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Introduction. Let/(x) be a complex function of a real variable, defined over the whole
real line, which possesses n derivatives (the nth at least almost everywhere) and is such that
/(n~ 1}(x) = Jx / ( n ) (0 dt. Then, if k is any integer for which 0 < k < n, Kolmogoroff's inequality
may be written as

sup|/«(x)| g K{snp\f"Kx)\}k"{sup\Kx)\}l-k", (0.1)
X X X

or, by putting || /1 | „ = sup | f(x) | and a = kin,

! / m | a S K | / w | ' a | / | | & - . (0-2)
The constant K = K(k, n) is known explicitly and is the best possible, i.e., there is a (real)
function for which equality holds (see Bang [1]).

In the first section of this paper we show that in (0.2) the norm || • ||i, can be replaced by
any one of the norms used in defining classes of almost periodic functions by Stepanoff,
Weyl, Besicovitch, Love and the present author [2, 9, 11], but no assertion is made as to
whether K is still the best possible constant. Part of the proof utilises a convolution introduced
by Ogiewetski [10], who established a special case of Theorem 4 of this paper.

In the second section similar extensions involving fractional integrals are made to
inequalities between trigonometric polynomials, originated by Bohr, Favard and Bernstein
and generalized by Bang.

In the third section various classes of almost periodic functions are introduced, and the
theorems of the previous section are applied to them. Finally, a theorem proved in the first
section is used to establish alternative characterizations of the almost periodic functions
defined by the present author.

DEFINITIONS. For completeness we state here the definitions of the various norms which
will be considered. Let/; ^ 1 and L > 0; then

||D = s u p | / ( x ) | ,

WP = lim
L->oo

(0.3)

|/(0|pA}!/',
T

v+supV.(f; x, x + l),
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2 C. J. F. UPTON

where the Wiener pth variation

Vp{f; a, b) = sup £ | / (x , ) - / (*i- i ) | ' , (0-4)
n i = l

the supremum on the right hand side being taken over all partitions

n: a = x0 < xx < . . . < xm = b

of the interval (a, b).
If either L or p is equal to 1, it is omitted.
We also consider the norms

> Z | | | l l | ( o ,
r = O

where /(x) is assumed to be differentiable K times and (7(0) stands for any one of U, Sp, V,
Wp and B". However, for reasons that will appear later, the use of || • |C(|<) when G(0) stands
for any one of W and Bp will be restricted to the first two sections of the paper.

lip > 1, we define/?' by 1/p+l/p' = 1.

1. Extensions of Kolmogoroff's inequality.

THEOREM 1. Letf(x) be any complex function of a real variable such thatf^r\x) exists for
r = 1, 2, . . . , n- l , / ( n ) (x) exists almost everywhere andf^"~l\x) = \xf(n\i)dt; and let k be
any integer for which 0<k<n. Then, ifG is any one ofS", W" or B" {p ̂  1),

where K is a constant independent off(x) and a = kjn.

Proof. For any bounded measurable set E, we define the convolution

H(x)=\ f(x+y)g(y)dy,

where g(y) is a bounded measurable function whose specific values will be determined later.
Then, if m is any non-negative integer (0 ̂  m ̂  n),

H(m)(x)=f fimKx+y)g(y)dy. (1.1)
JE

We first suppose that p > 1 and that g(y) satisfies the condition

\g{y)Ydy = \. (1.2)J.IE

Then, by (0.1) and Holder's inequality,

^ sup | Hm(x) | ̂  K{sup | Hw(x)|}"{sup | H(x) |}*"

. (1.3)
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EXTENSIONS OF INEQUALITIES OF KOLMOGOROFF AND OTHERS 3

If we now put

g(y) = I f(k\y) |p"' sgn [/^GO]/!]^ | fw(y) \"

then g(y) satisfies (1.2) and, from (1.1),

It therefore follows from (1.3) that

Uup\ \f(x+y)\'dyj . (1.4)

We next suppose that p = 1 and that g(y) satisfies the condition

l. (1.5)

Then, by a similar argument,

|H«>(0)| ̂  K jsup f \fw(x+y)\dyY Lup f \Ax + y)\dyV '.

