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Abstract

During nematode surveys of natural vegetation in forests of La Cima de Copey de Dota, San José,
San José province, Costa Rica, a Xenocriconemella species closely resembling X. macrodora and
related species was found. Integrative taxonomical approaches demonstrated that it is a new
species described herein as X. costaricense sp. nov. The new species is parthenogenetic (only
females have been detected) and characterised by a short body (276—404 um); lip region with two
annuli, not offset, not separated from body contour; first lip annulus partially covering the
second lip annulus. Stylet thin, very long (113-133 pm) and flexible, occupying 30.5-47.8% of
body length. Excretory pore located from one or two annuli anterior to one or two annuli
posterior to level of stylet knobs, at 42 (37—45) um from anterior end. Female genital tract
monodelphic, prodelphic, outstretched, and occupying 35-45% of body length, with vagina
slightly ventrally curved (14-18 pm long). Anus located 611 annuli from the tail terminus. Tail
conoid and bluntly rounded terminus, the last 2—3 annuli oriented dorsally. Results of molecular
characterisation and phylogenetic analyses of D2-D3 expansion segments of 28S rRNA, ITS, and
partial 18S rRNA, as well as cytochrome oxidase c subunit 1 gene sequences further characterised
the new species and clearly separated it from X. macrodora and other related species (X. iberica,
X. paraiberica, and X. pradense).

Introduction

The ring nematode genus Xenocriconemella De Grisse and Loof, 1965 (De Grisse and Loof 1965)
comprises obligate ectoparasite nematodes characterised by a short body length (ca. 250-400
um), a long and flexible stylet (ca. 100-110 pm and up to 40% of body length), body annuli
smooth without anastomosis, vulva closed, and juveniles similar to females (Geraert 2010). Until
recently, X. macrodora (Taylor, 1936) De Grisse and Loof, 1965 (Taylor 1936; De Grisse and Loof
1965) was the only nominal species within the genus. The taxonomic validity of the genus
Xenocriconemella has been a scientific controversy in the nematological literature over recent
decades (Loof and De Grisse 1989; Siddiqi 2000; Geraert 2010). Liibbers and Zell (1989)
morphologically studied several populations of X. macrodora from Germany and asserted that
German populations differed morphologically from those of the USA and several European
countries in a higher number of annuli (R = 147 vs. R = 99-120), concluding that these
populations belong to a new species, X. degrissei Libbers and Zell, 1989. Later, Ganguly et al.
(2008) also studied X. macrodora populations from peach and blue pine in India and concluded
that these populations belong to two new species, X. pruni Ganguly et al. 2008 and X. pini
Ganguly et al. 2008. However, Sturhan (2013) compared the morphometry of all three species
and concluded that they all overlap with populations of X. macrodora, and the presence of a filled
spermatheca described and/or figured for X. pruni and X. pini suggested the presence of males in
these species (as in some X. macrodora populations). Consequently, Sturhan (2013) proposed the
synonymisation of all three species with X. macrodora, but no molecular markers were provided
to confirm this action. Nevertheless, recent integrative taxonomical studies on more than 25
Iberian populations of Xenocriconemella supported the validity and monophyly of this genus, as
well as the description of three new species including X. iberica Archidona-Yuste et al. 2024,
X. paraiberica Archidona-Yuste et al. 2024, and X. pradense Archidona-Yuste et al. 2024
(Archidona-Yuste et al. 2024). This study also indicated that this genus is widespread, especially
in North America and Europe, and undoubtedly has a close association with woodland forests
(Archidona-Yuste et al. 2024). In Central America, the genus Xenocriconemella has been
observed in Mexico (Cid del Prado 1988) and in protected areas of Costa Rica (Esquivel
2003). However, no morphological or molecular data on this nematode are available from
Costa Rica.
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Integrative-based taxonomy studies (using a combination of
morphology and morphometry with molecular data) have proved
to be accurate and useful tools for assessing populations and species
boundaries within Criconematidae spp. as well as in the genus
Xenocriconemella (Subbotin et al. 2005; Etongwe et al. 2020; Powers
et al. 2021; Nguyen et al. 2022; Clavero-Camacho et al. 2022;
Archidona-Yuste et al. 2023). A Costa Rican population of Xeno-
criconemella associated with forests composed of wild avocado
(Persea caerulea) and Ecuador laurel (Cordia alliodora (Ruiz and
Pav.) Oken were found in La Cima de Copey de Dota, San José,
showing a different cytochrome c oxidase subunit 1 (COI) and
ribosomal sequences to the molecular markers deposited in the
GenBank for this genus. This prompted us to study this Xenocri-
conemella population in more detail to clarify its taxonomic pos-
ition. Hence, the main objectives of this study were to (i)
characterise the newly recovered Costa Rican population of Xeno-
criconemella morphologically and morphometrically and compare
it with Xenocriconemella spp. belonging to the X. macrodora-spe-
cies complex; (ii) provide molecular characterisation of this Xeno-
criconemella population using ribosomal (D2-D3) expansion
segments of 28S rRNA, Internal Transcribed Spacer region (ITS),
partial 18S rRNA), and COI markers; and (iii) study phylogenetic
relationships within Criconematidae spp. and this species of the X.
macrodora-species complex.

