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Potential flow models of suspension current air pressure

Barbara TURNBULL," Jim N. McELWAINE?2

! Division of Process and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
E-mail: barbara.turnbull@nottingham.ac.uk
2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 OWA, UK

ABSTRACT. We present, analyse and discuss air-pressure data from finite-volume chute flows of dry fine
snow in air. These experiments have the correct similarity criteria to model powder-snow avalanches
and demonstrate the transition from a dense to a suspended flow. We measured the dynamic air pressure
at the base of the flow, which features a marked negative pressure peak immediately behind the front.
This feature is also seen in observations of natural powder-snow avalanches measured in Russia, Japan
and Switzerland in direct numerical simulations of non-Boussinesq suspension flows and in ping-pong
ball avalanches. This is evidence for large internal motions and suggests that there is a coherent vortex
in the avalanche front. This can result in impact pressures many times larger than those expected from
the mean flow velocity. We analyse the external air pressures using three models and show how the
geometry and velocity of the flow can be found from this single air-pressure measurement. We also
measured flow heights and speeds using image analysis and show that the speed is roughly independent
of the slope angle and scales with the release size raised to the power 1/4, as predicted by similarity

analysis for pseudo two-dimensional (2-D) flows.

1. INTRODUCTION

Powder-snow avalanches are destructive and notoriously un-
predictable geophysical phenomena. They are gravitational
flows of dry, fine snow suspended in air that usually start on
steep slopes (Simpson, 1997). A defining feature of the flow
is the very high driving density differences between the snow
suspension and the surrounding ambient air: the density ratio
can exceed 20. To maintain these density differences, the
avalanche must entrain large volumes of snow from its path to
counteract dilution by the entrainment of ambient air. The air-
flow inside the suspension must also be sufficiently turbulent
to support the snow particles in suspension, counteracting
particle sedimentation. This particle suspension, or powder
cloud, is usually accompanied by a dense granular flow of
snow beneath. The two avalanche components have distinct
dynamics linked only by a mass exchange between them.
In this paper, we use the term ‘powder-snow avalanche’ to
mean any snow avalanche where a powder cloud forms. It
is the dynamics of this powder cloud that we are primarily
interested in.

Laboratory experiments on powder-snow avalanches are
important for validating and developing theory (Beghin and
others, 1981; Ancey, 2004). Compared to field experiments,
they have the advantages of better-defined boundary con-
ditions and being relatively inexpensive to run. We have
recently developed an experiment with the correct similarity
criteria to physically model powder-snow avalanches which
replicates initiation from a dense flow of snow (Turnbull and
McElwaine, 2008). The experiment generates finite-volume
flows of dry fine snow in air on a steep open slope. These
flows are fully three-dimensional (3-D); the complications of
the lateral spreading increased the complexity of the analysis.
In the present work, we performed similar experiments
but in a narrow chute so that the system was pseudo
two-dimensional (2-D). Other modifications were made to
the experimental procedure to improve its reproducibility,
facilitating comparison with theory.

In both the original and the present experiments we
recorded images with two video cameras and mounted an
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air-pressure sensor flush with the chute surface, measuring
the air-pressure history at the base of each flow. Flow-
height and front-velocity data, generated from analysis of
the video sequences, supported intuitive or well-known
results. The flow height increased with slope angle and the
front reached a steady velocity, the magnitude of which
was approximately independent of slope angle (Britter and
Linden, 1980; Turnbull and McElwaine, 2008). However,
the air-pressure histories of the flows were not intuitive and
merit elucidation. The objective of this work is to clarify our
understanding of these air-pressure histories.

Typical Stokes numbers for both a powder-snow avalanche
and our chute flows are <1, and the motion of the particles
in suspension is strongly dependent on the motion of the
interstitial air and vice versa (Batchelor, 1989; Ancey, 2007).
The motion of the suspension is therefore representative of
the airflow inside a powder-snow avalanche, and the airflow
is representative of the suspension motion.

Measurements of the dynamic air pressure from our
snow chute (Turnbull and McElwaine, 2008), ping-pong ball
avalanches on a ski jump (McElwaine and Nishimura, 2001),
direct numerical simulations of non-Boussinesq clouds on
an incline (Etienne and others, 2004) and avalanche air-
pressure measurements from the field (Grigoryan and others,
1982; Nishimura and others, 1989; McElwaine and Turnbull,
2005) all have an important feature in common. A large
negative pressure inside the head contrasts starkly with
the traditional pressure assumption, which would predict a
positive, hydrostatic pressure due to the weight of suspended
particles. This incorrect assumption is used in shallow-water
models of powder-snow avalanches or other suspension
flows. In this work, we discuss the origin of the internal
motion implied by this negative pressure peak.