If we now put g(y) = sgn [fw(y)], then (1.5) is satisfied and, from (1.1),
H (t)(0) = JE | fw(y) | dy. It follows that (1.4) is true for p = 1 and hence for all p ̂  1.

We complete the proof of the theorem by replacing G in turn by Sp, W and Bp.

Case\. Let G be S"(p^ 1). In (1.4) we let E be the interval (f, t+L). Then

f fr + x+Z. "Wp
g/dsupL-H \f\y)\pdt\

f pi + x + L ")

x^supL-1 |/(y)|'^S
I x Jt+x J

(l-<r)/p

Put L = 1. Then, if we take the supremum of the left hand side of (1.6) over all t, we find that

l|f(*)|| < x II fM IIff|| 7 ||SP a A. || y ||S

2. Let G be Wp (/? ̂  1), and let e > 0 be chosen arbitrarily. Then, by (0.3) and
(1.6), there exists L0(e) > 0 such that, if L > Lo,

If then, on the left hand side, we first take the supremum over all t and then let L -> oo, we see
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4 C. J. F. UPTON

that the left hand side can be replaced by | fm fl^,. As the resulting inequality is true for all
£ > 0, it follows that

|| J \\WP = K || 7 Ww \\J \\wp • U-o)

Case 3. Let G be B" (/> ^ 1). We first note that, for fixed x and T > \ x | ,

T-\x\ 1 f-'"
Z^J "I^I^J -r+|x|

If we let T-> oo, it follows easily that

M,{|/(* + 0|p} = M,{|/(0|P}(= | | / | W . (1.9)

In (1.4) we now let E be the interval (— T, T), obtaining the inequality

«0>

^ K ^ s u p — l /^Cx+y)!"^^ isup—- | / (x+ j
I -r 2.T I T 1 I J: 2 i I x

Let e > 0 be chosen arbitrarily. Then, from (1.9), there exists jT0(e) > 0 such that, if T> To,

{^f\\ I f W ( y ) \"dy}UP ~ K{| /(n>I|BP+8}O{|1 f I«'+£}1"<T-
If we let T-+<x>, it follows that the left hand side can be replaced by ||/(k)|JBp; and the
resulting inequality is true for all e > 0. Therefore

|| fw || , <, K || / (n ) 1% || / 1 | Xp". (1 10)

The inequalities (1.7), (1.8) and (1.10) establish Theorem 1.

COROLLARY. If in (1.4) we replace E by the interval {-T,T) and then let J-> oo first on
the right-hand side and then on the left-hand side, we obtain the inequality

\f(y)\'dy '

In the case when n = p = 2 and k = 1, this inequality is proved in [8, p. 193], and the best
possible value of K is shown to be 1. (For the same values of n, p and k, the least value of
K obtainable by the present argument is ,/2.)

Before we consider extensions of Kolmogoroff's inequality which involve the remaining
norms defined in (0.3) and (0.5), we first obtain an inequality analogous to (1.4) for the
Wiener /?th variation defined in (0.4).
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EXTENSIONS OF INEQUALITIES OF KOLMOGOROFF AND OTHERS 5

LEMMA 1. Let n be the partition a = x0 < *i < .. . < xm = b of the interval (a, b), and let
p > 1. Then, with the definitions and notation of Theorem 1,

| 7 >; a+x, b+x)}"{snpVp(f; a+x,
(.1=1 J X X

where K is the constant defined in (0.1).

