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On convergence in capacity

Burnett Meyer

The (logarithmic) capacity or transfinite diameter is originally

defined for compact sets in the complex plane. An extension may

be made "by defining the capacity of a given arbitrary set in the

plane as the supremum of the capacities of all compact sets

contained in the given set. Convergence in capacity is defined

analogously to convergence in measure. It is shown in this paper

that properties of convergence in capacity are also analogous to

those of convergence in measure.

Recently it has been shown that certain sequences of Pade approximants

converge in capacity [3, 4, 51. The definition of convergence in capacity

is analogous to that of convergence in measure. We shall show that the

properties of these two kinds of convergence are also analogous.

1. Preliminaries

For the definition and properties of the (logarithmic) capacity or

transfinite diameter, C{F) , of a compact set in the complex plane, see

[7, pp. 293-311*] or [2, pp. 26^-289]. Following Tsuji [£', pp. 53-89] we

define as follows the capacity of an arbitrary set S in the complex

plane:

C{S) = sup C(F) ,
Fi¥

where F is the set of all compact sets F contained in 5 . C{S) is

cometimes called the inner capacity of S , since it is defined analogously

to the inner Lebesgue measure. (An outer capacity can also be defined, but

we shall not use it.) A property which holds everywhere except on a set of
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capacity zero will'be said to hold approximately everywhere.

An important property of capacity is given in the following theorem.

Let S (n = 1, 2, ...) be Borel sets contained in \z\ 5 R , and

CO

let S = U S . Then
n=l

CO

(1) {logi^/CiS)]}-1 2 I {log[2i?/C(S J ] } " 1 .
n=l

This is an easy generalization of Theorem III.17 on page 63 of [&].

2. Definition and properties of convergence in capacity

DEFINITION. Let fn (n = 1, 2, ...) be complex Borel-measurable

functions on a bounded domain D . The sequence {/ } is said to converge

in capacity to a Borel-measurable function f on D if and only if for

every e > 0 , lim C[{z € D : \fn(z)-f(z) | > e}) = 0 . The sequence {fj

is said to be a Cauchy sequence in capacity on D if and only if for every

e > 0 , lim C[{z 6 D : \fn(z)-fm(z) \ > e}) = 0 .
m,n-*°

The collection of complex Borel-measurable functions is closed under
addition, multiplication, and pointwise limits. Pade approximants, being
meromorphic in any bounded domain, are Borel-measurable functions.

Convergence in capacity has properties which are analogous to those of
convergence in measure, as is seen in the following theorems.

THEOREM 1. Let f, g, f , f , ... be complex Borel-measurable

functions on a bounded domain D , each function finite approximately
everywhere.

(a) If {fn} converges to f in capacity on D and f(z) = g{z)

approximately everywhere on D 3 then [f } converges to g in capacity

on V .

(b) If {f } converges to f in capacity on D and [f }

converges to g in capacity on D , then f{z) = g(z) approximately

https://doi.org/10.1017/S0004972700024801 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024801


C o n v e r g e n c e i n c a p a c i t y 3

everywhere on D .

(c) If {f } converges to f in capacity on D , then {f } is a

Cauchy sequence in capacity on D .

The proof i s omitted, since i t i s similar to the proof of the

analogous theorem for convergence in measure [7 , pp. 265-268].

THEOREM 2. Let D be a bounded domain and {f } a Cauchy sequence

in capacity of Borel-measurable functions, finite approximately everywhere

on D . Then there exists a Borel-measurable function f , which is finite

everywhere on D , such that {f } converges to f in capacity and such

that a subsequence of [f (z)} converges to f(z) approximately every-

where on D . For each e > 0 there exists a set E a D such that

C(E) < e and such that a subsequence of {f (z)} converges uniformly on

D - E .

Proof. Let D <= {s : |s | 5 i?} . Choose integers N. (j = 1, 2, ...)
3

such that

D • \f iz)-f {z)\ - 2~3\\ < 2E expt-e*7') ,

for m > N n> N Let g. = / ,
d d d lv •

d

ID : \g.(z)-g.+1(z)\ > 2

Then C[G.) < 2R exp(-eJ] . Let XQ = {z € D : fn(z) = °° for some n] ;

then C[XQ) = 0 .

00

L e t E v = Xn u U G. { k = 1 , 2 , . . . ) . T h e n , b y ( l ) ,

3=k

k-l

k-l\

= 0 + I e~J < I/
j=k

From th is i t follows that C[EA < 2H exp(-e 1 ) , and C[E,) •* 0 as
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Now suppose 3 C D-Ey . Then z d (1 [D-G.} , and

\9Az)-9j+Az)\ - 2 " J ( j = 1 , 2 , . . . ) . Hence, i f k < j < m ,

OT-1 ° °
\g{z)-gm{z)\ £ £ |f f ( „ ) - ? ( a ) | < £ 2 " * = 2 " J + 1 .

17 n=g n=g

Thus, the sequence {^.(z)} is uniformly convergent (to a finite limit) on
3

D - E k .

Let F = 0 Ev . Since C(F) 2 Cfff,) for every fe , C(F) must be
fe=l * *

zero. We see tha t {g .{z)\ converges to a f in i te l imit for z € D-F
3

OO

because D - F = U [D-EV) . Thus {<? } converges approximately every-
k=l * n

where on D .

Let /(s) = lim gn(z) for 3 € D-F , f(z) = 0 for z € F . The

function / is Borel-measurable and is finite everywhere on D [6,

pp. 11-lU]. We wish to prove that [f } converges to / in capacity.

Let e > 0 and 6 > 0 . Choose k so that cfej < ̂  ' a n d c n o o s e m so

that \g .{z)-f(z) \ < e for g > m , z Z D-E, . Then, if g > m ,
3 K

C[{z € D : |^.(3)-/(3)| > e}) S C(fffe) < 6 .

Hence {<? .} converges to f in capacity.

Since |/n(a)-/(3)| £ |/n(a)-?.(a)| + |ff.(a)-/(a)| ,

{2 € D : \f(z)-f(z)\ i E } C {3 € D : |f (a)-fl.(a)| > e/2} u
ft rL fj

{z € D : |ff.(a)-/(a)| 2 e/2} .
j

By choosing n and g sufficiently large, the capacity of each of the

sets on the right may be made arbitrarily small. Applying (l), we conclude

that {fn} converges to / in capacity on D . This completes the proof of
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Theorem 2.
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