The bulk of this work is concerned with modelling
the airflow around the powder-snow chute flows. To do
this, we consider the potential flow fields (i.e. inviscid
and irrotational) around three contrasting but associated
geometries. We first derive the flow field around a 2-D
ellipse, accounting for the aspect ratio of the flow. This is
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Fig. 1. Side-view schematic of the experiment. The chute is 2 m long
and 0.2 m wide. The angle can be varied between 40° and 90°. The
feeder chute is fixed and delivers a dense flow onto the same part
of the main chute regardless of the angle.

linked to the flow around a disc, an ellipse of fixed aspect
ratio 1 which is the dipole solution discussed in McElwaine
and Nishimura (2001) and McElwaine and Turnbull (2005).
In the third model we use the result of McElwaine (2005)
which states that the front angle of a wedge flow must
always be 60°. Given this angle of 60° at both the front and
rear stagnation points, which forms a partial dome shape
(referred to as 60° dome), the flow field in the surrounding
ambient can also be solved, hence providing the external
flow fields. This body has a fixed aspect ratio of 1/4/3 and
should more accurately reflect the flow geometry close to
the front stagnation point than the ellipse or disc.

Measured chute pressure signals up to the nose of the flows
are fitted with each of these models to give the geometry
and speed of the flow. The key advantage in using these
types of model with a fitting process is that, from a single
measurement, we can predict the external flow velocities and
also the flow geometry. In addition, they can be combined
with the internal flow model of McElwaine (2005) to find
the complete flow field, or coupled with integral models for
the avalanche flow such as the Kulikovskiy-Sveshnikova—
Beghin (KSB) model (Fukushima and Parker, 1990; Ancey,
2004; Turnbull and others, 2007).

2. EXPERIMENTAL METHOD

The development of an experiment creating non-Boussinesq,
self-igniting flows of dry snow in air on an open slope is fully
discussed in Turnbull and McElwaine (2008). Solutions to
practical problems in running the experiments, such as snow
cohesion and instrumentation, are also provided. However,
control of the initial conditions could be significantly
improved and vibrations on the chute distorted the data. We
released finite volumes of snow through a drop tube onto
a sieve in the Turnbull and McElwaine (2008) experiments,
breaking any sintered bonds between the snow grains. The
sieved, powder snow dropped onto a steep chute down
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which it flowed, entraining ambient air, to form a suspension
flow. The flows therefore replicated the transition from a
dense to a suspension flow found in natural powder-snow
avalanches. By using a steep slope, Richardson number
similarity was preserved while non-Boussinesq density
differences were maintained, correctly modelling the mixing
between the snow suspension and the ambient air.

The original experiments were performed on an open
slope and spread out laterally (fully 3-D), complicating the
analysis and making steady flow states impossible. The aim
of the present experiment was to remove this complication
by creating flows in a narrow 0.2m channel so that the
flows are pseudo 2-D, i.e. with no lateral variations. There is
then the possibility that a steady flow state develops, where
entrainment of air on the upper surface exactly matches the
sedimentation of the snow particles.

To improve the quality of data, we have designed a more
sophisticated release system, allowing better-controlled
release conditions while minimizing chute vibrations. In
this new system the snow break-up mechanism, which
counteracts sintering, is mechanically separate from the main
chute (Fig. 1).

Crucially, we conducted the new experiment in a cold
room at the Weissflihjoch (above Davos, Switzerland),
allowing control of the ambient conditions. This significantly
improved the reproducibility of the experiments and made
their systematic execution more straightforward. In turn, this
enabled us to capture the snow in each flow at the bottom
of the chute and measure its mass. This is a more reliable
measure than the release volume because not all the snow
passes through the sieve; the same release volume can result
in very differently sized avalanches. Three experiments were
performed at each release volume (100, 200, 400, 800, 1000,
2000, 4000 and 8000 mL) and at each angle (44-90°). The
flows remained dense on the shallow angles and gradually
became more suspended as the slope angle became steeper.

As in our previous experiments, we tracked the flows
using front-view and side-view video cameras. Video
data recorded from the synchronized side- and front-view
cameras were processed using a change point detection
technique (McElwaine, 2002) that derived the front position
and flow height at each time frame. We measured the airflow
inside and around the flows with a pressure transducer
mounted in the surface of the chute. A Validyne DP
103 sensor sampled data at a rate of 8kHz. Although
no frequency calibration curve is available for this sensor,
the resonant frequency for the tubing (~20mm length) is
~4kHz and the electronic frequency response is ~2.5 kHz.
The actual sensor response will be less than this, but can
provide good resolution at the scale of our experiments.
Synchronization was achieved by optoelectronic sensors
in the drop tube that send a pulse recorded by the data
acquisition system when the snow is dropped. This system
also illuminated two light-emitting diodes (LEDs) that were
filmed by the cameras.

