior to time
t. Suppose the last upcrossing through 0 occurs with n − i Poisson events until the next claim, for
i= 0, 1, 2, . . . , n − 1. Then, we have a contribution wmn−i(0, y, t − s). This means there have been
i Poisson events from the time of the previous claim to time s, so the number of Poisson events to
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time s is rn + j+ i for some r, r = 0, 1, 2, . . .. Using (19) and (13) we get

wmj(0, y, t)= β pj−1(t)
m∑
l=1

ηl(ct) τl(y)+ β

∞∑
r=1

prn+j−1(t)
∫ ct

0
f r∗(x)

m∑
l=1

ηl(ct − x) τl(y) dx

− c
n−1∑
i=0

∫ t

0
gn ,j+i−n (cs, s)

m∑
l=1

hn−i,l(t − s) τl(y) ds ,

so that

hj,l(t)= β pj−1(t) ηl(ct)+ β

∞∑
r=1

prn+j−1(t)
∫ ct

0
f r∗(x) ηl(ct − x) dx

− c
n−1∑
i=0

∫ t

0
gn ,j+i−n (cs, s) hn−i,l(t − s) ds . (20)

In order to find moments of the time of ruin for the modified processes, we require quantities
we denote by Hr

j,l given by

Hr
j,l =

∫ ∞

0
tr hj,l(t) dt

for r = 0, 1, 2, . . .. For brevity, we now write (20) as

hj,l(t)= aj,l(t)−
n−1∑
i=0

∫ t

0
γj,i(s) hn−i,l(t − s) ds (21)

where

aj,l(t)= β pj−1(t) ηl(ct)+ β

∞∑
r=1

prn+j−1(t)
∫ ct

0
f r∗(x) ηl(ct − x) dx

and γj,i(s)= cgn ,j+i−n (cs, s). Further, for r = 0, 1, 2, . . . let

Ar
j,l =

∫ ∞

0
tr aj,l(t) dt and �r

j,i =
∫ ∞

0
tr γj,i(t) dt .

Then from (21), we get

Hr
j,l =Ar

j,l −
n−1∑
i=0

∫ ∞

0
tr

∫ t

0
γj,i(s) hn−i,l(t − s) ds dt

=Ar
j,l −

n−1∑
i=0

∫ ∞

0
γj,i(s)

∫ ∞

s
tr hn−i,l(t − s) dt ds

=Ar
j,i −

n−1∑
i=0

∫ ∞

0
γj,i(s)

∫ ∞

0
(y+ s)r hn−i,l(y) dy ds

=Ar
j,l −

n−1∑
i=0

r∑
k=0

(
r
k

)
�r−k
j,i Hk

n−i,l . (22)
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Table 1. Values of Hrj,i .

j, i r= 0 r= 1 r= 2

1,1 0.3339 0.6153 14.1243
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2,1 0.4497 1.3429 32.9785
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3,1 0.4664 1.9877 52.0599
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1,2 0.5956 0.2946 4.8506
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2,2 0.3848 0.5449 11.2958
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3,2 0.2697 0.7453 17.7962

Thus, we have a system of equations that we can use to find the quantities Hr
j,l. We note that for

n= 0, 1, 2, . . .

ψ
mj
n (0)=

∫ ∞

0
tn

∫ ∞

0
wmj(0, y, t) dy dt =

m∑
l=1

Hn
j,l .

Example 8.1. We consider the situation when the claim inter-arrival time distribution is
Erlang(3,β), and the individual claim amount distribution is Erlang(2,α), and we find the
moments ψn(u) and ψe

n(u) for n= 1, 2. As

ke(t)= β

3
e−βx

2∑
j=0

(βx)j

j! = 1
3

3∑
i=1

κi(t)

where κi(t) is the Erlang(i,β) density, we can find the moments ψe
n(u) using Theorem 3.3 by

finding ψmj
n (u), j= 1, 2, 3. The factorisation (13) gives

η1(x)= αxe−αx, η2(x)= e−αx, τ1(y)= αe−αy, τ2(y)= α2ye−αy ,

so that for j= 1, 2, 3

wmj(0, y, t)= hj,1(t) τ1(y)+ hj,2(t) τ2(y)

and for the ordinary Erlang(3) risk model

g(0, y)=H0
3,1 τ1(y)+H0

3,2 τ2(y) . (23)

For j= 1, 2 we find that

Ar
j,1 =

∞∑
m=0

β3m+j

(3m+ j− 1)!
(αc)2m+1

(2m+ 1)!
(r + 5m+ j)!

