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Values of Twisted Tensor L-functions of
Automorphic Forms Over Imaginary
Quadratic Fields

Dominic Lanphier and Howard Skogman
Appendix by Hiroyuki Ochiai

Abstract. Let K be a complex quadratic extension of Q and let AK denote the adeles of K. We find
special values at all of the critical points of twisted tensor L-functions attached to cohomological cusp-
forms on GL2(AK ) and establish Galois equivariance of the values. To investigate the values, we deter-
mine the archimedean factors of a class of integral representations of these L-functions, thus proving
a conjecture due to Ghate. We also investigate analytic properties of these L-functions, such as their
functional equations.

1 Introduction

Let D > 0 be an integer and let K = Q(
√
−D) be a complex quadratic extension

of Q . Let AK be the adeles of K. Then GL2(AK ) acts on hyperbolic 3-space H3. The
twisted tensor L-function LT(s, f ) attached to a cohomological cuspform f on H3 is
essentially a subseries of the standard L-function of f . As such, it is analogous to
the Asai L-function [2] of a real quadratic extension of Q . A precise definition of
LT(s, f ) is given in Section 3. Analytic properties of LT(s, f ) for certain cuspforms
were studied by Takase [19] and Zhao [20]. Arithmetic properties of the L-functions
studied here were investigated by Ghate in [6, 7]. In particular, special values at all
critical integers in the right half of the critical strip were found, and these values were
shown to be consistent with the conjecture of Deligne [3]. The arithmetic results
were generalized to the case where K is a complex quadratic extension of a totally
real number field in [8].

The special values in [6–8] were obtained by studying a certain class of integral
representations of LT(s, f ). The arithmetic properties of the integrals follow from
ideas developed by Hida in [11]. The integrals were not completely determined as
their archimedean factors were not fully computed. However, an explicit form for
these factors was conjectured in [7], and the conjecture was subsequently proved by
H. Ochiai, but not published. We thank the referee for pointing us to Ochiai’s proof,
which now appears as an appendix to this paper. In this paper we study these integral
representations and determine the archimedean factors precisely, consequently giv-
ing a different proof of the conjecture of [7]. This and the functional equation for the
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twisted tensor L-function allow us to extend the special value results of [7] to the re-
maining critical points in the left half of the critical strip in the sense of [3]. Note that
the functional equation in this setting was proved in [6] under the assumptions that
w is odd, ψN is primitive, and n is an extended ideal. Here we include the case when
ψN is trivial, but only when K has class number 1. We also prove Galois equivariance
of the values and investigate the locations of possible poles of the L-functions. Galois
equivariance can be readily established following [14, 16].

Let OK denote the integers of K and let n ⊆ OK be a nonzero ideal. Let
Sn(Γ0(n), ψn) be the space of cuspforms on H3 of weight n, level n and nebentype
a Hecke character ψn. The precise definitions of these cuspforms and their adelic
versions are given in Section 2. A cuspform f ∈ Sn(Γ0(n), ψn) can be realized as
a differential 1-form δ( f ) on hyperbolic 3-space where δ is the Eichler–Shimura–
Harder isomorphism. Then δ( f ) takes values in a certain sheaf constructed from
an irreducible SL2(K)-module and the restriction δ( f )|H1

to the complex upper-half
plane H1 decomposes into a sum of differential 1-forms on H1. We denote such a
summand as δ2n−2m( f ). An Eisenstein series E2n−2m+2 on H1 and a pairing 〈 · , · 〉
of cohomological automorphic forms are defined in Section 3, following [11]. The
Dirichlet character ψN is defined from ψn in Section 3. For i and c, the two embed-
dings of K into C, let n = ni i + ncc and v = vi i + vcc where the infinity type of ψn

is −n− 2v. The main results of this paper are the following integral representations
(first studied in [6]) and the special values of Theorem 1.4.

Theorem 1.1 Let f ∈ Sn(Γ0(n), ψn) be a newform and a Hecke eigenfunction and
let

L∞(s−m, f ) =

(−1)m√π
(n

m

)2

2s

Γ
(

s
2 + n−m + 1

)
Γ
(

s
2 + 1

2

) Γ(s + n−m + 1)Γ(s + 2n−m + 2)

Γ(s + 2n− 2m + 2)
.

For ψN primitive and nontrivial let 0 ≤ m ≤ n, and for ψN trivial let 0 ≤ m < n. For
m ≡ vi + vc (mod 2) and w = n + 1 + vi + vc, we have∫

Γ0(N)\H1

〈δ2n−2m( f ), E2n−2m+2(s, · , ψN )〉 =

√
D

s+n−m+w+1
ivi−vc

(2π)s+2n+2−mLN (2s + 2n− 2m + 2, ψN )
× L∞(s−m, f )LT(s + n−m + w + 1, f ).

All of the results here can be generalized to CM fields following [8]. The explicit
integral representations above give the following, which was also shown in [5], and
the w odd case was shown in [6, Section 7.2].

Corollary 1.2 Let f ∈ Sn(Γ0(n), ψn) with ψN primitive or trivial. Then LT(s, f ) is
holomorphic for w odd and has at most a simple pole at s = w + 1 for w even.

Theorem 1.3 gives explicit functional equations of LT(s, f ) for odd and even
weights of f , where g(ψN ) is a Gauss sum defined in Section 3. This result is proved
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in Section 5. In the following we normalize the cuspform f so that its first Fourier
coefficient is 1, as in [7], and f is the cuspidal eigenform whose Fourier coefficients
are the complex conjugates of those of f . As discussed in Section 5, we take K to have
class number 1 for simplicity.

Theorem 1.3 Let f and LT(s, f ) be as in Theorem 1.1 and let K have class number 1.
Set ε = 0 for w even and ε = 1 for w odd and set

ΛT(s, f ) =
(√D

2π2

) s
Γ
( s− w + ε

2

) 2
Γ(s− w + n + 1)LT(s, f ).

Then

ΛT(s, f ) = cψN (−1) g(ψN )N2w+1+ε−3sΛT(2w + 1− s, f ),

where c ∈ Q( f , ψn) and |c| = 1.

The critical points of LT(s, f ) in the sense of [3] are k ∈ [w − n,w] for k odd and
k ∈ [w + 1,w + 1 + n] for k even. The result below for ψN primitive and k even
is essentially the main result of [7], where Ω( f ) is a canonical period attached to f .
We define Ω( f ) in Section 3. Here we obtain special value results at the remaining
critical points of LT(s, f ) for ψN primitive or trivial and n principal. We also establish
Galois equivariance for all of the values. The special values follow from Theorem 1.1,
the ideas of Hida in [11], and the functional equation. In the following, Q( f , ψn)
denotes the field Q adjoined the values of the Fourier coefficients of f and the values
of the character ψn. Also, Aut(C/Q) denotes the field automorphisms of C, and for
a ∈ C let aσ denote the action of σ on a and for f a cuspform let f σ denote the action
of σ on the Fourier coefficients of f .

Theorem 1.4 Let ψN be primitive and nontrivial and let f ∈ Sn(Γ0(n), ψn) be a
normalized newform that is a Hecke eigenfunction. For even k ∈ [w + 1,w + 1 + n] we
have

A1( f , ψN ) =
LT(k, f )

Ω( f ) g(ψN )(2πi)3k−3w+n+1
∈ Q( f , ψn)

and A1( f , ψN )σ = A1( f σ, ψσN ) for σ ∈ Aut(C/Q).
Let K have class number 1. For odd k ∈ [w − n,w] we have

A2( f ) =
LT(k, f )

Ω( f )
√

D(2πi)k−w+n+1
∈ Q( f , ψn)

and A2( f )σ = A2( f σ) for σ ∈ Aut(C/Q).
In the case that ψN is trivial and m 6= n, the values hold as above with the factor

g(ψN ) removed.

In Section 2 we define the class of automorphic forms that we work with, and in
Section 3 we introduce the integral representations of LT(s, f ) from [6] and [7]. We
prove the conjecture from [7] in Section 4, and this gives Theorem 1.1. We prove
Theorems 1.3 and 1.4 and Corollary 1.2 in the last section.
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2 Automorphic Forms and Differential Forms

In this section we define cuspforms of a complex quadratic extension of Q adelically
and recall the formalism of cohomological automorphic forms following [11]. To a
cuspform on the adelic group we then associate a cuspform on hyperbolic 3-space,
as in [7]. For integral D > 0 let K = Q(

√
−D) be a CM extension of Q with

discriminant−D. Let OK denote the integers of K. Denote the two embeddings of K
into C by i and c and let n = ni i+ncc and v = vi i+vcc be formal sums in Z[i, c], where
ni , nc ≥ 0. Let AK denote the adeles of K and let JK be the ideles of K. Fix an ideal
n ⊂ OK and let ψ : K×\ JK → C be a Hecke character with infinity type −n − 2v
whose conductor divides n. Let W (ni + nc + 2,C) be the space of homogeneous

polynomials of degree ni + nc + 2 over C in variables S and T. Let ÔK =
∏

v prime Ov.

Then ψ|
ÔK

can be considered to be a character on
(
OK /(n)

)×
and we denote this

character by ψn. For a matrix m let mT denote its transpose.
For a function f : GL2(AK ) → W (ni + nc + 2,C) and g ∈ GL2(AK ) we have

that f (g) is a function of the variables S and T and so we can write f (g)(S,T). For
σ = i, c let Dσ be the operators from [10, Section 1.3]. That is, Dσ/4 is a com-
ponent of the Casimir operator in the Lie algebra sl2(C) ⊗R C. For a ring R let
UR = {

(
1 u
0 1

)
| u ∈ R}. Let ZA denote the center of GL2(AK ), let

Γ0(n) =

{(
a b
c d

)
∈ GL2(ÔK )

∣∣∣ c ≡ 0 (mod n)

}
,

and for
(

a b
c d

)
∈ Γ0(n) let ψn

(
a b
c d

)
=
∏

v| n ψv(dv).
A cuspform of weight (n, v), level n, and central character ψn is a function

f : GL2(AK )→W (ni + nc + 2,C) with the following properties. We have f (γg) =
f (g) for γ ∈ GL2(K), f (zg) = ψn(z) f (g) for z ∈ ZA, and for γ0γ∞ ∈ Γ0(n)SU2(C)
we have f (gγ0γ∞)(S,T) = ψn(γ0) f (g)(γ∞(S,T)). Let f be an eigenfunction of the
operators Dσ as in [10] or [20]. In particular, Dσ f = (n2

σ/2 + nσ) f as in [11]. As f
is a cuspform, we have ∫

UK\UA

f (ug) du = 0

for all g ∈ GL2(AK ) and where du is Lebesgue measure on AK . Denote the space of
such cuspforms by S(n,v)(n, ψn). Following [10, Section 2.3, Corollary 2.2] we can
assume that ni = nc, which we denote by n.