3. MEASUREMENTS

Figure 2 shows side-view images from a dense flow on a
shallow slope angle and from a fully suspended flow on
a vertical slope. These show the structure of the snow-air
flows, with darker regions of the photos being more dense
than lighter regions. The de-interlaced images are shown
with the chute surface horizontal and with an inverted colour
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Fig. 2. Snapshots from the side-view video recordings of two 100 mL snow-air flows at the same scale: (a) dense flow on a 44° slope and

(b) fully suspended flow on a 90° slope.

scheme for clarity. The ‘nose’ corresponds to the front of
the flow; the term ‘front velocity’ therefore refers to the time
derivative of the nose position along the chute. The head
structure of the flow is clear particularly at the steeper slope
angle, with the nose raised above the chute surface. Time
t = O represents the time at which the nose crosses the air-
pressure sensor position.

Figure 3 shows the air-pressure data from a 100mL
flow on a 71° slope, which shows the typical features
observed in signals from all of our flows. The pressure
reaches a maximum positive peak at the nose corresponding
to the compression arising from the mean flow velocity.
Immediately after the nose inside the head, the pressure
drops rapidly to a negative peak of similar magnitude to the
positive peak. After reaching the negative peak inside the
head, the air becomes turbulent in the tail and the pressure
relaxes back to zero as the flow passes. This signal contrasts
starkly with the hydrostatic pressure distribution depicted
by the dotted line in Figure 3 that is often assumed when
modelling suspension flows (von Karman, 1940).

Such a large negative pressure inside the head of the flows
indicates a high degree of internal motion in this region. A
negative peak of the same magnitude as the positive peak,
which scales with the square of the front velocity of the
flow, implies that the internal flow velocities are of the same
magnitude as the front speed of the flow.

3.1. Qualitative interpretation of the air-pressure
signatures

Large internal motion means that careful consideration
should be given to using the shallow-water equations,
commonly applied in avalanche dynamics computations,
for modelling these flows (Harris and others, 2002). The
hydraulic approximation is invoked in deriving the shallow-
water equations, assuming fluid velocity perpendicular to
the base surface is negligible compared to fluid velocity
parallel to the surface. The fluid velocity vector in shallow-
water models is therefore parallel to the slope and constant
throughout the depth of the fluid (Landau and Lifshitz, 1987).

A negative pressure of the scale observed on the chute
has implications for the amount of damage a powder-snow
avalanche could do to, for example, a forest or building.
Flow guidelines assume that the pressure a powder-snow
avalanche can exert on a body in the avalanche path is the
stagnation pressure. For an avalanche of mean density pp and
front velocity u, the stagnation pressure is

T 9
Po = —ppu”.
0 2Pp
In relation to the chute air-pressure measurements, this
stagnation pressure corresponds to the pressure of the
positive peak at the nose of the flow. However, since the
negative pressure peak is similar to the positive pressure
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peak, this suggests that there are coherent internal velocities
of the same magnitude as the front velocity. The largest
velocities may be as great as 2u or more; the peak pressures
on an object could therefore be 4P, or more. The forces
exerted on a body in an avalanche path will therefore be
significantly greater than the impact pressures estimated by
the Swiss guidelines.

This negative pressure also provides a strong and non-
directional influence for the entrainment of loose snow
particles from the snow cover or a dense granular flow
beneath the powder-snow avalanche. Without entraining
particles to maintain a high density compared to the
surrounding ambient air, a powder-snow avalanche will run
out over a short distance. With a large supply of particles and
enough turbulence to support the particles in suspension, the
powder-snow avalanche will grow and accelerate.

The pressure at the floor of a turbidity flow of sediment-
laden water on a horizontal plane has been measured using
a specially adapted differential transducer and compared
to the vertical velocity fluctuations (measured with an
ultrasonic anemometer) inside the flow. In this case,
the fluid pressure inside the flow appears approximately
hydrostatic. However, the vertical velocity fluctuations are
positively correlated to the second-order variations in
pressure (personal communication from B. McCaffrey, 2004).
In the case of the low-density-ratio turbidity flow, the weight
of the suspended material leads to hydrostatic pressures
much greater than the dynamic pressures arising from the
internal flow structure. In the case of the high-density-ratio
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Fig. 3. Air-pressure history (relative to atmospheric pressure) of a

100 mL snow-air flow on a 71° slope (solid curve). This distribution

contrasts with a hydrostatic pressure distribution (dotted curve) often
assumed in modelling gravity flows.
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Fig. 4. The inviscid, irrotational flow field around an ellipse with
aspect ratio x = 0.5. Streamlines (contours of 1) are shown in grey
and the pressure field is shown by the colour map scaled by the
stagnation pressure.

snow-air flows, the hydrostatic pressure is small compared
to the pressure fluctuations due to the internal fluid motion.