Proof. As in the proof leading to (1.4), we define a new function

H.(x)= f
£ = 1

where g(x) is an auxiliary function to be determined later. Then

H<JXx)=Z,{f"\x+xi)-f
uXx+xi_1)}Agi (; = 0 , 1 , . . . , « ) . (1.11)

i = l

If g(x) satisfies the condition

IlAff.K^l, .(U2)
i = l

it follows, by (0.1) and Holder's inequality, that

^ X{supFp(/
w; a+x, b+x)Y{supVp(f; a+x, ft+x)}1"". (1.13)

X X

We now define g(x) as a function whose values at the points of the partition n are as
follows. We fix g(x0) arbitrarily and set, for / = 1, 2 , . . . , m,

where AA(k) =/w(xi)-/ (*)(X(_1). No restriction is placed on the values that g(x) takes
elsewhere. Then g{x) satisfies (1.12) and, from (1.11),

This and (1.13) complete the proof of the lemma.
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C. J. F. UPTON

We also state as a second lemma the following inequality.

LEMMA 2. Ifut and vt and a are real, u, ^ 0, v( ^ 0 (/ = 1, 2, . . . , m), and 0 < a < 1, then

«7 tf "• £ ( !

For proof see [8; 2.9.2].
We now extend the result of Theorem 1 to other norms.

THEOREM 2. Under the hypotheses and notation of Theorem 1,

II f(*>ll < K II / " M i l " l l f l l 1 - " f n ^ H
II / IIKP a A. ||/ \\yp || J ||KP (,p > 1).

Proof. In Lemma 1 put a = y, b = y+l. Then

{ I I A/i(t) | p } 1 / p =? *{sup Kp(/<">; y + x, y + x + l)}'{sup Kp(/; y + x, y + x +1)}l

i l
; y, y + l)}'{supVp(f; y,

y y

If, on the left-hand side, we take the supremum firstly over all partitions of the interval
(y, y+1) and then over all values of y, it follows that

sup Fp(/<*>; y, y + 1) Z K{sup Fp(/<
n>; y,y+ l)}°{sup Vp(f; y,

y y y

Hence, by (0.2) and Lemma 2,

\\f(k)\\v,= \\fik)\\u + ™pVp(fM;y,y + l)

=? K{\\ /WII?, || / | | i- f f+[sup Fp(/W; y, y + l)]o[sup VJJ\ y,

/; y, y +1)}1"'
y y

— K" II fOOII" II f l l 1 " "
-K\\J \\y\\J Ik" •

When p = 1 we note that | / ||K = || / \v+1| / ' ||s = || / | S ( l ) . This norm is included in the
next theorem.

THEOREM 3. Letf(x) be an (n + ic)-times differentiable complex function of a real variable
(the (n + K)th derivative existing at least almost everywhere) such thatf(n+K~l\x) = J*/<n+K)(0 &U
where n and K are positive integers. Then, ifk is any integer such that 0 < k < n and a = kjn,

II f<*) | | < K\\ /"("Ml" II f II
II J \ \ G ( K ) ^ K \ \ J \ \ c w \ \ J ||

1 " "

where \\ • |C(ic) is any one of the norms defined in (0.5) and K is a constant independent off(x)
and a.

Proof. If, in (0.2),/is replaced in turn b y / ' , / " fK~\ it follows from Lemma 2 that

"if i rk+r) I z Kit11 f(n+r) mi11 /(r) I,}1--. a.14)
r=O r=0 r=0
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EXTENSIONS OF INEQUALITIES OF KOLMOGOROFF AND OTHERS 7

From the definitions of the norms in (0.5), the proof of the theorem then follows from (1.14),
Theorems 1 and 2 and a further application of Lemma 2.

2. Extensions of inequalities of Bernstein and others. Let t(x) be a trigonometric
polynomial

m

t(x) = £ ai,eiXkX (<*h complex, Xh real)

and let a be any complex number. Then the derivative of t(x) of order a is

f(a)« = t «*( W'-*,
(1=1

where (iX)a = exp [{\in sgn X+log | X |)a]. Similarly the integral of t(x) of order a is

I
provided that none of the Xh is zero.