Let

H3 =

{
z =

(
x −y
y x

) ∣∣∣ x ∈ C, y ∈ R, y > 0

}
be upper-half hyperbolic 3-space. For a ∈ C let τ (a) =

(
a 0
0 a

)
. For γ =

(
a b
c d

)
∈

SL2(C), the transitive action on H3 is given by

γ(z) =
[
τ (a)(z) + τ (b)

][
τ (c)(z) + τ (d)

]−1
.

Let j(γ, z) = τ (c)(z) + τ (d). There is a natural embedding H1 ↪→ H3 given by
x + i y ↪→

(
x −y
y x

)
. The stabilizer of

(
0 −1
1 0

)
is SU2(C), so we can identify H3 with

SL2(C)/SU2(C). The embedding above is compatible with

SL2(R)/SO2(R) ↪→ SL2(C)/SU2(C).
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A cuspform f ∈ S(n,v)(n, ψn) gives rise to a cuspform on GL2(C) and then on H3

following [7]. Let h be the class number of K and let A0 denote the finite adeles of K.
By strong approximation we have

GL2(AK ) =
h⊔

j=1
GL2(K)

( a j 0
0 1

)
Γ0(n)GL2(C)

for certain a j ∈ A0, and we can assume that a1 = 1. Let a j = a j OK and let

Γa j =

{(
a b
c d

)
∈ GL2(ÔK )

∣∣∣ a, d ∈ OK , b ∈ a j , c ∈ a−1
j n, ad− bc = 1

}
.

For f ∈ S(n,v)(n, ψn), define a cuspform on GL2(C) by F j = f
(( a j 0

0 1

)
g
)

. Let

f j(z)(S,T) = F j(g) j
(

g,
(

0 −1
1 0

)T)
(S,T),

where g ∈ GL2(C) is chosen so that g
(

0 −1
1 0

)
= z. Then f j : H3 → W (2n + 2,C) is

well defined, and for γ =
(

a b
c d

)
∈ Γa j it satisfies

f j(γz)(S,T) = ψn(d) f j(z) j(γ, z)T(S,T).

Thus, f j is a cuspform on H3 of weight n, character ψn, and with respect to Γa j and
we denote the space of such cuspforms by Sn(Γa j , ψn). Let δK be the different of
K and let dK ∈ JK be so that dKOK = (δK ). Let | · |J denote the idele norm. Let
W : C× →W (2n + 2,C) be the Whittaker function

W (s) =

2n+2∑
α=0

(2n + 2
α

) 1

svi svc

( s

i|s|
) n+1−s

Kα−n−1(4π|s|)S2n+2−αTα,

where Kα(x) is a modified Bessel function, as in [1, Section 4.5]. Let

eK =
∏
v

(ev ◦ TrKv/Qv
) · (e∞ ◦ TrC /R),

where ev(
∑

j c jv j) = e−2πi
∑

j<0 c j v
j

and e∞(x) = e2πix. Then from [11, Theorem 6.1]
for example, a cuspform f as above has a Fourier expansion given by

(2.1) f
( y x

0 1

)
= |y|J

∑
ξ∈K×

c f (ξydK )W (ξy∞)eK (ξx),

where y∞ is a real place of y. Note that c f ( · ) can be considered to be a function on
the fractional ideals of K that vanishes outside of the integral ideals. In the sequel we
consider f to be a newform, a Hecke eigenfunction in the sense of [20, Section 4],
and normalized so that c f (OK ) = 1.

Let A be a Q(ψn)-algebra and let L(n,A) be the space of homogeneous polyno-
mials of degree n in x = (X,Y ) and degree n in x = (X,Y ) with coefficients in
A. Then L(n,A) is a Γa j -module, since for γ =

(
a b
c d

)
∈ Γa j we have γP(X,X) =

ψn(d)P(γTX, γTX). Let L̃(n,A) be the sheaf of locally constant sections of the pro-
jection Γa j\H3×L(2n + 2,A) → Γa j\H3. The cuspforms on H3 contribute to the
cohomology of Γa j\H3 in degree 1 and let H1

cusp(Γa j\H3, L̃(n,C)) be the cuspidal
cohomology group. This is the subgroup spanned by cuspidal harmonic forms of
the square integral cohomology group; see [11, Section 2] for more details. The co-
homology is computed using the de Rham resolution. As K is complex quadratic,
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there are two isomorphisms δ1, δ2 that generalize the Eichler–Shimura isomorphism
([9, Section 3]). We are interested in

δ1 : Sn(Γa j , ψn)→ H1
cusp(Γa j\H3, L̃(n,C)),

which realizes cuspforms on H3 as differential 1-forms. In the sequel we simply label
δ1 by δ. The Hecke algebra acts naturally on both spaces above, and the isomorphism
δ is Hecke equivariant. Thus, we can consider δ( f j) to be a differential form on H3

that takes values in the sheaf L̃(n,C). In [11, Section 2.5] this isomorphism is given
explicitly.

By the Clebsch-Gordan formula there is an injection Φ : W (2n+2,C)→ L(n,C)⊗
L(2,C) and we define δ( f j)(g) := g ·

(
Φ ◦ f j(g)

)
. As in [7, Section 5.1], δ( f j) is

SU2(C)-invariant. Note that the action of g on L(n,C) is as above whereby the action
on L(2,C) is given by gP(A,B) = P( j(g−1,

(
0 −1
1 0

)
)T−1(A,B)). This notion is made

completely explicit in [6] which we summarize for our applications to the special
value results. From [11, Section 11] we have that, as an SL2(Z)-module, L(n,C) is
not irreducible, and so as SL2(Z)-modules we have the decompositions

L(n,C) ∼=
n⊕

m=0
L(2n− 2m,C)

P(x, x)→
n⊕

m=0

1

m!2

( ∂2

∂X∂Y
− ∂2

∂X∂Y

)m
P(x, x)

∣∣∣
X=X
Y =Y

.

This gives the decomposition

H1
cusp

(
Γ0(N)\H1, L̃(n,C)

) ∼= n⊕
m=0

H1
cusp

(
Γ0(N)\H1, ˜L(2n− 2m,C)

)
,

where

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 (mod N)

}
.

Therefore restricting δ( f j) to H1, we have the decomposition

δ( f j)
∣∣

H1
=

n⊕
m=0

δ2n−2m( f j).

In the sequel, we fix f j to be f1, and when we consider a cuspform on H3 we simply
write f for f1. We let Sn(Γ0(n), ψn) denote the space of cuspforms on H3 of weight
n, level n, and nebentype ψn. Note that for j = 1 we have a1 = 1, and so a1 = OK .
Thus, Γa1 = Γ0(n), and therefore Γa1 ∩ GL+

2 (Q) = Γ0(N), where N ∈ Z>0 is the
generator of the ideal n∩Z.

Let f α be a component of f as a W (2n + 2,C)-valued function, so

f (z) =

2n+2∑
j=0

f α(z)S2n+2−αTα.

Let ψ(X,Y,X,Y ,A,B) = (ψ0, . . . , ψ2n+2)T , where

ψα(X,Y,X,Y ,A,B) = (−1)α
A2cα − 2ABcα−1 + B2cα−2(2n+2

α

)
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and

cα(X,Y,X,Y ) =

n∑
j,k=0

n−( j−k)=α

(−1)k
(n

k

)(n
j

)
Xn−kX

n− j
Y kY

j
.

Then from [7],

δ( f )|H1
(z) =

2n+2∑
α=0

√
y2n+2 f α(z)ψα

( 1
√

y
X,
√

yY,
1
√

y
X
√

yY ,
1
√

y
A,

1
√

y
B
)
.

Let δ̃( f )|H1
=
(

1 −x
0 1

)
δ( f )|H1

. This differential form is simpler than δ( f )|H1
, as it

amounts to setting x = 0 . This occurs in the evaluation of the relevant integral
representation in [7] and these terms are used to evaluate the archimedean factors,
so we give this differential form explicitly. We have

δ̃( f )|H1
(z) =

2n+2∑
α=0

f α(z)ψα(X, yY,X, yY ,A,B).

For z = x + i y ∈ H1 let

gα(z) =


f α(z) + (−1)n−m+1−α f 2n+2−α(z)(2n+2

α

) α = 0, 1, . . . , n,

f n+1(z)(2n+2
n+1

) α = n + 1,

and following [7, Section 5.2] let

a(m, `, α) =
( n

m

) 2
(−1)

n+α−`−m
2

m∑
p=0

(−1)p
(m

p

)
(( n−m

n−m−`+α
2 − p

)( n−m
3n−3m−`−α

2 + p

)
+
( n−m

n−m−`+α−2
2 − p

)( n−m
3n−3m−`−α+2

2 + p

))
b(m, `, α) =

( n
m

) 2
(−1)

n+α−`−m−1
2

m∑
p=0

(−1)p
(m

p

)
(( n−m

n−m−`+α−1
2 − p

)( n−m
3n−3m−`−α+1

2 + p

))
.

(2.2)

Therefore from [7, (24)], for z ∈ H1 we have

˜δ2n−2m( f )(z) =
2n−2m∑̀

=0

[( n+1∑
α=0

(−1)αgα(z)a(m, `, α)
)

dx

+ 2
( n+1∑
α=0

(−1)αgα(z)b(m, `, α)
)

dy
]

y2n−m−`X`Y 2n−2m−`

and ˜δ2n−2m( f ) ∈ H1
cusp(Γ0(N)\H1, ˜L(2n− 2m,C)).
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3 Integral Representations of the Twisted Tensor L-Function

In this section we recall the integral representations of LT(s, f ) developed in [7] and
give a brief overview of their arithmetic properties following [7,11]. We prove Galois
equivariance of the values obtained in [7]. The details of the (partial) evaluations of
these integrals are in [7, Sections 6 and 7].