Materials and methods
Nematode population and morphological characterisation

In winter 2023, a nematological survey was conducted in a forest
area in La Cima de Copey de Dota, San José, Costa Rica, and in one
of them, low population densities of a Xenocriconemella species
were detected. Soil samples for nematode analysis were collected
with a shovel from randomly selected trees and mixed to constitute
a soil sample from each sampling site; samples came from the upper
5-40 cm of soil. Subsequently, nematodes were extracted from a
500 cm’ subsample of soil by centrifugal flotation and modification
of Cobb’s decanting and sieving methods (Flegg 1967; Coolen
1979).

Specimens for light microscopy (LM) and morphometric
studies were killed at 70-75°C and fixed in an aqueous solution
of 4% formaldehyde + 1% glycerin, dehydrated using an alcohol-
saturated chamber, and processed to pure glycerin using Sein-
horst’s method (Seinhorst 1966) as modified by De Grisse (1969).
Light micrographs and measurements of the nematode popula-
tion, including important diagnostic characteristics were con-
ducted using a Leica DM6 compound microscope with a Leica
DFC7000 T digital camera (Leica, Wetzlar, Germany). Measure-
ments and ratios included: L, (total body length); a = body length/
maximal body width; b = body length/pharyngeal length; ¢ =
body length/tail length; ¢’ = tail length/body width at anus; O =
distance between stylet base and orifice of dorsal pharyngeal
gland as percentage of stylet length; R = total number of body
annuli; Roes = number of annuli in pharyngeal region; Rex =
number of annuli between anterior end of body and excretory
pore; Rst = number of body annuli between labial disc and stylet
knobs; RV = number of annuli between posterior end of body and
vulva; Rvan = number of annuli between vulva and anus; Ran =
number of annuli on tail; V = (distance from anterior end to
vulva/body length) x 100; VL/VB = distance between vulva and
posterior end of body divided by body width at vulva; T =
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(distance from cloacal aperture to anterior end of testis/body
length) x 100 (Archidona-Yuste et al. 2023; 2024). The raw
photographs were edited using Adobe Photoshop SC6 v 24.7.2
(San Francisco, CA, USA).

DNA extraction and molecular characterisation

To avoid mistakes in case of mixed populations in the sample, single
specimens were temporarily mounted in a drop of 1 M NaCl
containing glass beads (to avoid nematode crushing/damaging
specimens) to ensure specimens conformed with the target popu-
lation. Genomic DNA extraction from single specimens was con-
ducted as described by Archidona-Yuste et al. (2023). Briefly, an
individual nematode was cut using a scalpel in a drop of polymerase
chain reaction (PCR) buffer (ThermoPol®, Biolabs, New England,
USA) (20 puL), and 2 uL proteinase K (600 pg/mL) was added. Tubes
were frozen at -80°C (15 min) and then incubated at 65°C (1 h) and
95°C (10 min) consecutively. Tubes were centrifuged (1 min, 16,000
x g) and kept at —20°C until use in PCR; more importantly, all three
molecular markers for the population of Xenocriconemella were
extracted from the same single individual in each PCR tube without
any exception.