We denote by a the real part of a. Then the following inequalities hold, where | • | c is
any one of the norms denned in (0.3) and (0.5).

THEOREM 4. || t(a) ||c ^ A(a) || t||c max | Xh |
s, where A(a) depends only upon a, and a > 0.

h

THEOREM 5. || ta ||c ^ A(a) \\ t ||c/min | Xh \s, where A(a) depends only upon a and a > 0.
n

THEOREM 6. If min | Xh \ > 0 and a, /?, y are complex numbers such that y < a < ft, and
h

ta(x), tfi(x), ty(x) are, respectively, the ath, flth and yth integrals of t(x), then

where x = (fi—&•)!($—y) and K is a constant depending only upon a—y and fi—y.
When G is U, all three theorems have been established by Bang. When, in addition, a is

real, the inequalities in Theorems 4 and 5 are proved, respectively, by Civin [6, a special case
of Theorem 6], and Sz. Nagy; when, further, Xh = h, they are due, respectively, to Bernstein
and to Bohr and Favard. For references see [1].

If a, j8 and y are real, and fl • ||c is replaced by

Jo

Theorem 6 becomes a special case of [7, pp. 688 and 695]. This special case is included in
Corollary (ii), below.

As the proofs of all three theorems follow closely those of Theorems 1, 2 and 3, making
use of Bang's results when G is U, it will suffice to prove one of them, Theorem 4, in the cases
when G is Sp, W or Bp. The proofs in the other cases and the proofs of Theorems 5 and 6
will follow, mutatis mutandis.
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8 C. J. F. UPTON

Suppose then that p ^ 1 and E is any bounded measurable set. We define an auxiliary
function g(y) as follows:

sgn [<

1),
(2.1)

so that

Let

sup | g(y) | = 1 (p = 1), and f | g(y) |"' dj; = 1 (p > 1). (2.2)
y JE

- J . t(x + y)g(y)dy=

Then T(JC) is a trigonometric polynomial and, for any complex a,

Hence, using the definition (2.1) of g(y), we have

Let Ca = /4(a)max | Xh |
5, where ^4(a) is the constant determined in [1] for the case when G is

U. Then, by (2.1) and (2.2) and by using Holder's inequality when p > 1, it follows that

^ sup11«Xx)\If

= Casup
JE

t(x+y)g(y)dy

(2.3)

If £is replaced by the interval (s, s+L), then it quickly follows, as in the argument leading
to (1.6) and (1.7), that

UP
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EXTENSIONS OF INEQUALITIES OF KOLMOGOROFF AND OTHERS 9

Therefore, if L = 1,

Similarly, arguments analogous to those leading to (1.8) and (1.10) show that

and

COROLLARY. Theorems 4, 5 and 6 are also true when || • ||c is replaced by either

(i){P \-\'dyV" or (fl)\r\'\'dyVtP.
U-°o J (Jo J

We again consider Theorem 4. Corollary (i) follows from (2.3) if we take E as the
interval (— T, T) and let T-* oo first on the right-hand side and then on the left-hand side.

To prove Corollary (ii) we first note that, for any trigonometric polynomial <j>(x),
sup | <j>(x) | = sup | <f>(x) | . For, if sup | <p(x) \ = M and sup | <£(x) | = Mu then My ^ M. To

x x&O x x^O

obtain the reverse inequality, let e > 0 be chosen arbitrarily and let x0 be such that | (t>(x0) | >
M—e/2. Then there exists a number z such that xo+z > 0 and |<K*o+T)-<£(*o)| < e/2-
(Its existence can be seen, for example, from the fact that <t>(x) is uniformly almost periodic.)
Hence

Ml 2i 14>(x0+T) I > | <l>(x0) |—e/2 > M—e.