We suggest that the large-scale vortical structure seen in
the snow-air flows is an effect of the non-zero slope of the
track. The driving component of gravitational force along
the slope and the drag from the air at the nose and over
the surface cause the circulation. In addition, sedimenting
snow particles in the tail cause a strong density stratification
perpendicular to the chute surface. There are therefore larger
driving density differences close to the chute surface. This
shear will lead to recirculating flow in the head, where the
denser layers interact with the ambient fluid.

4. EXTERNAL FLOW ANALYSIS

The flow field in front of a streamlined body at high Reynolds
numbers can be well approximated by a potential flow
field (Landau and Lifshitz, 1987) since viscous effects are
confined to a thin boundary layer and wake. The Reynolds
number for our experiments is high (for a flow height of
0.1m and velocity 1Tms™', Re ~ 10% and is very much
larger for natural flows. Potential flow should therefore be a
good approximation to the flow field around both the chute
and natural avalanche flows. We consider three contrasting
potential flow models in sections 4.1-4.3.

4.1. Potential flow around an ellipse

A simple model that can include the size and aspect ratio of
the flow and which allows analytic calculations is to assume
that the snow—air currents take the shape of an ellipse. The
head of the snow-air flow is represented by half of the ellipse
in the stationary frame, illustrated in Figure 4.

The snow-air currents reach sufficiently high Reynolds
numbers such that the influence of the chute surface on
the flow will be confined to a narrow boundary layer and
can therefore be neglected. The chute surface is therefore
represented by the stagnation streamline. Fitting the air-
pressure data to the pressure field around an ellipse will
allow us to find the parameters that determine the ellipse
field: the flow speed, height and aspect ratio. A further
advantage of modelling the airflow around this elliptical
geometry is that the airflow model can be directly coupled
with the KSB integral model (Ancey, 2004; Turnbull and
others, 2007). This is discussed in more detail in section 5.

The steady inviscid incompressible flow around an ellipse
with constant speed 1, of radius 1 in the flow direction x and
height equal to its aspect ratio « in the orthogonal y direction
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Fig. 5. An ellipse of x radius R and aspect ratio x approaching the
air-pressure sensor at a constant speed u. Snapshot at time ¢ where
t<ty.

is described by the complex potential

z K2 —1
W(Z)_(1_H)<1—I€ 1+ 7 ), (1)

where z = x + iy, ¢ = Rew is the velocity potential and
1 = Im w is the stream function. Care is required in selecting
the correct root to describe the problem, with symmetry
dictated by the floor. The surface of the ellipse is described
by the implicit equation

2
A W)
K

The ellipse area in the upper half-plane is xm/2.
The modulus of the complex derivative describes the
complete velocity field

dw 1 1— KZ 3)
dz ~ 1—-k N

This appears to be singular when x = 1, but the singularity
is removable since we can rewrite the derivative as
dw _ (2> =D+ @
P e ey SO e
This second form is more suitable for computation, but the
previous form is used in subsequent calculations since its
manipulation is clearer.

In our experiments the flow, modelled by the ellipse,
travels past a stationary pressure sensor with speed u. This
sensor is mounted on the centre line of the chute surface
corresponding to the x axis, i.e. z = x. At the sensor, dw/dz
is the flow velocity along the x axis. If t is the time where
the nose reaches the sensor, then at any time t the centre
of the flow has position z = 1 + u(ty — t)/R relative to the
sensor (Fig. 5).

From Bernoulli’s theorem, the measured dimensional pres-
sure p will be the difference between the stagnation pressure
po = pu*/2 and the dynamic pressure p/2[u(dw /d2)]?, i.e.

1
p(t) = po [1 —(1 7 (1_

KrZ 2 5
Vo) | ®
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Fig. 6. Flow field around a disc. This is equivalent to the flow field
around an ellipse of aspect ratio x = 1, or flow around a dome with
angle a = 2.

This provides the time history of the pressure field in terms
of the flow speed v, its x radius R, aspect ratio x and the air
density p outside the avalanche.

An ellipse of aspect ratio k = 1 is simply a circle.
In the limit as k — 1, w(z) = z + 1/z. This limit
reproduces the complex potential for the flow field around a
semicircular disc (Fig. 6), which is the 2-D form of the dipole
solution described in McElwaine and Nishimura (2001) and
McElwaine and Turnbull (2005).

The asymptotic expansion for the ellipse flow complex
potential (Equation (1)) tells us about the flow far away from
the stagnation point, where z >> 1. This expansion is

R +R) | s+ R0 =KD
w(z) = z+ 5, T Py
k(1 4+ r)(1 — K?)?