Let f ∈ Sn(Γ0(n), ψn) be a normalized primitive form as in Section 2 and let

ψN = ψn|Q · | |2n+2vi +2vc
J : Q×\A×Q → C×.

We regard ψN as a Dirichlet character ψN : (Z/NZ)× → C× and note that we define
ψN as the inverse ψ−1

N of the Dirichlet character in [7]. Let LN (s, ψN ) denote the
Dirichlet L-function attached to ψN . The twisted tensor L-function is defined by

LT(s, f ) = LN (2s− 2w, ψN )
∞∑

k=1

c f (k)

ks

where the coefficients c f (k) are from (2.1). The L-function has an Euler product of
the form LT(s, f ) =

∏
p prime Lp(s, f ) where

Lp(s, f )−1 =
(1− αpαp p−s)(1− αpβp p−s)(1− βpαp p−s)(1− βpβp p−s) p = pp,

(1− αp p−s)(1− ψn|Q (p)p−2s+2)(1− βp p−s) p = p,

(1− α2
p p−s)(1− ψn(p)p−s+1)(1− β2

p p−s) p = p2.

The L-function LT(s, f ) has a meromorphic continuation and functional equation
from [20]. All critical values of LT(s, f ) in the right half of the critical strip were
treated in [7]. Further, a functional equation was proved in [6, Theorem 7.2], and a
motivic interpretation of LT(s, f ) was given in [7].

For z ∈ H1 consider the Eisenstein series

E2n−2m+2(s, z, ψN ) =
∑(

a b
c d

)
∈Γ∞\Γ0(N)

ψN (d)

(cz + d)2n−2m+2|cz + d|2s
ysω,

where ω = (X − zY )2n−2mdz and Γ∞ = {
(

1 n
0 1

)
| n ∈ Z}. The relevant arithmetic

properties of these Eisenstein series are summarized in [11, Section 10]. From [11,
Equation 3.1b], for a Q-algebra A we consider the pairing

〈 · , · 〉 : L(n,A)⊗ L(n,A) −→ A

defined by 〈 n∑̀
=0

a`X
n−`Y `,

n∑̀
=0

b`X
n−`Y `

〉
=

n∑̀
=0

(−1)`a`bn−`

(n
`

)−1
.

From [11], the pairing is SL2(Z)-invariant and it follows that〈
δ2n−2m( f ), E2n−2m+2(s, · , ψN )

〉

https://doi.org/10.4153/CJM-2013-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-047-5


1086 D. Lanphier, H. Skogman, and H. Ochiai

is an integrable function on Γ0(N)\H1. The main objects of investigation in [6,7] are
the integrals of these functions. In particular, the following integral representation
was determined.

Theorem 3.1 ([7, Equation (29)]) For m ≡ vi + vc (mod 2), w = n + 1 + vi + vc,
and ψN primitive or trivial we have

(3.1)

∫
Γ0(N)\H1

〈
δ2n−2m( f ), E2n−2m+2(s, · , ψN )

〉
=

√
D

s+n−m+w+1
ivi−vc

(2π)s+2n+2−mLN (2s + 2n− 2m + 2, ψN )
× L∞(s−m, f )LT(s + n−m + w + 1, f ),

where

(3.2) L∞(s−m, f ) =

2n+2∑
α=0

α≡n+1+m (mod 2)

c(m, α)Γ
( s + n + 1−m + α

2

)
Γ
( s + 3n + 3−m− α

2

)
and

c(m, α) =
(−1)n+1

2

2n−2m∑
`=0
` even

i`
(

a(m, `− 1, α)− 2b(m, `, α)
)
.

The archimedean factors L∞(s − m, f ) were not computed in [7]. However, the
following conjecture was formulated.

Conjecture 3.2 ([7, Conjecture 1]) Let ε ∈ {0, 1} be so that ε ≡ n+1+m (mod 2).
Then

L∞(s−m, f ) = cn,m · Pn,m(s) · Γ(s + 2n−m + 2)

Γ(s + 2n− 2m + 2)
Γ
( s + n + 1−m + ε

2

) 2
,

where

Pn,m(s) = (s + 1)(s + 3)(s + 5) · · · (s + n−m− ε)

×
( s

2
+ n−m

)( s

2
+ n−m− 1

)
· · ·
( s

2
+ n−m− n−m− 1− ε

2

)
is a polynomial in s and

cn,m =
(−1)m · n!2

m!2 · Pn,m(0) ·
(

n−m−1+ε
2

)
!2
.

Let cn,n = (−1)n and Pn,n(s) = 1.

Note that a footnote on [7, p. 630] states that Conjecture 3.2 was subsequently
proven by H. Ochiai. However, the proof does not appear in the literature. Therefore,
we provide Ochiai’s proof in the appendix as well as our alternate proof in Section 4.
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Using well-known properties of the gamma function, for m 6= n we can rewrite
this conjecture as

L∞(s−m, f ) =

(−1)m√π
(n

m

)2

2s

Γ
(

s
2 + n−m + 1

)
Γ
(

s
2 + 1

2

) Γ(s + n−m + 1)Γ(s + 2n−m + 2)

Γ(s + 2n− 2m + 2)
.

Note that restricting this expression to the m = n case we get

(−1)n√π
2s

Γ
(

s
2 + 1

)
Γ(s + 1)Γ(s + n + 2)

Γ
(

s
2 + 1

2

)
Γ(s + 2)

.

Multiplying the top and bottom of the latter expression by Γ
(

s
2 + 1

)
, applying the

duplication formula Γ(x)Γ
(

x + 1
2

)
=
√
π21−2xΓ(2x) in the denominator, and sim-

plifying gives

L∞(s− n, f ) =
(−1)nΓ(s + n + 2)Γ

(
s
2 + 1

) 2

Γ(s + 2)
.

These are the factors suggested by Conjecture 3.2 in the m = n case. Also note that,
using our notation, the L∞(s−m, f ) factor here differs by the factor Γ(s+2n−2m+2)
from the same symbol employed in [7].

Although the archimedean factors were not completely determined, the integral
was explicit enough to determine some arithmetic properties of LT(s, f ) in the fol-
lowing way. For m ⊂ OK let T(m) be a Hecke operator as in [20, Section 4] and
then T(m) f = λ f (T(m)) f , where λ f is the Hecke algebra character corresponding
to f . Let E = Q( f , ψn). From [11, Section 8] we have the rank-1 free modules over
E given by

Sn(Γ0(n), ψn)[λ f ] = E · f

H1
cusp(Γ0(n)\H3, L̃(n, E))[λ f ] = E · η( f ),

where η( f ) is a rational Hecke eigen-differential form. From the Eichler-Shimura
isomorphism δ we can define a period Ωη( f )( f ) by δ( f ) = Ωη( f )( f )η( f ). Note that
the period depends on the choice of basis of the above cohomology group. However,
the period is independent of the basis up to multiplication by a nonzero element of
E. As the arithmetic results of Theorem 1.4 are only determined up to multiplication
by such an element, we can denote the period simply by Ω( f ). As in Section 2 we
have the decomposition of the restriction to H1, η( f )|H1

=
⊕n

m=0 η2n−2m( f ), where
we have the rational forms

η2n−2m( f ) ∈ H1
cusp

(
Γ0(N)\H1, ˜L(2n− 2m, E)

)
.

Thus, we have δ2n−2m( f ) = Ω( f )η2n−2m( f ), and so

I1( f , ψN ) =

∫
Γ0(N)\H1

〈δ2n−2m( f ), E2n−2m+2(0, · , ψN )〉

= Ω( f )

∫
Γ0(N)\H1

〈η2n−2m( f ), E2n−2m+2(0, · , ψN )〉.
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The arithmeticity of the latter integral basically follows from [11, Equation 5.3].
From [7, Lemma 5], and [11, Equation 5.3], composing the cup product with the
pairing 〈 · , · 〉maps

(3.3) H1
cusp(Γ0(N)\H1, ˜L(2n− 2m, E))⊗H1(Γ0(N)\H1, ˜L(2n− 2m, E))

to H2
c (Γ0(N)\H1, E), where H2

c means those forms with compact support. By defi-
nition, we have η2n−2m( f ) ∈ H1

cusp(Γ0(N)\H1, ˜L(2n− 2m, E)) and from [7, Propo-
sition 4] we have

E2n−2m+2(0, z, ψN ) ∈ H1
(

Γ0(N)\H1, ˜L(2n− 2m, E)
)
.

It follows that〈
η2n−2m( f ), E2n−2m+2(0, · , ψN )

〉
∈ H2

c

(
Γ0(N)\H1, E

)
,

and therefore we have the arithmetic result

I2( f , ψN ) =

∫
Γ0(N)\H1

〈
η2n−2m( f ), E2n−2m+2(0, · , ψN )

〉
∈ E.

We then obtain arithmetic results on certain values of LT(s, f ) from integral (3.1),
assuming the nonvanishing of the integral. The nonvanishing was shown in [7] by
indirect methods using an argument due to Hida. Of course, it follows trivially from
Conjecture 3.2. Given L∞(−m, f ) 6= 0, the special value results of [7] (and some
of the results of Theorem 1.4) are obtained as follows. Recall that for k even and ψN

a primitive even Dirichlet character we have LN (k, ψN )/πk g(ψN ) ∈ Q(ψN ), where
g(ψN ) =

∑
a (mod N) ψN (a)e2πia/N is a Gauss sum. For ψN primitive and nontriv-

ial, the integral representation of Theorem 1.1 gives the first special values result of
Theorem 1.4 directly, and this is the main result of [7].

To obtain Galois equivariance of the values, we first establish Galois equivariance
of the integrals I2( f , ψN ). The equivariance essentially follows, because the cohomo-
logical pairing is equivariant.

Lemma 3.3 For σ ∈ Aut(C /Q), we have I2( f , ψN )σ = I2( f σ, ψσN ).

Proof The pairing of (3.3) is obtained by cup product and 〈 · , · 〉, which induces
Poincaré duality on cohomology. From [14] such a pairing is Galois equivariant, so
we have〈

η2n−2m( f ), E2n−2m+2(0, · , ψN )
〉 σ

=
〈
η2n−2m( f )σ, E2n−2m+2(0, · , ψN )σ

〉
.