The D2-D3 expansion domains of the 28S rRNA were amplified
using the D2A (5-ACAAGTACCGTGAGGGAAAGTTG-3’) and
D3B (5-TCGGAAGGAACCAGCTACTA-3) primers (De Ley et
al. 1999). The ITS region was amplified using forward primer
TW81 (5'-GTTTCCGTAGGTGAACCTGC-3') and reverse primer
AB28 (5-ATATGCTTAAGTTCAGCGGGT-3') (Subbotin et al.
2001). The partial 18S rRNA was amplified using the primers 988
(5'-CTCAAAGATTAAGCCATGC-3'), 1912R (5'-TTTACGGTCA-
GAACTAGGG-3), 1813F (5'- CTGCGTGAGAGGTGAAAT -3°),
and 2646R (5'- GCTACCTTGTTACGACTTTT -3’) (Holterman et
al. 2006). The COI gene was amplified using the primers JB3 (5'-
TTTTTTGGGCATCCTGAGGTTTAT-3") and JB5 (5- AGCACC-
TAAACTTAAAACATAATGAAAATG -3”) (Hu et al. 2002; Der-
ycke et al. 2005). The PCR cycling conditions for the 28S rRNA, ITS,
and 18S rRNA were as follows: 95°C for 15 min, followed by 35 cycles
of 94°C for 30 s, an annealing temperature of 55°C for 45 s, 72°C for 1
min, and one final cycle of 72°C for 10 min. The PCR cycling for COI
primers was as follows: 95°C for 15 min, 39 cycles at 94°C for 30 s, 53°
Cfor 30 s, and 68°C for 1 min, followed by a final extension at 72°C for
7 min. The PCR volumes were adapted to 20 uL for each reaction, and
primer concentrations were as described in De Ley et al (1999),
Subbotin et al. (2005), Holterman et al. (2006), and Powers et al.
(2021). We used 5x HOT FIREpol Blend Master Mix (Solis Biodyne,
Tartu, Estonia) in all PCRs. The PCR products were purified using
ExoSAP-IT (Affimetrix, USB products, Kandel, Germany) and used
for direct sequencing in both directions with the corresponding
primers. The resulting products were analysed in a DNA multicapil-
lary sequencer (Model 3130XL Genetic Analyzer; Applied Biosys-
tems, Foster City, CA, USA), using the BigDye Terminator
Sequencing Kit v.3.1 (Applied Biosystems) at the Stab Vida sequen-
cing facility (Caparica, Portugal). The sequence chromatograms of the
four markers (18S rRNA, ITS, COI, and D2-D3 expansion segments
of 285 rRNA) were analysed using DNASTAR Lasergene SeqMan v.
7.1.0. The Basic Local Alignment Search Tool (BLAST) at the
National Center for Biotechnology Information (NCBI) was used to
confirm the species identity of the DNA sequences obtained in this
study (Altschul et al. 1990). The newly obtained sequences were
deposited in the GenBank database under accession numbers indi-
cated on the phylogenetic trees and in Table 1.
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Table 1. Morphometrics of Xenocriconemella costaricense sp. nov. from the
rhizosphere of wild avocado (Persea caerulea) and Ecuador laurel (Cordia

Table 1. (Continued)