5 +0(z7). ()

Here we can see a recurring term that can be interpreted as
an effective aerodynamic dipole radius R* = /k(1 + k)/2.
The expansion can be rescaled by letting w*(z) =
w(R*z)/R* so that terms of O(z7") are scaled by R*~2 and
terms O(z3) are scaled by R*~*. This results in the scaled
expansion

(1—r)’
2K225
This shows how aspect ratios different from 1 can be
observed in the pressure signal as higher multipole terms. A
benefit of scaling with the aerodynamic radius in this way is
that the behaviour of the flow at small aspect ratios becomes
apparent. In particular, the small aspect ratio x can have a
very large effect on the flow field far from the stagnation
point (large z). The radii of the ellipse with dipole radius 1

are 1/4/k(1 + k)/2 and /2 /(1 + k), so that the area of the

scaled ellipse is 27 /(k + 1).

* 1T 11—k
wi@z)=z+—-+5—+

—t 5 +0@E7).

4.2. Potential flow around a 60° dome

The ellipse model is useful for showing how the aspect ratio
of the flow influences the observed pressure. However, it
does not accurately represent the flow close to the front.
Near the stagnation point at the nose (that is, as z — R)
the ellipse pressure signal from Equation (5) takes the form
p ~ po— clt— to)?, where c is a constant that includes the
stagnation pressure po and aspect ratio .

However, McElwaine (2005) showed that the pressure
close to the stagnation point should vary as py — ¢’|t — to|.
McElwaine (2005) also showed that the front of a gravity
flow always makes an angle of 60° to the surface it flows on
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Fig. 7. Flow field around a 60° dome, where o = 3 /2.

(independent of slope angle or internal motion) and that the
non-dimensional front velocity (or Froude number) is always
V2. These results extend earlier analyses of von Karman
(1940) and Benjamin (1968) to flows down surfaces at
arbitrary slope angles and with any degree of internal motion.

The flow field is found from a series solution close to the
stagnation point at the nose. Given this finding, it is helpful
to assume that the shape of the flow makes an angle of 60°
to the chute surface. If no flow separation occurred, the flow
would be symmetric and there would be a rear stagnation
point also with an angle of 60°. This is unlikely at the high
Reynolds numbers of our experiments, however, where we
expect separation and a turbulent wake. What happens at
the rear of the body has little influence on the front and this
assumption can correctly model the pressure in the vicinity
of the front.

The shape we describe here as a ‘60° dome’ is part of the
circle formed by the ends of the arc subtending angles of 60°
to their chord, which is the chute surface. For generality we
first consider a dome with arbitrary front angle a.

Consider the complex potential

(Zz4+D*+(z-1)"

P P

(8)

with a branch cut between —1 and 1. This corresponds to
a flow for y > 0 exterior to the circle of centre x = 0,
y = cot(r/«) and radius 1/ sin(w /), with surface described
by

x>+ y2 — 2y cot(n/a) = 1. 9)

If &« = 3/2, this corresponds to the flow around an object
with a front angle of 60° and a fixed aspect ratio, i.e.
x = 1/+/3, as shown in Figure 7. a = 2 reduces to the case
of flow around a disc of the same geometry as the ellipse w
ithk =1.

To consider the flow far away from the stagnation point,
we write the asymptotic expansion as

Wiz = 2 o =1 (@ =1 -4
T« 3az 45073
2 -1 —H2a? - 11 _
+ )(";45az)§ =1, 0z, (o)

which is an odd function of z reflecting the forward-
backward symmetry. The expansion shows that the complex
potential corresponds to a flow of velocity u = 1/a at
infinity with an effective aerodynamic dipole radius R* =

V(a2 —1)/3. As for the ellipse case, we substitute variables
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Fig. 8. (a) Entire air-pressure history and (b) pressure history close to
the front of 100 mL snow-air flow on a 50° slope (grey curve: raw
data; black curve: ellipse fit). The disc and 60° dome fits are not
appreciably different in this presentation.

such that w*(z) = aw(zR*)/R* so that

1 (o — 4)

z 57232 —1)

@2 —H2a*—=11)
35752 — 1)

w(z) = z+

+ +0(iz7). (11)

For the 60° dome where oo = 3/2, we have

X 1 7 26 7
WHZ)=Z+ o+ e+ e s + 0. (12)
The flow field can be related to the inviscid wedge
flow described in McElwaine (2005) by considering the
behaviour close to the stagnation point. Expanding the
complex potential (Equation (8)) about the stagnation point
at z =1 for a general angle «,

|Z —1 |0¢ ( a+1)
wiz) =14+ —=—+01(|z-1 . 13
(2) NG | | (13)
The wedge-type nature of the flow for a« = 3/2 can now be
seen since

(z —1)*/? 5/2
WZ:1+7+O(Z—1 ) 14
(2) 7 ( ) (14)
is the complex potential for a wedge flow with angle 60°.