Since a is arbitrary, Ml ^ M and thus M^ = M.
It follows that the argument leading to (2.3) is equally valid when sup is replaced by

X

sup. If we then take E as the interval [0, T], and let T-* oo as before, first on the right-hand

side and then on the left-hand side, we obtain
yip

pdy\i f " I f'Xy) I

1/p

Ogiewetski's generalization [10] follows directly from (2.3) by letting a be real and by
replacing Xh by h and £ by the interval (-7t, 7t). The trigonometric polynomial t{x) is then
periodic with period 2n and

https://doi.org/10.1017/S0017089500001300 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001300


10 C. J. F. UPTON

3. Applications to almost periodic functions. For many of the norms that have been used
hitherto, classes of almost periodic functions have been defined. More specifically, a G-almost
periodic function (Gap) has been defined when || • ||G denotes any one of the norms given in
(0.3) or any one of the norms given in (0.5) when G(0) is U, Sp or Vp [2, 9, 11]. For our
present purposes, however, we need to consider spaces of Gap functions which are complete,
and we must therefore exclude Wpap functions (see [4, p. 58]). In this section we therefore
restrict G to be any one of U, S", V, B" or G(K), where G(0) is U, S" or V.

We first state as lemmas two properties of Gap functions that will be needed.

LEMMA 3. Let f(x) be Gap and let {sm(x)} be a corresponding Bochner-Feje'r sequence of
trigonometric polynomials. Then {sm(x)} G-converges tof{x), i.e., || sm—f | |c -> 0 as m -* oo.

LEMMA 4. The space of Gap functions is complete.
These are well-known properties of Bpa.p, Spap, Uap and Fpap functions. To establish

them for G(l[)ap functions (K 2: 1) is not difficult.
To prove Lemma 3 we suppose, then, that / (x) is G((t)ap (K ^ 1). It follows from the

definitions [11] that/( lc)(x) is G(0)ap and that each/(r)(jr) (r = 0, 1, . . . . K - 1) is Uap.
Let / (x) have the Fourier series £anelAnX. Then sm(x) can be written as ^

n n

where the rf£ are constants (only a finite number of which are nonzero) which are independent
of the coefficients an. Since, for each r = 0, 1, . . . , K, f(r){x) has the Fourier series
Yi

ani}Kfdx"*,{si£(x)} is a corresponding Bochner-Fejer sequence, as m-*co, and this
n

sequence converges to f('\x) in the appropriate norm. That is, as m -+ oo, {sJ^C*)} U-
converges to/(r)(;c) for r = 0 , 1 , . . . , K- 1 and {s^K)(x)} G(0)-converges tofw(x) [2, pp. 50 and
105; 9, p. 23]. Hence the sequence {sjx)} G(K)-converges to / (x) as m -* oo, and Lemma 3
is established.

To prove Lemma 4 we make use of another lemma.

LEMMA 5. IfK^,l and G(K) is fixed, then f(x) is G(lc)ap if and only if it is bounded and
fix) is G(K_!)ap [11, Theorem 9].

Suppose, then, that K ^ 1 and that {/,(*)} is a sequence of G(K)ap functions such that
II /„ .- / . I k o - O as « > » • - > oo. Then \\ fir)-fir>\\v^0 (r = 0, 1, . . . , K - 1 ) and
||/n(K)—/mK)||c(0) - • 0 a s w > w - > o o . It follows from the completeness of the G(O)ap spaces that
there exist unique functions 9r(x) such that 60(x), 6 fa),..., 0K. fa) are all Uap, Ofa) is G(0)ap,

fl/Jr)-e,lu-»O as n-»oo (r = 0 , . . . ) K - l ) , (3.1)

Further, if r = 1,2 K and a < x, then

= lim

d
Therefore 0r(x) = —Or-fa). If, then, we put f{x) = Ofa), it follows from K applications
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EXTENSIONS OF INEQUALITIES OF KOLMOGOROFF AND OTHERS 11

of Lemma 5, since each of the Uap functions 0o(x), 0i(x),..., BK- \(x) is bounded, that/(x) is
G(K)ap. Finally, from (3.1),

| | / .- / | |c, . ,-»0 as n^GO,

and the space of G(l[)ap functions is therefore complete.