From the definition of the Eisenstein series we have

E2n−2m+2(0, · , ψN )σ = E2n−2m+2(0, · , ψσN ),

and from the rational structure defining η2n−2m( f ) we have

η2n−2m( f )σ = η2n−2m( f σ).

From [16, Section 3], by the definition of the action of σ on de Rham cohomology
classes, for any ω ∈ Hd

c (m,C) we have
(∫

M ω
) σ

=
∫

M ωσ . As the integrand of
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I2( f , ψN ) is in H2
c (Γ0(N)\H1, E), we can put all of these results together and compute

I2( f , ψN )σ =

(∫
Γ0(N)\H1

〈
η2n−2m( f ), E2n−2m+2(0, · , ψN )

〉) σ

=

∫
Γ0(N)\H1

〈
η2n−2m( f ), E2n−2m+2(0, · , ψN )

〉 σ
=

∫
Γ0(N)\H1

〈
η2n−2m( f )σ, E2n−2m+2(0, · , ψN )σ

〉
=

∫
Γ0(N)\H1

〈
η2n−2m( f σ), E2n−2m+2(0, · , ψσN )

〉
= I2( f σ, ψσN ).

Therefore, from Lemma 3.3,

( I1( f , ψN )

Ω( f )

) σ
= I2( f , ψN )σ = I2( f σ, ψσN ) =

I1( f σ, ψσN )

Ω( f σ)
.

Thus, we obtain Galois equivariance for the special values of LT(s, f ) at the even
critical points. For ψN trivial we have LN (s, ψN ) = ζ(s)

∏
p|N (1− p−s). As ζ(k)/πk ∈

Q for k even, then from the integral representation of Theorem 1.1 and the functional
equation of Theorem 1.3 (proved in Section 5) we get the special values at the odd
critical points as in Theorem 1.4. Galois equivariance follows as above. The proof of
Theorem 1.1 is completed in the following section.

4 Hypergeometric Series and Archimedean Factors

In the sequel we fix n and m for a given f . The main result of this section is the
following theorem.

Theorem 4.1 Conjecture 3.2 is true.

Applying this result to Theorem 3.1 we get Theorem 1.1. As an immediate conse-
quence we have that

L∞(−m, f ) = (−1)m n!2

m!2

(2n−m + 1)!

(2n− 2m + 1)!
6= 0.

Although somewhat lengthy, the proof does not require deep machinery but fol-
lows from adroit use of gamma function and hypergeometric series identities. We
evaluate

(4.1)
2n+2∑
α=0

α≡n+1+m (mod 2)

c(m, α)Γ
( s + n−m + 1 + α

2

)
Γ
( s + 3n−m + 3− α

2

)
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using notation similar to that of [7, (30)]. Note that as α ≡ n + 1 + m (mod 2),
3n−m + α + 1 is even. Setting ` = 2 j, from (2.2) and (3.2) we can write

c(m, α)

=
(−1)n+1

2

n−m∑
j=0

(−1) j(a(m, 2 j − 1, α) − 2b(m, 2 j, α)
)

=
(−1)

3n−m+3+α
2

2

( n
m

) 2
n−m∑
j=0

[ m∑
p=0

(−1)p
(m

p

)(( n − m
n−m−2 j+1+α

2 − p

)( n − m
3n−3m−2 j+1−α

2 + p

)
+
( n − m

n−m−2 j−1+α
2 − p

)( n − m
3n−3m−2 j+3−α

2 + p

)
+ 2
( n − m

n−m−2 j+α−1
2 − p

)( n − m
3n−3m−2 j−α+1

2 + p

))]
.

Note that α has the same parity as n + m + 1 and so the same as n−m + 1, n−m− 1,
3n − 3m + 1, and 3n − 3m + 3. Switching summations, applying the Vandermonde
convolution

∑N
j=0

( N
a+ j

)( N
b− j

)
=
(2N

a+b

)
and then

(N
a

)
+
( N

a−1

)
=
(N+1

a

)
three times each

to the expression for c(m, α), we get that (4.1) is

( n
m

) 2 2n+2∑
α=0

α≡n+1+m (mod 2)

(−1)
3n−m+3+α

2

2

m∑
p=0

(−1)p
(m

p

)(2n− 2m + 2
α− 2p

)

× Γ
( s + n−m + α + 1

2

)
Γ
( s + 3n−m− α + 3

2

)
.

Note that this is [6, (6.5)].
For simplicity, we make the substitution α = 2β + ε. Thus, (4.1) is

(4.2)
(−1)

3n−m+3+ε
2

2

( n
m

) 2 n+1−ε∑
β=0

(−1)β
m∑

p=0

(−1)p
(m

p

)(2n− 2m + 2
2β + ε− 2p

)
× Γ

( n−m + 1 + ε

2
+

s

2
+ β
)

Γ
( 3n−m + 3− ε

2
+

s

2
− β

)
.

Let s ∈ C so that Re(s) < −2(n−m)− 1. From the reflection formula

Γ(x)Γ(1− x) =
π

sin(xπ)

we can write

Γ
( n−m + 1 + ε

2
+

s

2
+ β
)

=
π

sin
((

n−m+1+ε
2 + s

2 + β
)
π
) 1

Γ
(
− n−m−1+ε

2 − s
2 − β

) .
For a ∈ Z we have sin((x + a)π) = (−1)a sin(xπ), and thus the summation in (4.2) is

(4.3)
(−1)

n−m+1+ε
2 π

sin
(

s
2π
) n+1−ε∑

β=0

m∑
p=0

(−1)p
(m

p

)(2n− 2m + 2
2β + ε− 2p

) Γ
(

3n+3−m−ε
2 + s

2 − β
)

Γ
(
− n−m−1+ε

2 − s
2 − β

) .
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Note that− n−m−1+ε
2 − Re(s)

2 ≥ 0, and so (4.3) is

(−1)
n−m+1+ε

2 π

sin
(

s
2π
) m∑

p=0

(−1)p
(m

p

) n+1−ε∑
β=0

(2n− 2m + 2
2β + ε− 2p

) Γ
(

3n+3−m−ε
2 + s

2 − β
)

Γ
(
− n−m−1+ε

2 − s
2 − β

)
(4.4)

=
(−1)

n−m+1+ε
2 π

sin
(

s
2π
) m∑

p=0

(−1)p
(m

p

) n+1−ε−m+p∑
β=p

(2n− 2m + 2
2β + ε− 2p

) Γ
(

3n+3−m−ε
2 + s

2 − β
)

Γ
(
− n−m−1+ε

2 − s
2 − β

)

=
(−1)

n−m+1+ε
2 π

sin
(

s
2π
) m∑

p=0

(−1)p
(m

p

) n+1−ε−m∑
β=0

(2n− 2m + 2
2β + ε

)

×
Γ
(

3n+3−m−ε
2 + s

2 − β − p
)

Γ
(
− n−m−1+ε

2 − s
2 − β − p

)
=

(−1)
n−m+1+ε

2 π

sin
(

s
2π
) n+1−ε−m∑

β=0

(2n− 2m + 2
2β + ε

) m∑
p=0

(−1)p
(m

p

)

×
Γ
(

3n+3−m−ε
2 + s

2 − β − p
)

Γ
(
− n−m−1+ε

2 − s
2 − β − p

) .
The inner sum of (4.4) can be written

(4.5)
m∑

p=0

(−1)p
(m

p

) Γ
(

3n+3−m−ε
2 + s

2 − β − p
)

Γ
(
− n−m−1+ε

2 − s
2 − β − p

) =

m!
m∑

p=0

(−1)p Γ
(

3n+3−m−ε
2 + s

2 − β − p
)

p!(m− p)!Γ
(
− n−m−1+ε

2 − s
2 − β − p

) .
Recall that for p ∈ Z≥0 the Pochhammer symbol is (a)p = Γ(a + p)/Γ(a). A

hypergeometric series is defined by

mFn(a1, . . . , am; b1, . . . , bn; x) =

∞∑
p=0

(a1)p · · · (am)p

(b1)p · · · (bn)p

xp

p!
.

If one of the factors in the numerators of the terms in the summand is (−a)p for −a
a negative integer and none of the factors in the denominators is the Pochhammer
symbol of a negative integer, then the index of such a sum will range from 0 to a.

We have

Γ(a + 1− p) =
(−1)pΓ(a + 1)

(−a)p
.
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Applying this and simplifying, we can rewrite (4.5) as

Γ
(

3n+3−m−ε
2 + s

2 − β
)

Γ
( −n+m+1−ε

2 − s
2 − β

) m∑
p=0

(−m)p

(
n−m+1+ε

2 + s
2 + β

)
p(

− 3n+1−m−ε
2 − s

2 + β
)

p
p!
.

The factor (−m)p is in the numerator, and it follows that the summation above can
be expressed as an 2F1-hypergeometric series. Thus, (4.5) is

(4.6)
Γ
(

3n+3−m−ε
2 + s

2 − β
)

Γ
( −n+m+1−ε

2 − s
2 − β

)
2F1

(
−m,

n−m + 1 + ε

2
+

s

2
+ β;−3n + 1−m− ε

2
− s

2
+ β; 1

)
.

Gauss’s Theorem for 2F1-hypergeometric series, from [1, Theorem 2.2.2, p. 66]
for example, states that for Re(c − a− b) > 0 we have

(4.7) 2F1(a, b; c; 1) =
Γ(c)Γ(c − a− b)

Γ(c − a)Γ(c − b)
.

Taking a = −m, b = n−m+1+ε
2 + s

2 + β and c = − 3n+1−m−ε
2 − s

2 + β we see that
c− a− b = −2n + 2m− 1− Re(s) > 0 by our condition on s. Thus, (4.7) applies to
(4.6), and we get

(4.8)
Γ
(

3n+3−m−ε
2 + s

2 − β
)

Γ
(
− 3n+1−m−ε

2 − s
2 + β

)
Γ(−2n + 2m− 1− s)

Γ
( −n+m+1−ε

2 − s
2 − β

)
Γ
( −3n+3m−1+ε

2 − s
2 + β

)
Γ(−2n + m− 1− s)

.