alliodora (Ruiz & Pav.) Oken in La Cima de Dota, San José Province, Costa Rica Character Holotype Paratype females
Character Holotype Paratype females Tail 15 156+2.4
q = (12.0-21.0)
n
Note: All measurements are in pum and in the form: mean +s.d. (range). Abbreviations: a, body
L 347 348.3£31.9 length/maximal body width; b, body length/pharyngeal length; c, body length/tail length; c’,
(276-404) tail length/body width at anus; L, total body length; n, number; O, distance between stylet
base and orifice of dorsal pharyngeal gland as percentage of stylet length; R, total number of
R 124 1239 +3.7 body annuli; Roes, number of annuli in pharyngeal region; Rex, number of annuli between
S anterior end of body and excretory pore; Rst, number of body annuli between labial disc and
(117-130) stylet knobs; RV, number of annuli between posterior end of body and vulva; Rvan, number of
annuli between vulva and anus; Ran, number of annuli on tail; V, (distance from anterior end
Rst 46 456+ 1.8 to vulva/body length) x 100; VL/VB, distance between vulva and posterior end of body divided
by body width at vulva.
(41-49)
Roes 60 57.2+21
(54-61)
Rex 42 42.3+£17 Phylogenetic analyses
G D2-D3 expansion domains of the 28S, ITS, 18S rRNA, and COI
RV 14 133+ 0.8 mtDNA sequences of the recovered unidentified Xenocriconemella
(12-15) species were obtained in this study. These sequences and other
sequences of Criconematidae spp. from GenBank were used for
Rvan 4 5112 phylogenetic analyses. The selection of outgroup taxa for each
(3-7) dataset was based on previously published studies (Etongwe et al.
o 0 s 2020; Nguyen et al. 2022; Archidona-Yuste et al. 2024). Multiple
sequence alignments of the different genes were completed using
(6-11) the FFT-NS-2 algorithm of MAFFT V.7.450 (Katoh et al. 2019).
0 6.1 5.7+0.7 The BioEdit program V.7.2.5 (Hall 1999) was used for sequence
(3.8-7.0) alignment visualisation and manually edited and trimmed of the
— poorly aligned positions using a light filtering strategy (up to 20% of
g LU Ml e alignment positions), which has little impact on tree accuracy and
(8.9-15.3) may save computation time, as suggested by Tan et al. (2015),
b 4 T because methods for automated filtering of multiple sequence
i — alignments frequently worsen single-gene phylogenetic inference
(1.8-2.5) (Tan et al. 2015).
c 23.1 228+3.1 Phylogenetic analyses of the sequence datasets were based on
(16.0-282) Bayesian inference (BI) using MrBayes 3.1.2 (Ronquist and Huel-
= senbeck 2003). The best-fit model of DNA evolution was achieved
c 08 08+0.1 using JModelTest V.2.1.7 (Darriba et al. 2012) with the Akaike
(0.7-1.1) information criterion (AIC). The best-fit model, base frequency,
v oL1 918208 proportion of invariable sites, and gamma distribution shape
' — parameters and substitution rates in the AIC were then used in
(89.2-93.1) MrBayes for phylogenetic analyses. The general time-reversible
VL/VB 11 11401 model with invariable sites and a gamma-shaped distribution
(0913 (GTR + I + G) for the D2-D3 expansion segments of 28S rRNA
i and the partial 18S rRNA gene, the TPM2uf model with a gamma-
Stylet 129.5 124.8+6.0 shaped distribution (TPM2uf + G) for the ITS region, and the
(113.0-133.0) Hasegawa, Kishino, and Yano model with invariable sites and a
—— 170 16464 6.8 gamma-shaped distribution (HKY + I + G) for the COI gene were
& — run with four chains for 4 x 10° generations. A combined analysis of
(154-177) the three ribosomal genes was not undertaken because some
Maximum body width 0 311436 sequences were not available for all species. The sampling for
T Markov chains was conducted at intervals of 100 generations. For
- each analysis, two runs were conducted. After discarding burn-in
Anal body width 20 188+ 1.8 samples of 30% and evaluating convergence, the remaining samples
(16.0-23.0) were retained for more in-depth analyses. The topologies were used
) to generate a 50% majority-rule consensus tree. For each appropri-
Vulva to anus distance 11 142+16 . s . .
ate clade, posterior probabilities (PP) were given. FigTree software
(11.0-16.0) version v.1.4.4 (Rambaut 2018) was used for visualising trees from
(Continued)  all analyses.
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Results

The presently studied population of Xenocriconemella was detected
at low density (31 nematodes per 500 cm® of soil) in one of two soil
samples collected from a forest area in La Cima de Copey de Dota,
San José province, Costa Rica. Detailed morphological, morpho-
metrical, and molecular information about this species is provided
below, confirming its identity as a new species of Xenocriconemella
described herein.

Taxonomy

Phylum: Nematoda Rudolphi, 1808
Class: Chromadorea Inglis, 1983
Order: Rhabditida Chitwood, 1933
Suborder: Tylenchina Chitwood, 1950
Superfamily: Criconematoidea Khan and Ahmad, 1975
Family: Criconematidae Taylor, 1936
Genus: Xenocriconemella De Grisse and Loof, 1965
Xenocriconemella costaricense sp. nov.
urn:lsid:zoobank.org:act: 2B48A4F0-2DBE-48A9-B0C1-6990
5E1563CC

Description

See Figures 1-6 and Table 1.