NOTE. We may note in passing, that, when K ̂  1, the space of G(lc)ap functions shares
with the other spaces of almost periodic functions the properties of being closed and of being
identical to the closure, with respect to | • ||C(ic), of the space of trigonometric polynomials.
The proofs of these properties follow readily from Lemmas 3 and 4 and from the corresponding
properties of G(0)ap functions.

We now show that Theorems 4, 5 and 6, which concern finite trigonometric sums, can be
extended as follows to the classes of Gap functions that are being considered in this section.

THEOREM 7. Let G be fixed and letf(x) be a Gap function whose Fourier series is

2>AeMwt. (3.2)

Then, if sup | Xh | = M < oo and if a is any complex number such that a > 0,

E«*0W>* (3.3)
is the Fourier series of another Gap function /-„(*) and

where A(a) depends only upon a.

THEOREM 8. Let G be fixed and letf(x) be a Gap function whose Fourier series is (3.2).
Then, if inf | Xh \ — A > 0 and a is any complex number such that a > 0,

is the Fourier series of another Gap function fa(x) and

where A(ct) depends only upon a.

THEOREM 9. Let G be fixed and let ^a^fe'^" and X«(i('^)~''eiAllX be the Courier
series of two Gap functions fy{x) andff{x), respectively, where y and /? are complex and y < Jt.
Then, if a is any complex number such that y < a < /?, the series

is the Fourier series of another Gap function fa(x), and

iUM*iuiy/,iir,
where x = (/?—a)l(fi—y) and K is a constant depending only upon ct—y and fl—y.
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12 C. J. F. UPTON

Since, in the case when G is U, Bang proves Theorem 9 and asserts (without proof) that
Theorems 4 and 5 can be extended to include t/ap functions, these last three theorems are not
unexpected in the light of earlier results given in this paper.

To prove Theorem 7 let

where 0 ^ d^ g 1 and only a finite number of the set {d^} are nonzero, be a Bochner-Fejer
polynomial of (3.2). Then

is a Bochner-Fejer polynomial of (3.3). Further, by Theorem 4 and Lemma 3,

\\s™-s?\\GZA(a)M*\\sm-sn\\0

and

1 sm-sn ||c -»0 as m > n -> oo.

Hence

||Sm'-si"01|G~*0 a s m>n->oo.

Now, by Lemma 4, the space of Gap functions is complete. Therefore there exists a Cap
function /_„(*) such that

| |s- ' ) - /- . | |c->0 as m->oo,

and it follows that the Fourier series of/_„(*) is (3.3). Finally, for arbitrary e > 0 we choose
m(e) such that

\\sm-f\\GZe and | | s « - / _ . | G £ e .

Then, by Theorem 4 again,

Ze+A(a)M5{\\f\\G+e}.

Since e may be arbitrarily small, it follows that

The proof of Theorem 8 follows similarly from Theorem 5.
To prove Theorem 9 we consider the polynomials

smJ(x) = £ ah(Uh)-J dh
m e»»* (m = 1, 2, 3 , . . . ; ; = a, fi, y),

where {sm^(x)} and {smy(x)} are sequences of Bochner-Fejer polynomials which (7-converge,
respectively, tofp(x) and/y(x) as m -» oo.
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EXTENSIONS OF INEQUALITIES OF KOLMOGOROFF AND OTHERS 13

As smA(x) and smj(x) are integrals of smty(x) of orders a—y and /?—y, respectively, it
follows from Theorem 6 that

where x = (J}-u)l(Ji-y).
The proof is completed by an argument similar to that for Theorem 7.