The reflection identity gives

Γ
( 3n + 3−m− ε

2
+

s

2
− β

)
Γ
(
−3n + 1−m− ε

2
− s

2
+ β
)

=
(−1)

3n−m+3−ε
2 +βπ

sin
(

s
2π
) ,

and therefore (4.8) is

(−1)
3n−m+3−ε

2 +βπΓ(−2n + 2m− 1− s)

sin
(

s
2π
)

Γ
( −n+m+1−ε

2 − s
2 − β

)
Γ
( −3n+3m−1+ε

2 − s
2 + β

)
Γ(−2n + m− 1− s)

.
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Applying this to (4.3) we get

Γ(−2n + 2m− 1− s)

Γ(−2n + m− 1− s)

(−1)mπ2

sin2
(

s
2π
)

(4.9)

×
n+1−ε−m∑

β=0

(−1)β
(2n− 2m + 2

2β + ε

) 1

Γ
( −n+m+1−ε

2 − s
2 − β

)
Γ
( −3n+3m−1+ε

2 − s
2 + β

)
=

Γ(−2n + 2m− 1− s)

Γ(−2n + m− 1− s)
(2n− 2m + 2)!

(−1)mπ2

sin2
(

s
2π
)

×
n+1−ε−m∑

β=0

(−1)β
1

(2β + ε)!(2n− 2m + 2− 2β − ε)!
× Γ

( −n+m+1−ε
2 − s

2 − β
)

Γ
( −3n+3m−1+ε

2 − s
2 + β

) .
As Γ(a + β) = Γ(a)(a)β , we have Γ(2β + ε + 1) = Γ(ε + 1)(ε + 1)2β = (ε + 1)2β and
also

Γ
( −3n + 3m− 1 + ε

2
− s

2
+ β
)

= Γ
( −3n + 3m− 1 + ε

2
− s

2

)( −3n + 3m− 1 + ε

2
− s

2

)
β

Γ
( −n + m + 1− ε

2
− s

2
− β

)
=

(−1)βΓ(−n+m+1−ε
2 − s

2 )(
n−m+1+ε

2 + s
2

)
β

Γ(2n− 2m + 3− ε− 2β) =
(−1)2βΓ(2n− 2m + 3− ε)

(−2n + 2m− 2 + ε)2β
.

Thus, (4.9) is

(−1)mπ2

sin2
(

s
2π
) Γ(−2n + 2m− 1− s)Γ(2n− 2m + 3)

Γ(−2n + m− 1− s)Γ(2n− 2m + 3− ε)Γ
( −n+m+1−ε

2 − s
2

)
× Γ

( −3n+3m−1+ε
2 − s

2

)(4.10)

×
n+1−ε−m∑

β=0

(−2n + 2m− 2 + ε)2β

(
n−m+1+ε

2 + s
2

)
β

(ε + 1)2β

( −3n+3m−1+ε
2 − s

2

)
β

.

As (a)2β = 22β
(

a
2

)
β

(
a+1

2

)
β

, we have

(ε + 1)2β = 22β
( ε + 1

2

)
β

( ε + 2

2

)
β

= 22β
(
ε +

1

2

)
β

(1)β

(−2n + 2m− 2 + ε)2β = 22β
(
−n + m− 1 +

ε

2

)
β

(
−n + m− 1

2
+
ε

2

)
β
.

https://doi.org/10.4153/CJM-2013-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-047-5


1094 D. Lanphier, H. Skogman, and H. Ochiai

Thus, we can rewrite (4.10) as

(−1)mπ2

sin2
(

s
2π
) Γ(−2n + 2m− 1− s)Γ(2n− 2m + 3)

Γ(−2n + m− 1− s)Γ(2n− 2m + 3− ε)
× Γ

( −n+m+1−ε
2 − s

2

)
Γ
( −3n+3m−1+ε

2 − s
2

)
×

n−m+1−ε∑
β=0

(
−n + m− 1 + ε

2

)
β

(
−n + m− 1

2 + ε
2

)
β

(
n−m+1+ε

2 + s
2

)
β(

ε + 1
2

)
β

( −3n+3m−1+ε
2 − s

2

)
β

(1)β
.

If ε = 0, then (−n + m− 1)β = (−n + m− 1 + ε)β is in the numerators of the terms
of the above summand, and if ε = 1, then (−n + m)β = (−n + m − 1 + ε)β is in
the numerators. The denominators of the terms of the summand do not have factors
of the form (b j)β with b j a negative integer. As the index β already ranges from 0 to
n−m + 1− ε, it follows that the above sum can be written as a 3F2-hypergeometric
series. So (4.10) is

(−1)mπ2

sin2
(

s
2π
) Γ(−2n + 2m− 1− s)Γ(2n− 2m + 3)

Γ(−2n + m− 1− s)Γ(2n− 2m + 3− ε)
× Γ

( −n+m+1−ε
2 − s

2

)
Γ
( −3n+3m−1+ε

2 − s
2

)(4.11)

×3F2

(
−n + m− 1 +

ε

2
,−n + m− 1

2
+
ε

2
,

n−m + 1 + ε

2
+

s

2
;

ε +
1

2
,
−3n + 3m− 1 + ε

2
− s

2
; 1
)
.

From [1, (2.2.11), p. 72] for example, Dixon’s identity gives that for Re
(

a
2 +b+c+1

)
>

0 we have

(4.12) 3F2(a,−b,−c; a + b + 1, a + c + 1; 1) =

Γ
(

a
2 + 1

)
Γ(a + b + 1)Γ(a + c + 1)Γ

(
a
2 + b + c + 1

)
Γ(a + 1)Γ

(
a
2 + b + 1

)
Γ
(

a
2 + c + 1

)
Γ(a + b + c + 1)

.

Note that by the reflection identity, for x, y > 0 we have

Γ(−x)

Γ(−y)
=

Γ(y + 1)

Γ(x + 1)

sin(πx)

sin(πy)
.

The latter expression can have proper values for integral x and y. Therefore in the
sequel we abuse notation and write Γ(−x)

Γ(−y) for x, y ∈ Z>0. We distinguish the cases

ε = 0 and ε = 1. For ε = 0 let a = −n + m− 1, b = n−m + 1
2 , and c = −n+m−1

2 − s
2 .

Then (4.12) applies to (4.11), and in this case (4.11) becomes

(−1)mπ2

sin2
(

s
2π
) Γ(−2n + 2m− 1− s)Γ(2n− 2m + 3)

Γ(−2n + m− 1− s)Γ(2n− 2m + 3)Γ
( −n+m+1

2 − s
2

)
Γ
( −3n+3m−1

2 − s
2

)
×

Γ
( −n+m−1

2 + 1
)

Γ
(

1
2

)
Γ
( −3n+3m−1

2 − s
2

)
Γ
(

1
2 −

s
2

)
Γ(−n + m)Γ

(
n
2 −

m
2 + 1

)
Γ
(
−n + m− s

2

)
Γ
( −n+m

2 − s
2

) .
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For ε = 1 let a = −n + m, b = n−m + 1
2 , and c = −n+m−2

2 − s
2 . As above, (4.12)

applies to (4.11) in this case also. We get

(−1)mπ2

sin2
(

s
2π
) Γ(−2n + 2m− 1− s)Γ(2n− 2m + 3)

Γ(−2n + m− 1− s)Γ(2n− 2m + 2)Γ
( −n+m

2 − s
2

)
Γ
( −3n+3m

2 − s
2

)
×

Γ
( −n+m

2 + 1
)

Γ
(

3
2

)
Γ
( −3n+3m

2 − s
2

)
Γ
(

1
2 −

s
2

)
Γ(−n + m + 1)Γ

(
n−m+3

2

)
Γ
(
−n + m− s

2

)
Γ
( −n+m+1

2 − s
2

) .
We can put these cases together and get that (4.3) is equal to

(4.13)
(−1)mπ2

sin2
(

s
2π
) Γ(−2n + 2m− 1− s)Γ(2n− 2m + 3)

Γ(−2n + m− 1− s)Γ(2n− 2m + 3− ε)
× Γ

( −n+m+1−ε
2 − s

2

)
Γ
( −3n+3m−1+ε

2 − s
2

)
×

Γ
( −n+m+1+ε

2

)
Γ
(

1
2 + ε

)
Γ
( −3n+3m−1+ε

2 − s
2

)
Γ
(

1
2 −

s
2

)
Γ(−n + m + ε)Γ

(
n−m+2+ε

2

)
Γ
(
−n + m− s

2

)
Γ
( −n+m+ε

2 − s
2

) .
It is a matter of using common gamma function identities to show that replacing the
summation in (4.2) with (4.13) yields the result. For completeness, we give an outline
of these simplifications. Applying the reflection identity several times as necessary
gives the identities

(−1)mπ2

sin2
(

s
2π
)

Γ
( −n+m+1−ε

2 − s
2

)
Γ
( −3n+3m−1+ε

2 − s
2

)
= (−1)mΓ

( n−m + 1 + ε

2
+

s

2

)
Γ
( 3n− 3m + 3− ε

2
+

s

2

) Γ(−2n + 2m− 1− s)

Γ(−2n + m− 1− s)

=
(−1)mΓ(s + 2n−m + 2)

Γ(s + 2n− 2m + 2)

Γ
( −3n+3m−1+ε

2 − s
2

)
Γ
(

1
2 −

s
2

)
Γ
(
−n + m− s

2

)
Γ
( −n+m+ε

2 − s
2

)
=

Γ
(

s
2 + n−m + 1

)
Γ
(

s
2 + n−m+2−ε

2

)
Γ
(

s
2 + 1

2

)
Γ
(

s
2 + 3n−3m+3−ε

2

) .

Also, from the reflection identity we have

Γ
( −n+m+1+ε

2

)
Γ(−n + m + ε)

= (−1)
n−m+1−ε

2 2
Γ(n−m + 1− ε)

Γ
(

n−m+1−ε
2

) .

Applying these to (4.13) and simplifying, we get

(4.14) (−1)
n−m+1−ε

2 2
Γ(n−m + 1− ε)

Γ
(

n−m+1−ε
2

) Γ
(

1
2 + ε

)
Γ
(

n−m+2+ε
2

) Γ(2n− 2m + 3)

Γ(2n− 2m + 3− ε)

×
Γ(s + 2n−m + 2)Γ

(
s
2 + n−m+1+ε

2

)
Γ
(

s
2 + n−m+2−ε

2

)
Γ(s + 2n− 2m + 2)Γ

(
s
2 + 1

2

) .
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Applying the duplication formula Γ(x)Γ
(

x+ 1
2

)
=
√
π21−2xΓ(2x) gives the identities

Γ
( s

2
+

n−m + 1 + ε

2

)
Γ
( s

2
+

n−m + 2− ε
2

)
=

√
πΓ(s + n−m + 1)

2s+n−m

Γ
( n−m + 1− ε

2

)
Γ
( n−m + 2 + ε

2

)
=

√
πΓ(n−m + 1− ε)(n−m + 1)ε

2n−m
.