The key difference from the ellipse or disc flows is that
the pressure gradient does not tend to zero as the front is
approached, since from Bernoulli

~ 9 2
p~p0{1—g|z—1|+0[(z—1)]}. (15)

That is, the pressure distribution for the 60° dome exhibits a
sharp point at the pressure maximum whereas it is rounded
for the ellipse or disc models. We therefore expect the dome
model to better fit the pressure near the maximum because it
models the angle at the nose correctly. We expect the model
to show a poorer fit in the medium field where the aspect
ratio becomes important.

4.3. Non-dimensionalization

It is necessary to non-dimensionalize our measured data to
allow comparison between flows of different sizes. We define
a characteristic length scale for the flow that depends on the
mass of snow in a flow measured at the base of the chute,
M:

L=y/— (16)
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where ps is the bulk snow density (~200kgm™) and X is
the chute width. We also define a speed scale

U=/glL, (17)

where g is the acceleration due to gravity. Scaling measured
and fitted lengths (e.g. the x radius R) with this characteristic
length scale gives non-dimensional lengths (e.g. R = R/L)
that are independent of the size of the flow. Similarly, the
non-dimensional flow speed & = u/U is independent of
flow size.

4.4. Fit results

The chute air-pressure data typically show a maximum
when the flow front arrives at the sensor (Fig. 3), followed
by a minimum inside the flow head. We fit the data
with the ellipse, disc and 60° dome flow fields up to
the pressure maximum at the flow nose (tp = 0). The fit
procedure minimizes the mean-square residuals between
the fit prediction and the data for the non-dimensional
parameters speed & and x radius R and, in the case of the
ellipse, the aspect ratio .

A typical ellipse fit is shown with the raw air-pressure data
in Figure 8. To analyse the dataset, the fit parameters for
all of the flows were scaled with the characteristic length
scale or velocity scale as defined by Equations (16) and (17),
respectively.

Aspect ratio is a non-dimensional quantity independent
of flow size; this quantity does not require scaling to allow
comparison between flows of different sizes. These scaled
data of ellipse velocity and aspect ratio are shown for all
flows versus slope angle in Figure 9. In these plots, the
marker gives the mean value of the variable at each slope
angle and the error bar has length + one standard deviation.
Particularly for the ellipse fit, the velocity data convincingly
show a constant value for all slope angles as expected for
inclined classical gravity flows (Britter and Linden, 1980;
Turnbull and McElwaine, 2008).

The scaled ellipse radius gently decreases with increasing
slope angle until the slope is vertical and the flow becomes
significantly longer. The aspect ratio has a stronger increasing
trend with slope angle, similar to the trend of flow heights
seen in the video data (Turnbull and McElwaine, 2008). The
aspect ratio predictions are good; for example, the flows in
the still photographs in Figure 2 show aspect ratios close to
those predicted by the ellipse fits. It is interesting to note that
the ellipse fits predict an aspect ratio of x = 1, corresponding
to the disc at a slope angle close to 85°. This would suggest
that the disc is a good approximation at very high slope
angles, corresponding to fully suspended snow-air flows.

The 60° dome geometry has a fixed aspect ratio of 1/+/3
and thus the same number of fit parameters as the disc fit, i.e.
one fewer than the ellipse solution. The dome fit predicts the
maximum pressure well and shows a good agreement with
the raw data. The normalized mean residual of the fit for all
of the flows is 2.1%, showing that this 60° dome geometry
captures the flow better than the disc’s semicircular geometry
(mean normalized residual 2.6%). However, with one fewer
fit parameter, the dome fit does not achieve such a close
match to the raw data as the ellipse fit (mean normalized
residual 1.6%). The aspect ratio of the dome model (1//3)
is close to that of the ellipse fits at slope angles between 60°
and 80°, explaining the good agreement over most of the
experimental range.
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Fig. 9. (a) Scaled ellipse velocity independent of slope angle with

mean value 0.36 and (b) ellipse aspect ratio versus slope angle with
fitted curve k = 0.24 tan 6.

4.5. Video measurements

The results of the video measurements were disappointing
and it is difficult to draw convincing conclusions. The prob-
lem is that, despite the sieve, there were a number of larger
particles of snow and ice. These move down the slope with
higher velocity and make the edge of the flows poorly de-
fined. For this reason we only briefly mention the video data.

Figure 10 shows the non-dimensionalized speeds and
heights as functions of slope angle. The scaling with
avalanche size has collapsed the data and the speeds are
roughly independent of slope angle in agreement with Britter
and Linden (1980). They are considerably larger than the
speeds inferred from the pressure measurements, however.
The height measurements are particularly uncertain due to
the diffuse nature of the upper surface and rear of the flows.
There is a clear increase in height with slope angle, showing
the transition to suspension. These data are in agreement with
those presented in Turnbull and McElwaine (2008).