4. Characterization of G(K)ap functions (K ^ 0). In this section we are only concerned with
Gap functions when G is any one. of U, Sp, V or G(|C), where G(0) is £/, S" or K", i.e., we do
not consider W&p or fipap functions. We can conveniently denote any such function as G(lc)ap
where, now, K ^ 0. We use some of the results of § 1 to establish alternative definitions for
these almost periodic functions.

We begin with two lemmas.

LEMMA 6. If fix) is G(K)ap (K ^ 0), then
(i) it is G^-bounded, i.e. \ f ||G(ie) < co, and

(ii) it is G(K)-continuous, i.e. || f(x + h)-f(x) ||C(K) -»0 as h -> 0.

These are well-known properties for G(0)ap functions. When K ^ 1, then, as was pointed
out in the proof of Lemma 3, each of/(*),/ ' (*), ...,flK~n(x)is C/ap (and hence is (/-bounded
and (/-continuous) and/(K)(x) is G(0)ap (and hence is G(0)-bounded and G(0)-continuous).

The rest of the proof follows at once from the definitions.

LEMMA 7. Iff(x) is differentiable almost everywhere andf{x) = J* f'{t)dt, then

Proof. || / I v = sup | / (x) | ^ sup<
* * (.

r j t + i r 1 r*4"1!
^ s u p | / ( f ) |d t + sup dt\ | / ' ( " ) |

« J i ' Jo Jx

For any fixed G(0) we can now identify the class of G(K)ap functions (K ^ 1) with the class
of bounded Kth integrals of G(0)ap functions.

THEOREM 10. If K ^ 1 and G(0) is fixed, f(x) is G(K)ap if and only if it is bounded and
fM(x) exists and is C(0)ap.

Proof. The necessity of the conditions follows directly from the definitions.

Sufficiency. Suppose that / (* ) is bounded and that fiK\x) is G(0)ap. Then f(x) is S-
bounded and/(K)(^), being certainly Sap, is 5-bounded also. It follows then, from Theorem 1,
that f(r)(x) is 5-bounded for r = 0, 1 , . . . . K, and, from Lemma 7, that f(r)(x) is [/-bounded
for r = 0, 1 , . . . , K- 1. Hence, by K applications of Lemma 5,/(x) is G{K)ap.
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COROLLARY. If K ^ 1 and G(0) is fixed, f(x) is (7(lOap if and only if it is S-bounded and
/(lt)(x) exists and is G(0)ap.

The proof is immediate.
Since each G(K)ap function is Sap it can also be characterized as an Sap function which is

(/(^-continuous. We shall need the following lemma.

LEMMA 8. If, for K 2; 0, f{x) is GM-continuous and

for h>0, then

lU-Zlk^O as ft-0.
Proof. If K = 0 and G(0) is U or S" (p ^ 1), the result is well known (see e.g. [5], where

Burkill also proves the lemma when Gw is Wp or Bp). It will therefore suffice to prove it true
when G(0) is V (p > 1). For then the lemma will be true when K = 0 and, hence, for all
K ̂  0. For, if K £ 1, f{x), f'(x),... , / ( " - 1 ) ( JC) will all be ^-continuous and fw(x) will be
(?(0)-continuous. Since

for r = 0, 1, . . . , K, the proof follows at once from the definition of || • ||C(ic).
Suppose, therefore, that G(0) is V (p> 1) and, for any fixed y, n is the partition

y = xo<Xi<...<xm = y+l of the interval (y,y+1). Then (by use of Holder's inequality)

Jo

h

h \
'o

i

^ ft"1 f V,{Kx + t ) - f { x ) ; y Z x ^ y + l}"dt
J o

g sup sup Vp{f(x +1)-f(x); yg.x^y + l}".
y

This last term tends to 0 as h -* 0 since, by hypothesis, f{x) is Fp-continuous. If we take
on the left-hand side the supremum first over all possible partitions TT of the interval (y, y+1)
and then over all y, we see that

supVp{fh(x)-f(x); y g x | y + l } - > 0 as h-»0.
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From this, the definition of || • ||K, and the present lemma when G(0) is U, it follows that

IU-/ | |vp-+0 as fc-0.