Putting these into (4.14) and simplifying, we get that (4.3) is

(4.15)
(−1)

n−m+1−ε
2

2s−1

Γ
(

1
2 + ε

)
Γ(2n− 2m + 3)

Γ(2n− 2m + 3− ε)(n−m + 1)ε

× Γ(s + n−m + 1)Γ(s + 2n−m + 2)

Γ(s + 2n− 2m + 2)

Γ
(

s
2 + n−m + 1

)
Γ
(

s
2 + 1

2

) .

We now apply
Γ
(

1
2 +ε
)

Γ(2n−2m+3)

(n−m+1)εΓ(2n−2m+3−ε) =
√
π to (4.15) and get

L∞(s−m, f ) =

(−1)m√π
(n

m

)2

2s

Γ
(

s
2 + n−m + 1

)
Γ
(

s
2 + 1

2

) Γ(s + n−m + 1)Γ(s + 2n−m + 2)

Γ(s + 2n− 2m + 2)
.

This holds for s ∈ C with real part less than −2(n − m) − 1. Meromorphically
continuing this to all s ∈ C proves Theorem 4.1.

5 Applications to Values and Poles of LT(s, f )

In this section we apply the exact integral representations of Theorem 1.1 to prove
explicit functional equations of the L-functions. From the functional equations we
get special value results at critical points of LT(s, f ) not studied in [7]. We also study
the poles of LT(s, f ) and prove Corollary 1.2.

Following [18], for α > 0 let

Hα(s, z, ψN ) = π−sΓ(s)ys
∑

(m,n)∈Z2

(m,n)6=(0,0)

ψN (n)
(mNz + n)α

|mNz + n|2s
.

This series is absolutely convergent for Re(s) > α
2 +1. Theα = 0 case of the following

result is [20, Lemma 2.6].

Lemma 5.1 If α > 0, then Hα(s, z, ψN ) can be continued to an entire function in
s ∈ C.

If ψN is primitive, then

Hα(α + 1− s, z, ψN ) = ψN (−1) g(ψN )N3s−α−2zαHα

(
s,
−1

Nz
, ψN

)
.

If ψN = 1N , then

Hα(α + 1− s, z, 1N ) = (−1)α+1N3s−α−2zαHα

(
s,
−1

Nz
, 1N

)
.
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Proof For ψN primitive the result follows from [18, Lemma 3.3]. We modify that
proof for the case ψN = 1N . Following [18, (1)] we define

ξα(t, z, (p, q)) =
∑

(m,n)≡(p,q) (mod N)

(mz + n)αe−πt|mz+n|2/N2 y

= (−N)αt−α−1
∑

(m,n)∈Z2

e2πi(qm−pn)/N (mz + n)αe−π|mz+n|2/yt

= (−N)αt−α−1
∑

(a,b) (mod N)

e2πi(qa−pb)/Nξα
(

N2t−1, z, (a, b)
)
.

Let ηα(t, z, (p, q)) =
∑N

k=1 ψN (k)ξα(t, z, k(p, q)). Then

ηα
(

t−1, z, (p, q)
)

= (−N)αtα+1
N∑

k=1

ψN (k)
∑

(a,b) (mod N)

e2πi
(

k
N (qa−pb)

)
ξα
(

N2t, z, (a, b)
)

= (−N)αtα+1
N∑

k=1

ψN (k)e2πik/N
∑

(a,b) (mod N)

ψN (qa− pb)ξα
(

N2t, z, (a, b)
)

by replacing k(qa − pb) with k. Now,
∑N

k=1 ψN (k)e2πik/N = g(ψN ) for ψN primitive
and−1 for ψN trivial. In the latter case we have

ηα
(

t−1, z, (p, q)
)

= −(−N)αtα+1
∑

(a,b) (mod N)
(qa−pb) 6≡0 (mod N)

ξα
(

N2t, z, (a, b)
)
.

From [18, (4)], for α > 0 or N > 1 we have∫ ∞
0

ηα
(

t, z, (0, 1)
)

t s−1 dt = N2sπ−s ysΓ(s)
N−1∑
k=1

ψN (k)
∑

(m,n)∈Z2

m≡0 (mod N)
n≡k (mod N)

(mz + n)α

|mz + n|2s

= N2sHα(s, z, 1N ).

From [18, (5)] we have that |ηα(t, z, (p, q))| is less than or equal to Me−ct for t > 1,
and less than or equal to M′t−α−1e−c′t for t < 1, where M,M′, c, c′ depend only on
z, p, q. Splitting the above integral into integrals over (0, 1) and (1,∞), the inequal-
ities show that the integral above converges for all s ∈ C. Thus, Hα(s, z, 1N ) is entire
for α > 0. As

∫ ∞
0

ξα(N2t, z, (a, b))t s−1 dt =
∑

(m,n)≡(a,b) (mod N)

(mz + n)α
∫ ∞

0
e−πt|mz+n|2/yt s−1 dt

= π−sΓ(s)ys
∑

(m,n)≡(a,b) (mod N)

(mz + n)α

|mz + n|2s
,
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we have

N2(α+1−s)Hα(α + 1− s, z, 1N )(5.1)

=

∫ ∞
0

ηα(t, z, (0, 1))tα−s dt

=

∫ ∞
0

ηα(t−1, z, (0, 1))t s−α−2 dt

= −(−N)απ−sΓ(s)ys
∑

(m,n)∈Z2−{(0,0)}

1N (m)
(mz + n)α

|mz + n|2s
.

From a direct computation,

Hα

(
s,
−1

Nz
, 1N

)
= πsN−sΓ(s)ysz−α

∑
(m,n)∈Z2−{(0,0)}

1N (n)
(nz + m)α

|nz + m|2s
.

Thus, (5.1) is (−1)α+1Nα+szαHα

(
s, −1

Nz , 1N

)
.

Following [15, equation 7.2.62] we have

π−(s+2n−2m+2)Γ(s + 2n− 2m + 2)2LN (2s + 2n− 2m + 2, ψN )E2n−2m+2(s, z, ψN )

=
1

y2n−2m+2
H2n−2m+2(s + 2n− 2m + 2, z, ψN ) · ω,(5.2)

where ω = (X − zY )2n−2m dz as in Section 3. From Theorem 1.1 and Lemma 5.1 it
follows that

Γ
(

s
2 + n−m + 1

)
Γ(s + n−m + 1)Γ(s + 2n−m + 2)

Γ
(

s
2 + 1

2

) LT(s + w + n−m + 1, f )

is holomorphic for all s ∈ C, where w = n + 1 + vi + vc. Therefore the only possible
poles of LT(s + w + n−m + 1, f ) occur where s ≤ −1 is an odd integer. Because of the
gamma functions in the numerator above, any pole must also satisfy s > −(n−m+1).
For w odd, as m and vi + vc have the same parity, we can put m = n, and so the
conditions s ≤ −1 and s > −(n−m + 1) imply that LT(s + w + 1, f ) is holomorphic.
For w even we put m = n − 1 and this gives the conditions s ≤ −1 and s > −2. So
the only possible pole of LT(s + w + 2, f ) is at s = −1. This gives Corollary 1.2.

The functional equation for the w odd case is also obtained in [6, Section 7.2].
Note that from Section 2 we are considering only one component f1 (which we label
f ), arising from strong approximation, of the cuspform on H3. So we need to obtain
a functional equation for each component. Therefore, for simplicity, we assume that
there is only one such component, and so we require K to have class number 1. For
m = n, from (5.2) and the integral representations of Theorem 1.1,

(5.3)

∫
Γ0(N)\H1

〈
δ0( f ),

1

y2
H2(s + 2, z, ψN ) dz

〉
=

(−1)n2
√

D
s+w+1

ivi−vc

(2π)s+n+2πs+2
× Γ

( s

2
+ 1
) 2

Γ(s + n + 2)LT(s + w + 1, f ),
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and for m = n− 1,

(5.4)

∫
Γ0(N)\H1

〈
δ2( f ),

1

y4
H4(s + 4, z, ψN )(X − zY )2 dz

〉
=

(−1)n−1n2
√

D
s+w+2

ivi−vc

(2π)s+n+3πs+4
×

Γ
(

s
2 + 1

) 2
Γ(s + 3)Γ(s + n + 1)

Γ(s + 1)
LT(s + w + 2, f ).

For f ∈ Sn(Γ0(n), ψn) let f ′(g) = ψn(det g) f
(

g
(

0 −1
ν 0

))
, where ν is a finite idele

so that ν OK = n. As in [6, Proposition 3] we have f ′ ∈ Sn(Γ0(n), ψn). Following
[6], for f a normalized newform that is an eigenfunction of the Hecke operators
(as in [20, Section 4]), we have f ′ = c f , where |c| = 1, c ∈ E, and f has Fourier
coefficients c(m, f ) = c(m, f ). Following [6, Section 3] for γ =

(
0 −1
N 0

)
we have

γ∗δk( f ) = δk( f ◦ γ) = N−(n+k+vi +vc)z−kδk( f ′) = cN−(n+k+vi +vc)z−kδk( f ).

From Lemma 3.3, for ψN primitive or trivial we have the functional equations

H2(s + 2, z, ψN ) = ψN (−1) g(ψN )N−3s−1z2H2

(
1− s,

−1

Nz
, ψN

)
,(5.5)

H4(s + 4, z, ψN ) = ψN (−1) g(ψN )N−3s−3z4H4

(
1− s,

−1

Nz
, ψN

)
,(5.6)

H2(s + 2, z, 1N ) = −N−3s−1z2H2

(
1− s,

−1

Nz
, 1N

)
,(5.7)

H4(s + 4, z, 1N ) = −N−3s−3z4H4

(
1− s,

−1

Nz
, 1N

)
.(5.8)

From the functional equation (5.5) we have

(5.9)

∫
Γ0(N)\H1

〈
δ0( f ),

1

y2
H2(s + 2, · , ψN ) dz

〉
=

ψN (−1) g(ψN )N−3s−1 ×
∫

Γ0(N)\H1

〈
δ0( f ),

z2

y2
H2(1− s,

−1

N ·
, ψN ) dz

〉
.