W. Peraza-Padilla et al.

Females

Body ventrally arcuate, slightly narrowing anteriorly and posteriorly.
Body annuli smooth and retrorse, 2.5 (2.0-3.0) um wide, with
anastomosis (2-8). Lip region with two annuli, not offset, not sep-
arated from body contour, first lip annulus partially covering the
second lip annulus (Figure 2), second lip annulus retrorse and
slightly wider than first annulus 10 (9-12) pm wide. Stylet thin, very
long, and flexible, occupying 36.0 (30.5-47.8) % of body length, with
short basal portion 6 (5-8) um long, and knobs slightly rounded 6.4
(5.0~7.5) pm wide. Pharynx typical criconematoid, with a cylindroid
procorpus widening to a large muscular oval median bulb containing
well developed valves (8-10 pum long), isthmus slender and amal-
gamated with basal bulb. Excretory pore located from one or two
annuli anterior to one or two annuli posterior to level of stylet knobs,
at 42 (37—45) um from anterior end. Nerve ring located at level of
isthmus, 16 (14-17) um from anterior end. Vagina slightly ventrally
curved (14-18 pm long). Female genital tract monodelphic, pro-
delphic, outstretched, and occupying 52 (50-54) % of the body
length, spermatheca developed, but sperm absent. Anus located at
7 (6-9) annuli from the terminus. Tail conoid and bluntly rounded
terminus, the last 2—3 annuli oriented dorsally.

Males
Not found.

Juveniles

Body similar to females, including tail shape, but shorter. Edge of
body annuli without appendages, marked with delicate irregular
punctations.

Figure 1. Xenocriconemella costaricense sp. nov. (drawings). (A) whole female; (B) female neck region; (C, D) female anterior region; (E) posterior female region in frontal view; (F, G)

female tail; (H) female at mid-body showing anastomosis.
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Figure 2. Light micrographs of Xenocriconemella costaricense sp. nov. (A) entire females; (B) female anterior body region showing stylet, knobs, and excretory pore (arrowed); (C, D)
female lip region showing first and second annuli; (E, F) female tail in lateral and frontal view, respectively. Abbreviations: a, anus; ep, excretory pore; k, stylet basal knobs; spm,
spermatheca; st, stylet; V, vulva. Scale bars: A =50 um; B =40 um; C, D = 10 um; E, F = 30 um.

Diagnosis and relationships

Xenocriconemella costaricense sp. nov. is characterised by the fol-
lowing measurements and ratios: a short-sized female body 276
404 pm, along and flexible stylet = 113.0-133.0 pm long, V = 89.2—
93.1,a=8.9-15.5,b=1.8-2.5,c =16.0-28.8, ¢ =0.7-1.1, R=117-
130, RV = 12-15, Ran = 6-11, VL/VB = 0.9-1.3. Morphologically
and morphometrically, X. costaricense sp. nov. resembles members
of the X. macrodora-species complex (including X. macrodora, X.
iberica, X. paraiberica, and X. pradense) from which it can be
differentiated by several morphometric traits and ratios. From X.
macrodora, it differs by a longer body length 349 (276-404) um vs.
273 (224-331) pum, a longer stylet length 125 (113.0-133.0) pm vs.
96.3 (83.0-113.0) pm, a slightly higher number of body annuli (R)
124 (117-130) vs. 109 (101-141), and a slightly higher c ratio 22.8
(16.0-28.8) vs. 19.6 (12.8-25.3). From X. iberica, it differs by a
slightly longer body length 349 (276-404) pum vs. 294 (246-350)
um, a longer stylet length 125 (113.0-133.0) um vs. 93.1 (80.0—
103.0) pm, a higher number of R 124 (117-130) vs. 107 (97-119), a
slightly shorter tail length 16 (12.0-21.0) pm vs. 16.4 (11.0-24.5)
um, and a slightly higher ¢ ratio 22.8 (16.0-28.8) vs. 18.3 (12.1-
27.3). From X. paraiberica, it differs by a slightly longer body length
349 (276—404) pm vs. 298 (221-386) um, a longer stylet length 125
(113.0-133.0) pm vs. 89.6 (80.0-100.0) um, a higher number of R
124 (117-130) vs. 104 (95-116), and a slightly higher c ratio 22.8
(16.0-28.8) vs. 20.2 (13.0-28.6). From X. pradense, it differs by a
slightly longer body length 349 (276-404) pum vs. 333 (249-383)
um, a longer stylet length 125 (113.0-133.0) pum vs. 101.1 (92.0-
110.0) um, a slightly lower VL/VB ratio 1.1 (0.9-1.3) vs. 1.4 (1.1-
1.5), a slightly higher number of body annuli from vulva to poster-
ior end (RV) 13 (12-15) vs. 16 (14-18), a slightly shorter tail length
16 (12.0-21.0) pm vs. 20.2 (15.5-25.0) um, a slightly higher c ratio
22.8 (16.0-28.8) vs. 16.6 (13.7-21.3), and a slightly lower ¢ ratio 0.8
(0.7-1.1) vs. 0.9 (0.8-1.2).