4.6. Comparison

The ellipse model would be expected to give the best agree-
ment over most of the range due to the extra fitting parameter
(aspect ratio) which influences the signal over a significant
range. The disc model (dipole only expansion) systematically
under-predicts the maximum pressure. Despite having one
fewer fit parameter than the ellipse model (this causes the
additional scatter), the 60° dome predicts the maximum
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Fig. 10. From the video measurements: (a) scaled flow velocities
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with fitted curve x = 0.0014 tan § + 0.054.

velocities very well (Fig. 11). This is because the 60° dome
has a sharp pressure peak at the stagnation point rather than
a rounded peak.

The additional parameter of aspect ratio & significantly
improves the fit and better predicts the pressure maximum.
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Fig. 11. Difference between pressure prediction and actual
measured pressure for a 100 mL snow-air flow on a 50° slope
(black: 60° dome fit; mid-grey: ellipse fit; light grey: disc fit).
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This improved fit is demonstrated by the mean residual,
normalized with the maximum pressure, for all of the flows.
For the disc fit this mean normalized residual is 2.6%
compared to 1.6% for the ellipse fit.

There are marked differences between the front velocities
calculated from the video measurements and those calcu-
lated from the maximum pressure. They correlate (coefficient
70%) but there is a large degree of scatter, and the flow
speeds derived from the video sequences are nearly three
times greater than those measured by the pressure sensor.

There are several reasons why the pressure sensor records
lower velocities. Figure 2 shows that the flow nose is raised
above the chute surface, due to the no-slip condition at the
chute surface (Simpson, 1997). The front stagnation point
is actually between the point where the flow attaches to the
surface and the raised nose, and the pressure sensor therefore
passes below the stagnation point. The sensor is therefore
not recording the actual maximum stagnation pressure, but a
pressure that can be significantly lower. The pressure maps in
Figures 4, 6 and 7 show how quickly the pressure decreases
from the stagnation point. Furthermore, the flow noses often
pass to one side of the sensor and the stagnation point can
also be missed in the lateral direction.

A comparison between the pressure and video meas-
urements is also complicated by the inhomogeneities in
the flow. Larger clumps of snow mix with the ambient air
less well than smaller particles, leading to wide variations
in velocities within the flow. Video measurements track
the front, which can comprise fast-moving clumps rather
than the suspended fine material. Even homogeneous flows
show front instabilities (Nohguchi and Ozawa, 2009); the
inhomogeneous snow flows are therefore difficult to track
reproducibly. The pressure field, in contrast, is an integral
measurement over the whole flow in the flow field and these
inhomogeneities have less effect on the measurements.

5. KSB INTEGRAL MODEL

The KSB model solves volume, buoyancy and momentum
equations for an avalanche flow at any slope angle or density
ratio, incorporating well-verified entrainment assumptions
for both ambient fluid and particles from the bed (Ancey,
2004; Turnbull and others, 2007). These equations are solved
for a prescribed geometry of a semi-ellipse with unit width,
height h, length [, aspect ratio k = h/I and bulk density
p. The equations can be rigorously derived from continuum
theory (Turnbull and others, 2007) and no additional closure
assumptions or parameterizations are needed. It has been
shown that the KSB equations successfully predict the front
speeds of powder-snow avalanches (measured at the Swiss
avalanche test site at Vallée de la Sionne) where the drag is
dominated by the inertia of entrained snow and air and basal
friction and aerodynamics drag are relatively insignificant
(Turnbull and others, 2007).

In this section we consider how the KSB model can be
applied to the chute snow-air currents. There are two main
differences between the chute currents and the field-scale
avalanches previously modelled using the KSB equations. In
the chute experiment, there is no snow entrainment from the
lower surface. Furthermore, the sedimentation velocity of the
particles is significant compared to the front velocity of the
current and therefore plays a role in the dynamics which
must be considered.
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A volume equation is derived using an overall Richardson
number dependent on air entrainment function (Turner,
1973)

(p — pa)ghcosé
pau? ’
The entrainment of air leads to a volume flux of air into the

cloud
Ga = f(Ri)\MTV/k, (19)

where the function f is a two-part function fitted from the
experiments of Beghin and others (1981)

e R Ri<,
f= (20)
e MRi, Ri>T1,

Ri = (18)

where A = 1.6. A function for the aspect ratio k in terms
of the slope angle 6 in radians was found from the same
experiments:

k= (v + 7207, 21

where v; = 0.002155, 7, = 0.0732 and ~v3 = 0.3. The
sedimentation of snow on the upper surface leads to an
effective detrainment of air

qs——<1 _p) us cos O/mV /k (22)
Ps
for the elliptic geometry at slope angle 6, where
us ~ 0.5ms~ " is the vertical settling velocity and ps is the
density of snow (~200 kg m~—3). The factor (1 — p/ps) hinders
the settling velocity and is the simplest choice to ensure that
p is always greater than ps.