For γ =
(

0 −1
N 0

)
we make the substitution γz = −1

Nz for z, and (5.9) becomes

ψN (−1) g(ψN )N−3s−2

∫
Γ0(N)\H1

〈
γ∗δ0( f ),

1

y2
H2(1− s, z, ψN ) dz

〉
= cψN (−1) g(ψN )N−3s−w−1

∫
Γ0(N)\H1

〈
δ0( f ),

1

y2
H2(1− s, z, ψN ) dz

〉
= cψN (−1) g(ψN )N−3s−w−1 (−1)n2

√
D

w−s
ivi−vc

(2π)1+n−sπ1−s

× Γ
( 1− s

2

) 2
Γ(n + 1− s)LT(w − s, f ).
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Applying this to (5.3) and substituting s with s−w− 1 gives the functional equation
of Theorem 1.3 for w odd. In a similar way we apply (5.6) to (5.4) and get

cψN (−1) g(ψN )N−3s−w−5

∫
Γ0(N)\H1

〈
δ2( f ),

1

y4
H4(1− s, z, ψN )(X − zY )2 dz

〉
= cψN (−1) g(ψN )N−3s−w−5 (−1)n−1n2

√
D

w−s−1
ivi−vc

(2π)n−sπ1−s

×
Γ
( −1−s

2

) 2
Γ(−s)Γ(n− 2− s)

Γ(−s− 2)
LT(w − 1− s, f ).

Making the substitution s with s − w − 2 and simplifying by applying the reflec-
tion identity twice gives the functional equation of Theorem 1.3 for w even. Note
that normalizing the functional equations to be with respect to the transformation
s ↔ 1 − s, the Langlands parameters for the archimedean factors are ε/2, ε/2, n/2,
(n + 1)/2; see [13].

For ψN = 1N , we apply (5.7) and (5.8) to integral representations that are entirely
analogous to (5.3) and (5.4) for that case. The functional equations are of the same
form as that of Theorem 1.3 but with the factors ψN (−1) g(ψN ) removed. A direct
application of Theorem 1.3 to the special values of LT(s, f ) at the even critical points
gives the special values at the odd critical points. Galois equivariance of the values
follows as in Section 3. This proves Theorem 1.4.

Appendix A

A Product Formula for the Gamma Factor
Hiroyuki Ochiai

Abstract. We give a product formula of the Gamma factor arising from the study of the twisted tensor
L-function of a cuspidal automorphic form on the imaginary quadratic field.

A.1 Introduction

The twisted tensor L-function [2, 4, 20]

G(s, f ) = L(s)
∞∑

m=1

C(m, f )m−s

is a Dirichlet series, up to an explicit normalizing factor L(s), attached to a cuspidal
automorphic form f over K, a quadratic extension of a number field. It is important
to study the arithmetic property of critical values of the L-function G(s, f ). In the
case of Hilbert modular forms, this property has been discussed by Shimura [17].
On the other hand, E. Ghate considers the arithmeticity of the L-function G(s, f ) in
imaginary quadratic case. He introduces a function G∞(s, f ) defined by

G∞(s, f ) = Γ(s + 2n− 2m + 2)G′∞(s, f ),
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with
(A.1)

G′∞(s, f ) =

2n+2∑
α=0,

α≡n+1+m(2)

c(m, α)Γ
( s + n−m + 1 + α

2

)
Γ
( s + 3n + 3−m− α

2

)
,

where the coefficients c(m, α) are given in (A.2). It has been shown that the product
function G∞(s, f )G(s + j0, f ) is expressed by means of the Rankin–Selberg integral,
where the integer j0 is explicitly given by the cusp form f . Hence, in order to prove
the arithmetic property that the critical value G( j0, f ) is an algebraic number times
a “period” of the form f , it is sufficient to prove the non-vanishing of G∞(s, f ) at
s = 0.

In this appendix, we give a product representation of the function G∞(s, f ). This
representation completely describes the zeros of G∞(s, f ). Using Theorem A.1, we
also show that G∞(0, f ) does not vanish and that [7, Conjecture 1] by Ghate holds.

A.2 Main Result

We recall the definition of the constant c(m, α) appearing in (A.1),

c(m, α) =
(−1)n+1

2

2n−2m∑
l=0,even

il
(

a(m, l− 1− α)− 2b(m, l, α)
)

=
(−1)n+1

2

[ n−m∑
k=1

(−1)ka(m, 2k− 1, α)− 2
n−m∑
k=0

(−1)kb(m, 2k, α)
]
,

(A.2)

(A.3) a(m, l, α) =
( n

m

) 2
(−1)

1
2 (n−m−l+α)

m∑
j=0

(m
j

)[( n−m
n−m−l+α

2 − j

)
×
( n−m

3n−3m−l−α
2 + j

)
+
( n−m

n−m−l+α−2
2 − j

)( n−m
3n−3m−l−α+2

2 + j

)]
,

(A.4) b(m, l, α) =
( n

m

) 2
(−1)

1
2 (n−m−l+α−1)

×
m∑

j=0

(m
j

)( n−m
n−m−l+α−1

2 − j

)( n−m
3n−3m−l−α+1

2 + j

)
.

Then our main theorem follows.

Theorem A.1 Let m, n be integers with 0 ≤ m ≤ n. We take ε = 0 or 1 so that
n−m− 1− ε ∈ 2 Z. Then we have

G∞(s, f ) = (−1)m2ε−1
( n

m

) 2
Γ(s + 2n−m + 2) · Γ

( s + n−m + 1 + ε

2

) 2

×
(n−m−1−ε)/2∏

i=0

(s + 1 + 2i)(s + 2n− 2m− 2i).
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The zeros of G∞(s, f ) are described completely in Theorem A.1. For example, as
a corollary of Theorem A.1, we have the following statement, which is proved under
some condition in [7, Proposition 5].

Corollary G∞(s, f ) 6= 0.

We hope that Theorem A.1 will be helpful in analyzing further properties of
G(s + j0, f ). The proof of Theorem A.1 is given in the next section, where we use
several kinds of identities on binomial coefficients.

Next we show [7, Conjecture 1].

Theorem A.2 We have

G∞(s, f ) = cn,mPn,m(s) · Γ(s + 2n−m + 2) · Γ
( s + n−m + 1 + ε

2

) 2
,

where

Pn,m(s) =

(n−m−1−ε)/2∏
i=0

(s + 1 + 2i)
( s

2
+ n−m− i

)
and

cn,m =
(−1)m · n!2

m!2 · Pn,m(0) · ( n−m−1+ε
2 )!2

.

Proof It is enough to show that

cn,mPn,m(s) = (−1)m2ε−1
( n

m

) 2
×

(n−m−1−ε)/2∏
i=0

(s + 1 + 2i)(s + 2n− 2m− 2i).

Since

Pn,m(s) = (s + 1)(s + 3)(s + 5) · · · (s + n−m− ε)

×
( s

2
+ n−m

)( s

2
+ n−m− 1

)
· · ·
( s

2
+ n−m− n−m− 1− ε

2

)
,

we see that

Pn,m(0) = (n−m− ε)!!× (n−m)!

( n−m+ε−1
2 )!

.

Hence

cn,m = (−1)m
( n

m

) 2 (n−m)!

(n−m− ε)!!( n−m+ε−1
2 )!

= (−1)m
( n

m

) 2 (n−m + ε− 1)!!

( n−m+ε−1
2 )!

= (−1)m
( n

m

) 2
2(n−m+ε−1)/2

= (−1)m2ε−1
( n

m

) 2
2(n−m+1−ε)/2.

Here the second equality follows from the formula k!/(k − ε)!! = (k + ε − 1)!! for
ε = 0, 1, and the third equality from the formula (2k)!!/k! = 2k. This completes the
proof.
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A.3 Proof of Theorem A.1

We begin by calculating the constant c(m, α). We refer the reader to [12] for several
kinds of identities for binomial coefficients.

Lemma A.3

(A.5) c(m, α) = (−1)m
( n

m

) 2
· 1

2
(−1)

1
2 (n−m+1−α)

m∑
j=0

(−1) j
(m

j

)(2n− 2m + 2
α− 2 j

)
.

Proof Definitions (A.2), (A.3), and (A.4) lead to

c(m, α) =
(−1)n+1

2

( n−m∑
k=1

(−1)ka(m, 2k− 1, α)− 2
n−m∑
k=0

(−1)kb(m, 2k, α)

)

=
(−1)n+1

2

( n
m

) 2
(−1)

1
2 (n−m+1+α)

m∑
j=0

(−1) j
(m

j

)

×
[ n−m∑

k=1

[( n−m
n−m+α+1

2 − k− j

)( n−m
3n−3m−α+1

2 − k + j

)
+
( n−m

n−m+α−1
2 − k− j

)( n−m
3n−3m−α+3

2 − k + j

)]
+ 2

n−m∑
k=0

( n−m
n−m+α−1

2 − k− j

)( n−m
3n−3m−α+1

2 − k + j

)]
.

Thus, deriving (A.5) is equivalent to proving

(A.6)
n−m∑
k=1

( n−m
n−m+α+1

2 − j − k

)( n−m
3n−3m−α+1

2 + j − k

)
+

n−m∑
k=1

( n−m
n−m+α−1

2 − j − k

)( n−m
3n−3m−α+3

2 + j − k

)
+ 2

n−m∑
k=1

( n−m
n−m+α−1

2 − j − k

)( n−m
3n−3m−α+1

2 + j − k

)
=
(2n− 2m + 2

α− 2 j

)
.
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The first sum of the left-hand side of equality (A.6) is calculated as

n−m∑
k=1

( n−m
n−m+α+1

2 − j − k

)( n−m
3α−3m−α+1

2 + j − k

)
=

n−m∑
k=1

( n−m
n−m+α+1

2 − j − k

)( n−m
−n+m+α−1

2 − j + k

)
=
(2n− 2m
α− 2 j

)
,

where the first equality follows from the identity
(a

b

)
=
( a

a−b

)
, and the second equality

from the identity on the binomial coefficients

min(b−d,c)∑
k=max(c−a,−d)

( a
c − k

)( b
d + k

)
=
(a + b

c + d

)
.