Etymology

The species epithet refers to the country where the species was
detected, Costa Rica.
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Type host and locality

The new species was recovered from a rainforest in the rhizosphere
of wild avocado (Persea caerulea) and Ecuador laurel (Cordia
alliodora (Ruiz and Pav.) Oken from a forest in La Cima de Copey
de Dota, San José, San José Province, Costa Rica (coordinates 9°
42’41.2" N, 83°56'59.2" W).

Type material

Holotype female and 19 female paratypes were deposited at Labor-
atorio de Nematologia, Escuela de Ciencias Agrarias, Universidad
Nacional, Heredia, Costa Rica; two females are at Institute for
Sustainable Agriculture (IAS) of Spanish National Research Coun-
cil (CSIC), Cérdoba, Spain; and two females are at the USDA
Nematode Collection (T-8028p).

Molecular characterisation

Xenocriconemella costaricense sp. nov. was molecularly charac-
terised by the sequences of three ribosomal genes, D2-D3 expan-
sion segments of 28S rRNA, ITS, partial 18S rRNA, and the
mitochondrial gene COI. The amplification of these regions yielded
single fragments of approximately 900, 800, 1800, and 400 bp,
respectively, based on gel electrophoresis. Four D2-D3 of 28S rRNA
sequences from 687 to 718 bp (PP209388-PP209391), two ITS
rRNA sequences of 754 bp (PP209392-PP209393), five 18S rRNA
sequences from 1703 to 1713 bp (PP209394-PP209397), and four
COI sequences of 377 bp (PP210897-PP210900) were generated
for this new species. No intraspecific sequence variations in D2-D3
expansion segments of 285 rRNA, ITS, and COI, and low variations
within 18S rRNA (99.6-100.0%, 1-6 bp, and 0-1 indel) were
detected. D2-D3 expansion segments of 28S rRNA of X. costari-
cense sp. nov. (PP209388-PP209391) were 93.9-93.6% similar
(differing by 4245 bp, 0-2 indels) to X. paraiberica from Spain
(OR880152—0OR880200), 93.0-90.7% similar (differing by 65-66
bp, 7 indels) to X. iberica from Spain and Portugal (OR880112—
OR880149), 89.8-89.9% similar (differing by 71 bp, 1 indel) to X.
pradense from Spain (OR880203—OR880217), and 89.6% similar


https://doi.org/10.1017/S0022149X24000294

(differing by 56 bp, 1 indel) to X. macrodora from Italy (AY780960).
ITS of X. costaricense sp. nov. (PP209392-PP209393) was 83.3—
83.5% similar (differing by 134135 bp, 69-70 indels) to X. para-
iberica (OR878338-OR878349), 81.5% similar (differing by 144 bp,
46 indels) to X. pradense (OR878350), 79.8—79.3% similar (differing
by 150-162 bp, 45-49 indels) to X. iberica (OR878332—0OR878336),
and 76.5% similar (differing by 100 bp, 56 indels) to X. macrodora
from USA (JQ708139), but with a low coverage (54%). Partial 18S
rRNA of X. costaricense sp. nov. (PP209394-PP209397) was 99.5—
99.4% similar (differing by 9-11 bp, 0 indel) to X. macrodora
(MF094906, MF094973, MF095001), 99.2% similar (differing by
13 bp, 0 indel) to X. paraiberica (OR878358), 98.2% similar (dif-
fering by 11-28 bp, 4 indels) to X. pradense (OR878360-
OR878361), and 97.9% similar (differing by 35 bp, 4 indels) to X.
iberica (OR878356). Finally, COI of X. costaricense sp. nov.
(PP210897—PP210900) was 91.6-90.5% similar (differing by 30—