Hence the lemma is established.
The second characterization of G(l()ap functions can now be given.

THEOREM 11. I/K^O and G(0) is fixed, fix) is Gwap if and only if it is Sap and Gw-
continuous.

Proof. That these conditions are necessary for/(x) to be G(l()ap follows at once from the
definitions of G(lc)ap functions and Lemma 6(ii).

To prove the converse, first let K = 0 and suppose that/(x) is Sap and G(0)-continuous.
For 0 < h < 1 we define

Then, for almost all x,f^(x) = h 1{f(x+h)—fix)} and is therefore Sap, being the difference
between two Sap functions. Also

which is finite by Lemma 6(i). Hence, by Theorem 10,fh(x) is S(1)ap and thus is G(0)ap for all
possible G(0) (see [11, pp. 423-424]). Furthermore, it follows from the hypothesis and
Lemma 8 that || _/Ji, —y |j C(0> —»• 0 as h-*0. Hence fix), being the G(0)-limit of a sequence of
G(0)ap functions, is itself G(0)ap.

If K ̂  1, it follows from the hypothesis that/(*),/ '(*),... . / ^ " ' ' ( J C ) are all [/-continuous
and that/(K)(x) is S-continuous. Now it is known that, if an Sap function has an S-continuous
derivative, then that derivative is also Sap. (See Bochner [3]. Alternatively, if

f
Jo

O ( x ) = <t>(t)dt
Jo

is Sap, then so is (j>hix) — /T1{0(jc+/i)-(I>Oc)}forA > 0. If <j>(x) is S-continuous, then Lemma 8
shows that, as h -* 0, <l>h(x) S-converges to <j>(x), which is therefore Sap.) Successive appli-
cations of this result show that fix), fix),... ,fMix) are all Sap. Since, by hypothesis,
fMix) is G(0)-continuous, the argument in the earlier part of this proof shows that it is also
G(0)ap. Hence fix), which is S-bounded, being Sap, is G(K)ap by Theorem 10, Corollary.

COROLLARY. For any fixed G{0),/(x) is G(ic)ap if and only if it is Sap andf(K\x) is G(0)-
continuous.

Proof. As in Theorem 11, the conditions are clearly necessary. If, on the other hand,
fix) satisfies them, then fix) and/(K)(x) are both S-continuous, so that, by Theorem 1, with
G = S and fix) replaced by fix+h)-fix), it follows that/(r)(x) is S-continuous for r = 0,
\,...,K. Hence, by Lemma 7, with fix) replaced, in turn, by f(r)ix+h)-f(r\x), for
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r - 0, 1, 2,..., K- 1, we see that/(*),/ '(*),.. . J^'^ix) are all {/-continuous. Hence/(JC)
is G(l()-continuous. The result then follows from Theorem 11.

In [5], Burkill established a theorem similar to Theorem 11 for classes of Denjoy and
Cesaro-Perron almost periodic functions (Dap and CrPap respectively) each of which contains
the l/ap and Sap classes. If the two theorems are combined we have the following theorem.

THEOREM 12. If fix) is CrPapfor some r ^ 0 and is G-continuous, where G is any one of
GM(K ^ 0), W, B", D, and CSP (s ̂  0), thenf(x) is Gap.

Since fPpap functions and 2?pap functions need not be QPap, for they can be uniformly
continuous without even being t/ap, the converse of Theorem 12 will only be true if Wap
and 5pap functions are excluded.

The author wishes to express his thanks to the referee for suggesting various improvements
and for drawing his attention to the reference [7] which has led to the inclusion of the corollary
to Theorems 4, 5 and 6.
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