(β + αc)r+5m+j+1

Ar
j,2 =

∞∑
m=0

β3m+j

(3m+ j− 1)!
(αc)2m

(2m)!
(r + 5m+ j− 1)!
(β + αc)r+5m+j ,

and for i= 0, 1, 2

�r
j,i =

∞∑
m=1

β3m+j+i−3

(3m+ j+ i− 3)!
(αc)2m

(2m− 1)!
(5m+ j+ i+ r − 4)!
(β + αc)5m+j+i+r−3 .

We now set the parameter values as α = 2, β = 3 and c= 1.2. Solving the system of equations (22)
for r = 0, 1, 2 yields the values in Table 1.
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Figure 1. Mean time of ruin.

Noting that φ(0)= 1−H0
3,1 −H0

3,2 = 0.2640, we can use (1) and (23) to obtain φ(u), from
which

ψ(u)= 0.7556 e−R1u − 0.0196 e−R2u

where R1 = 0.3952 and R2 = 2.6721. Applying the theorems from section 3, we obtain the first
moments as

ψ1(u)= (2.5005+ 3.1066u) e−R1u + (0.2325+ 0.0027u) e−R2u ,

ψ
m2
1 (u)= (1.4012+ 3.5976u) e−R1u + (0.4866+ 0.0055u) e−R2u ,

ψ
m1
1 (u)= (−0.1080+ 4.1663u) e−R1u + (1.0179+ 0.0114u) e−R2u ,

ψe
1(u)= (1.2646+ 3.6235u) e−R1u + (0.5790+ 0.0065u) e−R2u ,

and the second moments as

ψ2(u)= (64.500+ 99.264u+ 12.772u2) e−R1u + (5.3566− 0.0625u− 0.0004u2) e−R2u ,

ψ
m2
2 (u)= (33.322+ 102.67u+ 14.791u2) e−R1u + (10.952− 0.1307u− 0.0007u2) e−R2u ,

ψ
m1
2 (u)= (−3.4108+ 104.66u+ 17.129u2) e−R1u + (22.386− 0.2735u− 0.0016u2) e−R2u ,

ψe
2(u)= (31.470+ 102.20u+ 14.897u2) e−R1u + (12.898− 0.1556u− 0.0009u2) e−R2u .

Figures 1 and 2 respectively show the mean and standard deviation of the time of ruin, given that
ruin occurs, for both the ordinary and the equilibrium models. It is not surprising that the plots
are close in each figure, given that the only difference for these risk processes is the distribution of
the time to the first claim.
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Figure 2. Standard deviation of time of ruin.

9. Concluding Remarks
We have presented general formulae for moments of the time of ruin in ordinary and modified
Sparre Andersen risk models, and we have shown how they can be applied to find exact results.
Our approach does not offer any advantage over the existing result by Lin & Willmot (2000) for
the classical risk model. However, it does provide a fairly simple way of finding solutions forψn(u)
in phase-type(2) risk models. In the case of Erlang risk models, we are able to find moments in the
ordinary, equilibrium, and some modified cases.

Application of our approach in sections 5 and 6 hinges on some knowledge of the functions
w(0, y, t) and wm(0, y, t), as well as the factorisations we have imposed. In practice, these factori-
sations are not serious impositions as many individual claim amount distributions satisfy them.
The approach in section 7 is more generally applicable, but is likely to require more tedious dif-
ferentiation than in sections 5 and 6. To apply the approach in section 8, we must be able to
compute convolutions of the individual claim amount distribution. This is not a great restriction
as we can do this when the individual claim amount distribution is an infinite mixture of Erlang
distributions with the same scale parameter, and Willmot &Woo (2007) show that a wide variety
of distributions are of this type.

An open question is how to find the quantity νn(y) given by (5), either analytically or numeri-
cally (which is perhaps more likely), for forms of f for which the factorisation (13) does not apply.
If we can do this, then it should be possible to use numerical approaches to find ψn(u) for u> 0.
An approach for the case u= 0 is presented in Dickson &Hipp (2001) where the inter-claim times
are Erlang(2) distributed and the claim amount distribution is Pareto.

References
Abramowitz,M. & Stegun, I.A. (1965). Handbook of Mathematical Functions. Dover, New York.
Albrecher, H. & Boxma, O.J. (2005). On the discounted penalty function in a Markov-dependent risk model. Insurance:

Mathematics & Economics, 37, 650–672.
Borovkov, K.A. & Dickson, D.C.M. (2008). On the ruin time distribution for a Sparre Andersen process with exponential

claim sizes. Insurance: Mathematics & Economics, 42, 1104–1108.

https://doi.org/10.1017/S1748499522000124 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000124


82 David C.M. Dickson

Dickson, D.C.M. & Drekic, S. (2006). Optimal dividends under a ruin probability constraint. Annals of Actuarial Science, 1,
291–306.