28S
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35 bp, 0 indel) to X. paraiberica from Spain (OR885983-
OR886017), 91.1-90.3% similar (differing by 31-36 bp, 0 indels)
to X. iberica from Spain and Portugal (OR885936—-OR885976),
91.4-90.5% similar (differing by 29—40 bp, 0 indel) to X. macrodora
from USA (MF770894-MF770950, MN711386-MN711444), and
88.2-87.6% similar (differing by 36-39 bp, 0 indel) to X. pradense
from Spain (OR886020—OR886029).

Phylogenetic relationships of Xenocriconemella costaricense sp.
nov. with other Criconematidae spp

Phylogenetic relationships among Xenocriconemella species, as
inferred from analyses of D2-D3 expansion domains of 28S rRNA,
ITS, the partial 18S rRNA, and the partial COI mtDNA gene
sequences using BI, are shown in Figures 3, 4, 5, and 6, respectively.
The phylogenetic trees generated with the ribosomal and
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Figure 3. Phylogenetic relationships of Xenocriconemella costaricense sp. nov. with Criconematidae spp. Bayesian 50% majority rule consensus tree as inferred from D2 and D3
expansion domains of 28S rRNA sequence alignment under the under the GTR + I+ G model (-InL = 8599.1303; AIC = 17490.260700; freqA = 0.1886; freqC = 0.2383; freqG = 0.3326; freqT
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appropriate clades. Newly obtained sequences in this study are shown in bold, and coloured box indicate clade association of the new species. Scale bar = expected changes per site.
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sequences in this study are shown in bold, and coloured box indicate clade association of the new species. Scale bar = expected changes per site.

mitochondrial DNA markers included 69, 57, 88, and 169
sequences, and their alignment had 706, 715, 162, and 326 charac-
ters, respectively. The Bayesian 50% majority rule consensus tree
inferred from the D2-D3 expansion domains of 28S rRNA align-
ment is given in Figure 3. For this region, all species that belong to
the X. macrodora species-complex clustered together in a well-
supported clade (PP = 1.00), which was subdivided into two sub-
clades, one of them (PP = 1.00) formed by X. costaricense sp. nov.
(PP209388-PP209391) and X. paraiberica (OR880152—
OR880202), and the other one (PP = 1.00) by X. iberica
(OR880107-OR880151), X. pradense (OR880203-OR880218),
and X. macrodora from Italy (AY780960).

The phylogenetic position of X. costaricense sp. nov. in the ITS
region tree is shown in Figure 4. Phylogenetic relationships
observed for this region were very similar to D2-D3 expansion
segments of the 28S rRNA gene. In this analysis, X. costaricense sp.
nov (PP209392-PP209393) and X. paraiberica clustered together,
although clearly separated, in a well-supported subclade (PP =
1.00), whereas X. iberica and X. pradense clustered with another
well-supported subclade (PP = 1.00). For this region X. macrodora
from USA (JQ708139) clustered separately from the rest of Xeno-
criconemella spp. accessions, forming a well-supported subclade
with Criconema mutabile (JQ708132) and Criconema sp. 4 Living-
ston (FN435300).

In 18S rRNA phylogeny, all accessions belonging to the Xeno-
criconemella genus clustered together in a well-supported clade (PP
= 1.00), occupying the top of the tree. However, the phylogenetic
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relationships between the different Xenocriconemella spp. were not
well resolved, as many of the internal clades were poorly supported.

Finally, the phylogenetic position of X. costaricense sp. nov.
(PP210897-PP210900) and the other species, using COI gene
sequences, are shown in Figure 6. The position of X. costaricense
sp. nov. was well-supported (PP = 1.00), clustering alone in a basal
position of the tree. Accessions from X. macrodora from USA
appeared together in a well-supported (PP = 1.00) subclade. On
the contrary, relationships of Xenocriconemella spp. from the Iber-
ian Peninsula—X. pradense, X, iberica, and X. paraiberica—were
not well resolved for this gene (Figure 6).