Similarly, the second and the third sums of the left-hand side of (A.6) are calculated
as

n−m∑
k=1

( n−m
n−m+α−1

2 − k− j

)( n−m
3n−3m−α+3

2 − k + j

)
=
( 2n− 2m
α− 2 j − 2

)
,

n−m∑
k=0

( n−m
n−m+α−1

2 − k− j

)( n−m
3n−3m−α+1

2 − k + j

)
=
( 2n− 2m
α− 2 j − 1

)
.

Hence the left-hand side of (A.6) is reduced to(2n− 2m
α− 2 j

)
+ 2
( 2n− 2m
α− 2 j − 1

)
+
( 2n− 2m
α− 2 j − 2

)
,

which is easily shown to be the right-hand side of (A.6).

In what follows, we use the Pochhammer symbol defined by

(a; k) = Γ(a + k)/Γ(a) = a(a + 1)(a + 2) · · · (a + k− 1), for a ∈ C, k ∈ Z≥0 .

With the help of Lemma A.3, we deduce the following expression of G′∞(s, f ).

Lemma A.4

(A.7) G′∞(s, f ) = (−1)m
( n

m

) 2
· Γ
( s + n−m + 1 + ε

2

) 2
(s + 2n− 2m + 2; m)

× 1

2
(−1)

1
2 (n−m+1−ε)

n−m+1−ε∑
i=0

(−1)i
(2n− 2m + 2

2i + ε

)( s + n−m + 1 + ε

2
; i
)

×
( s + n−m + 1 + ε

2
; n−m + 1− ε− i

)
.
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Proof By substituting the identities

Γ
( s + n−m + 1 + α

2

)
=
( s + n−m + 1 + ε

2
;
α− ε

2

)
Γ
( s + n−m + 1 + ε

2

)
,

Γ
( s + 3n + 3−m− α

2

)
=
( s + n−m + 1 + ε

2
; n + 1− ε− α− ε

2

)
× Γ

( s + n−m + 1 + ε

2

)
,

into definition (A.1), we have

G′∞(s, f ) = Γ
( s + n−m + 1 + ε

2

) 2 2n+2∑
α=0,

α≡n+1+m(2)

c(m, α)

×
( s + n−m + 1 + ε

2
;
α− ε

2

)( s + n−m + 1 + ε

2
; n + 1− ε− α− ε

2

)
,

which leads to the following by Lemma A.3.

G′∞(s, f ) = (−1)m
( n

m

) 2
Γ
( s + n−m + 1 + ε

2

) 2
· 1

2

2n+2∑
α=0,
α≡ε(2)

(−1)
1
2 (n−m+1−α)

×
m∑

j=0

(−1) j
(m

j

)(2n− 2m + 2
α− 2 j

)( s + n−m + 1 + ε

2
;
α− ε

2

)
×
( s + n−m + 1 + ε

2
; n + 1− ε− α− ε

2

)
.

The change of the variable α into i such that α = 2i + (ε + 2 j) results in

G′∞(s, f ) = (−1)m
( n

m

) 2
Γ
( s + n−m + 1 + ε

2

) 2
× 1

2
(−1)

1
2 (n−m+1−ε)

×
n−m+1−ε∑

i=0

(−1)i
(2n− 2m + 2

2i + ε

) m∑
j=0

(m
j

)( s + n−m + 1 + ε

2
; j + i

)
×
( s + n−m + 1 + ε

2
; n + 1− ε− j − i

)
.

The desired formula follows from the identity
m∑

j=0

(m
j

)
(x; i + j)(y; b− j) = m!(x; i)(y; b−m)

m∑
j=0

(x + i; j)

j!

(y + b−m; m− j)

(m− j)!

= m!(x; i)(y; b−m)
(x + i + y + b−m; m)

m!
.

Here the quantity
m∑

j=0

(x; j)

j!

(y; m− j)

(m− j)!
=

(x + y; m)

m!

is the coefficient of the term tm of the generating function (1 − t)−x(1 − t)−y =
(1− t)−x−y with b = n + 1− ε− i and x = y = (s + n−m + 1 + ε)/2.
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In what follows, we fix a non-negative integer N. In order to evaluate the sum
over i in the right-hand side of equality (A.7), we introduce a polynomial F(t ; x, ε) in
t with a complex parameter x and a parameter ε = 0, 1:

(A.8) F(t ; x, ε) =

2N∑
i=0

xi
(4N + 2ε

2i + ε

)
(t ; i)(t ; 2N − i).

The polynomial F(t ; x, ε) has the following properties.

Lemma A.5 (i) The polynomial F( 1
2 + ε; x, ε) in x has zero at x = −1 with the

multiplicity 2N.
(ii) For a non-negative integer j, we have

(A.9) F(t + j; x, ε) =
(t + θx; j)(t + 2N − θx; j)

(t ; j)2
F(t ; x, ε),

where the Euler operator in x is denoted by θx = x ∂
∂x .

(iii) F( 1
2 + ε + j;−1, ε) = 0 for j = 0, 1, . . . ,N − 1.

Proof (i) We consider the two cases, ε = 0 and ε = 1, separately.
When ε = 1, we have

F
( 3

2
; x, 1

)
=

2N∑
i=0

xi
(4N + 2

2i + 1

) (2i + 1)!

22i i!

(4N − 2i + 1)!

24N−2i(2N − i)!

=
(4N + 2)!

24N (2N)!

2N∑
i=0

(2N
i

)
xi =

(4N + 2)!

24N (2N)!
(1 + x)2N ,

where the first equality follows from the identity ( 3
2 ; a) = (2a + 1)( 1

2 ; a) = (2a+1)!
22aa! .

This shows the desired property of F( 1
2 + 1; x, 1).

When ε = 0, the similar calculation leads to

F(
1

2
; x, 0) =

(4N)!

24N (2N)!
(1 + x)2N ,

which proves the desired property of F( 1
2 ; x, 0). This completes the proof of (i).

(ii) It is seen that

F(t + j; x, ε) =

2N∑
i=0

xi
(4N + 2ε

2i + ε

)
(t ; i)(t ; 2N − i) · (t + i; j)(t + 2N − i; j)

(t ; j)2

=

2N∑
i=0

(4N + 2ε
2i + ε

)
(t ; i)(t ; 2N − i) · (t + θx; j)(t + 2N − θx; j)

(t ; j)2
xi ,

where we have used the identity (t ; j)(t + j; i) = (t ; i)(t + i; j) for the first identity.
By using the definition (A.8), we obtain the desired equality (A.9).

(iii) Let j be an integer with 0 ≤ j < N. As a special case t = 1
2 + ε of for-

mula (A.9), we have

(A.10) F
( 1

2
+ ε + j; x, ε

)
=

( 1
2 + ε + θx; j)( 1

2 + ε + 2N − θx; j)

( 1
2 + ε; j)2

F
( 1

2
+ ε; x, ε

)
.
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By (i), the order 2 j of the differential operator in the right-hand side of (A.10) is
strictly less than the multiplicity 2N of the zero of the polynomial F( 1

2 + ε; x, ε) at
x = −1. Hence we know that the right-hand side of (A.10) has zero at x = −1. This
means that F( 1

2 + ε + j;−1, ε) = 0.

Proposition A.6 The polynomial F(t ;−1, ε) is expressed by

(A.11) F(t ;−1, ε) = (−1)N 22N+ε(t ; N)
N−1∏
j=0

(t − 1

2
− ε− j).

Proof The polynomial F(t ;−1, ε) can be divided by the polynomial P1(t) = (t ; N),
because the polynomial (t, i)(t ; 2N − i) for 0 ≤ i ≤ 2N can be divided by P1(t).
On the other hand, Lemma A.5(iii) implies that the polynomial F(t ;−1, ε) can be
divided by

P2(t) =

N−1∏
j=0

(t − 1

2
− ε− j).

Therefore the polynomial F(t ;−1, ε) can be divided by the product P1(t)P2(t), since
two polynomials P1(t) and P2(t) have no common zeros.

Note that the degree of the polynomial F(t ;−1, ε) in t is equal to 2N. Indeed, the
coefficient of t2N in F(t ;−1, ε) is

2N∑
i=0

(−1)i
(4N + 2ε

2i + ε

)
= Re

4N+2ε∑
j=0

(
√
−1) j−ε

(4N + 2ε
j

)
= Re(

√
−1)−ε(1 +

√
−1)4N+2ε = (−1)N 22N+ε.

Since the polynomial P1(t)P2(t) is monic and of degree 2N, this proves that

F(t ;−1, ε) = (−1)N 22N+εP1(t)P2(t).

By using Lemma A.4 and Proposition A.6, we give a proof of Theorem A.1. We
consider F(t ;−1, ε) with

N =
n−m + 1− ε

2
, t =

s + n−m + 1 + ε

2
.

Formula (A.11) leads to

(A.12) F(t ;−1, ε) = (−1)
1
2 (n−m+1−ε)2ε

(n−m−1−ε)/2∏
i=0

(s + 1 + 2i)(s + 2n− 2m− 2i).

On the other hand, formula (A.7) implies

(A.13) G′∞(s, f ) = (−1)m
( n

m

) 2
· Γ
( s + n−m + 1 + ε

2

) 2
(s + 2n− 2m + 2; m)

× 1

2
(−1)

1
2 (n−m+1−ε)F(t ;−1, ε).
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Combining equations (A.12) and (A.13), we obtain

G′∞(s, f ) = (−1)m
( n

m

) 2
· Γ
( s + n−m + 1 + ε

2

) 2
(s + 2n− 2m + 2; m)

× 2ε−1
(n−m−1−ε)/2∏

i=0

(s + 1 + 2i)(s + 2n− 2m− 2i).

Since (s + 2n− 2m + 2; m)Γ(s + 2n− 2m + 2) = Γ(s + 2n−m + 2), we have obtained

G∞(s, f ) = (−1)m
( n

m

) 2
· Γ
( s + n−m + 1 + ε

2

) 2
Γ(s + 2n−m + 2)

× 2ε−1
(n−m−1−ε)/2∏

i=0

(s + 1 + 2i)(s + 2n− 2m− 2i).

This completes the proof of Theorem A.1.
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