Dickson, D.C.M. & Hipp, C. (2001). On the time to ruin for Erlang(2) risk processes. Insurance: Mathematics & Economics,
29, 333–344.

Dickson, D.C.M. (2008). Some explicit solutions for the joint density of the time of ruin and the deficit at ruin. ASTIN
Bulletin, 38, 259–276.

Dickson,D.C.M. (2016). Insurance Risk and Ruin, 2nd edition. Cambridge University Press, Cambridge.
Dickson, D.C.M. & Li, S. (2010). Finite time ruin problems for the Erlang(2) risk model. Insurance: Mathematics &

Economics, 46, 12–18.
Dickson,D.C.M. & Li, S. (2012). Erlang risk models and finite time ruin problems. Scandinavian Actuarial Journal, 2012(3),

183–202.
Drekic, S. &Willmot,G.E. (2003). On the density and moments of the time to ruin with exponential claims. ASTIN Bulletin,

33, 11–21.
Gerber,H.U. (1979). An Introduction to Mathematical Risk Theory. S.S. Huebner Foundation, Philadelphia, PA.
Gerber,H.U. & Shiu, E.S.W. (1998). On the time value of ruin. North American Actuarial Journal, 2(1), 48–78.
Gerber,H.U. & Shiu, E.S.W. (2005). The time value of ruin in a Sparre Andersen model. North American Actuarial Journal,

9(2), 1–21.
Ji, L. & Zhang, C. (2012). Analysis of the multiple roots of the Lundberg fundamental equation in the PH(n) risk model.

Applied Stochastic Models in Business and Industry, 28, 73–90.
Kim, S.-Y. & Willmot, G.E. (2016). On the analysis of ruin-related quantities in the delayed renewal risk model. Insurance:

Mathematics & Economics, 66, 77–85.
Lee,W.Y.&Willmot,G.E. (2014). On the moments of the time to ruin in dependent Sparre Andersen models with emphasis

on Coxian interclaim times. Insurance: Mathematics & Economics, 59, 1–10.
Lee, W.Y. & Willmot, G.E. (2016). The moments of the time to ruin in dependent Sparre Andersen models with Coxian

claim sizes. Scandinavian Actuarial Journal, 2016(6), 550–564.
Li, S. & Garrido, J. (2005). On a general class of renewal risk process: analysis of the Gerber-Shiu function. Advances in

Applied Probability, 37, 836–856.
Lin, X. &Willmot, G.E. (2000). The moments of the time of ruin, the surplus before ruin, and the deficit at ruin. Insurance:

Mathematics & Economics, 27, 19–44.
Sparre Andersen, E. (1957). On the collective theory of risk in the case of contagion between the claims. In Transactions of

the XV International Congress of Actuaries, Volume 2 (pp. 219–229).
Willmot,G.E. (2007). On the discounted penalty function in the renewal risk model with general interclaim times. Insurance:

Mathematics & Economics, 41, 17–31.
Willmot, G.E. & Lin, X.S. (2001). Lundberg Approximations for Compound Distributions with Insurance Applications.

Springer, New York.
Willmot,G.E.&Woo, J.K. (2007). On the class of Erlangmixtures with risk theoretic applications.North American Actuarial

Journal, 11(2), 99–115.
Willmot, G.E. & Woo, J.K. (2017). Surplus Analysis of Sparre Andersen Insurance Risk Processes. Springer International

Publishing AG, Switzerland.
Yu, K., Ren, J. & Stanford, D.A. (2010). The moments of the time of ruin in Markovian risk models. North American

Actuarial Journal, 14(4), 464–471.

Cite this article:Dickson DCM (2023). The moments of the time of ruin in Sparre Andersen risk models, Annals of Actuarial
Science, 17, 63–82. https://doi.org/10.1017/S1748499522000124

https://doi.org/10.1017/S1748499522000124 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499522000124
https://doi.org/10.1017/S1748499522000124

	
	Introduction
	Preliminaries
	The ordinary SA model
	The modified SA model
	The Main Results
	SA Models with Exponential Claims
	The Classical Risk Model
	Phase-Type(2) Risk Models
	Modified SA Models
	The Erlang("026E30F mathscrn) Risk Model

	Concluding Remarks
	References