Discussion

The recent integrative taxonomic study on numerous X. macrodora
populations from the Iberian Peninsula defined a new species
complex within X. macrodora including at least four species, viz.
X. iberica, X. macrodora, X. paraiberica, and X. pradense (Archi-
dona-Yuste et al. 2024). The main objective of this study was to
identify and describe, morphologically and molecularly, a new
population of Xenocriconemella detected in a natural environment
in a forest of Dota, San José province, Costa Rica, as well as clarify
the phylogenetic relationships within the genus Xenocriconemella.
All results confirmed that the unknown Xenocriconemella popula-
tion is morphologically and morphometrically close to the X.
macrodora-species complex, except for differences in body size,
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Figure 5. Phylogenetic relationships of Xenocriconemella costaricense sp. nov. with Criconematidae spp. Bayesian 50% majority rule consensus tree as inferred from 18S rRNA
sequence alignment under the GTR + I+ G model (—InL =7729.8698; AIC = 15827.739680; freqA = 0.2442; freqC = 0.2388; freqG = 0.2780; freqT = 0.2391; R(a) = 1.4400; R(b) = 2.0892; R(c)
=1.0082; R(d) = 0.6719; R(e) = 5.7912; R(f) = 1.0000; Pinva = 0.6450; and Shape = 0.5370). Posterior probabilities more than 0.70 are given for appropriate clades. Newly obtained
sequences in this study are shown in bold, and coloured box indicate clade association of the new species. Scale bar = expected changes per site.

stylet length, and other minor morphometric differences. Never-
theless, all molecular markers clearly separated the new Costa Rican
population from all other species, confirming that the new popu-
lation is a new valid species of the genus Xenocriconemella. These
data provide clear evidence that the worldwide biodiversity within
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this genus may be higher than previously understood, as recently
suggested by Archidona-Yuste et al. (2024). Interestingly, although
more studies are needed to confirm this hypothesis, our results
suggest that additional taxa can be included within the widely
reported populations of X. macrodora s.l. in those regions where
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Figure 6. Phylogenetic relationships of Xenocriconemella costaricense sp. nov. with other Xenocriconemella spp. Bayesian 50% majority-rule consensus trees as inferred from
cytochrome c oxidase subunit | (COl) mtDNA gene sequence alignments under the HKY + | + G model (-InL = 2290.0099; AIC = 5264.019760; freqA = 0.3729; freqC = 0.0571; freqG =
0.0820; freqT =0.4880; Kappa =8.0975; Pinva = 0.3350; and Shape = 0.4540). Posterior probabilities more than 0.70 are given for appropriate clades. Newly obtained sequences in this
study are shown in bold, and coloured box indicate clade association of the new species. Scale bar = expected changes per site.
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the species complex has been reported (Archidona-Yuste et al.
2024).

Again, ribosomal and mitochondrial markers (D2-D3 expan-
sion domains of the 285 rRNA and ITS rRNA, and the mtDNA gene
COI) are important tools for accurate identification of Xenocrico-
nemella and remain essential for accurate diagnosis of ring nema-
todes (Subbotin et al. 2005; Etongwe et al. 2020; Powers et al. 2021;
Nguyen et al. 2022; Archidona-Yuste et al. 2024). However, the low
nucleotide variability found in partial 18S rRNA makes it difficult
to identify individuals at the species level, but this molecular marker
clearly separated the genus from other genera of the family Crico-
nematidae. Phylogenetic analyses based on ribosomal genes
resulted in a general consensus of species’ phylogenetic positions
for the majority of species and was congruent with those given by
previous phylogenetic analyses (Subbotin et al. 2005; Etongwe et al.
2020; Nguyen et al. 2022; Archidona-Yuste et al. 2024). In particu-
lar, in all three ribosomal gene trees, X. costaricense sp. nov.
clustered with all morphologically related species, including X.
iberica, X. macrodora, X. paraiberica, and X. pradense (Figures 3—
5).

In summary, the present study confirms the usefulness of an
integrative approach based on the combination of morphometric
and morphological traits and genotyping rRNA and mtDNA mark-
ers for correct discrimination among Xenocriconemella species,
suggesting the need for continuing nematode surveys in natural
environments to complete the unexplored worldwide biodiversity
of this genus.
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