To simplify the following, we introduce a velocity u, =
(1 — p/ps)us. More realistic (or better verified) choices could
easily be used. The total volume flux is therefore

(jj—\t/:qa+q5:«/wV/k(fu—uhcose). (23)

Alternatively, we can change variables to the slopewise
coordinate s using d/dt = ud/ds, i.e.

dv - Uy,
Efx/ﬂV/k(f—Ucose). (24)

The buoyancy of the current is defined B = (p — pa)V.
Although particle sedimentation leads to a change in cloud
geometry, the depositing particles are still contained within
the cloud and the buoyancy is maintained. We therefore have

dB_dB
de — ds
with no snow entrainment.

The momentum equation is finally derived, assuming
negligible basal friction or aerodynamic form drag. This
may be true at the high Reynolds numbers found in real
powder-snow avalanches (of the order 107-10%) (Hogg and
Woods, 2001), but the validity of the assumption may not
be strong for the chute flows with lower Reynolds numbers
(of the order 10%) where the viscous boundary layers form
a greater proportion of the depth of the current and where
no snow is entrained, reducing the inertial entrainment drag.
Nevertheless, air entrainment into the current is significant
and the underlying assumption is that acceleration of the
entrained air and the air flowing around the current is the
dominant drag mechanism.

Following Batchelor (1967), an added mass coefficient x
is introduced to account for the motion of the air flowing

(25)


https://doi.org/10.3189/172756410791386490

Turnbull and McElwaine: Suspension current air pressure

around the current. It is shown in Turnbull and others (2007)
that the added mass coefficient for an ellipse is equal to the
aspect ratio x = k. The total inertial mass of the current can
therefore be written

M=B+(1+x) Vpa. (26)

By Newton’s second law, the rate of change of momentum
dMu/dt is equal to the downslope component of gravity
Bgsin 6. Thus

d

E{[BJFG +x) Vpal u} = Bgsinf 27)

or, in terms of the slopewise coordinate,

d 1 .
a{[B—kﬂ +x) Vpalu} = EBgsm@. (28)

The rearrangement of the momentum equation in terms
of the velocity u is unwieldy, so will not be given here (see
Turnbull and others 2007). An additional consideration for
flows such as those on the chute with particle sedimentation
isthataterm —(gs+ga)pa u arises in the momentum equation.
The positive ga therefore acts to decelerate the current.
For flows with sedimentation, however, the negative gs
accelerates the current. We assume that particle momentum
is permanently transferred from the suspension to the
ambient air as particle sediment from the surface; therefore
gspa u = 0 in the momentum equation.

The volume, density and momentum equations (Equa-
tions (24), (25) and (28)) were solved numerically using a
Runge—Kutta scheme for the chute geometry for each slope
angle and volume released, subject to initial conditions. The
currents were given an initial speed at the exit of the drop
tube of T ms~" and an initial density of 100 kgm~—?, since the
snow had spread out to some degree through the drop tube
and sieve. The initial current volume was the volume of snow
in the beaker initially released, multiplied by 2 to account
for the reduced density after the drop tube. The model results
do not vary significantly with changes to these initial values.

5.1. Results

For each volume released and at each chute slope angle the
KSB model gives the current trajectory and geometry. The
results were scaled by a length scale L = /V;/0.2, where
Vi is the release volume and 0.2 m is the chute width (this
scaling is equivalent to that used for the potential flow model
fits and the video measurements). The corresponding speed
scale is \/gL. The current speeds and heights predicted by
the KSB model are depicted in Figure 12 for each slope angle
and volume. The scaled velocities agree well with the values
found from the ellipse fitting. The heights and aspect ratio,
although showing a similar trend, return smaller values than
the fit results or video measurements.

6. CONCLUSIONS

We have taken air-pressure measurements from suspension
flows for a wide range of slope angles and release volumes
and shown how these measurements can be used to infer
avalanche size, speed, aspect ratio and front angle. These
measurements have qualitatively similar features to those
from natural avalanches, showing large-scale motion within
the flows. This internal motion, when at the scale of an
avalanche, will generate larger shear stresses than the direct
impact force given by the stagnation pressure of the flow.
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ratios at the position of the air-pressure sensor versus slope angle.

This could potentially give rise to greater damage than
traditionally calculated.

Despite our best efforts to perform accurate and repro-
ducible experiments, the data have many uncertainties and
errors. These are primarily due to the inhomogeneities in the
snow that cause large variations in the size, shape and speed
of the initial flow and also variations down the slope. Future
work to enable more quantitative comparison with dynamic
models would be best completed with other materials.
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