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We use new methods, specific for non-locally convex quasi-Banach spaces, to
investigate when the quasi-greedy bases of a p-Banach space for 0 < p < 1 are
democratic. The novel techniques we obtain permit to show in particular that all
quasi-greedy bases of the Hardy space Hp(D) for 0 < p < 1 are democratic while, in
contrast, no quasi-greedy basis of Hp(Dd) for d � 2 is, solving thus a problem that
was raised in [7]. Applications of our results to other spaces of interest both in
functional analysis and approximation theory are also provided.
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1. Introduction

The formal development of a theory of greedy bases was spurred at the turn of the
21st century by the work of Konyagin and Temlyakov on the efficiency of the Thresh-
olding Greedy Algorithm (TGA for short) in Banach spaces [32]. The TGA simply
takes m terms with maximum absolute values of coefficients from the expansion of a
signal (function) relative to a fixed representation system (a basis). Different greedy
algorithms originate from different ways of choosing the coefficients of the linear
combination in the m-term approximation to the signal. Another name commonly
used in the literature for m-term approximation is sparse approximation. Sparse
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approximation of functions is a powerful analytic tool which is present in many
important applications to image and signal processing, numerical computation, or
compressed sensing, to name but a few.

The simplicity in the implementation of the TGA and its connections with the
geometry of the space attracted the attention of researchers with a more classical
Banach space theory background and as a result, the last two decades have seen a
great progress in the functional analytic aspects of greedy approximation theory.

However, both from the abstract point of view of functional analysis as well as its
applications, the development of a parallel theory of greedy bases for non-locally
convex spaces was left out of the game, not because these spaces lack intrinsic
interest but because of the absence of the foundational results that would cement
this new ramification of the theory. It can be conceded that the locally convex case
is more often used, especially in practical numerical computations, in large part
due to the fact that convex algorithms are easy to implement. Nevertheless, there
exist very well-established scales of spaces in the non-locally convex setting that
arise naturally in analysis and have been extensively studied where it is necessary
to do approximation theory. Take for instance, the Hardy spaces of analytic func-
tions on various domains in C

n (see [18]), Bergman spaces of analytic functions
on various domains in C

n (see [24]), Fefferman–Stein real Hardy spaces (see [20]),
or Besov, Sobolev, and Triebel–Lizorkin spaces (see [39]). Apart from those spaces,
approximation theory in non-locally convex spaces plays a very important role in
problems that arise in diverse areas such as approximation spaces, solutions of
PDE’s with data in Hardy spaces or Besov spaces that are not Banach spaces [25],
approximation spaces and wavelet numerical methods [13], layer potentials and
boundary-value problems for second-order elliptic operators with data in Besov
Spaces, as in [9]. Approximation theory in non-locally convex spaces appears also
naturally when studying interpolation problems even in the framework of Banach
spaces. For example, the weak Lorentz space L1,∞ plays a key role in Marcinkiewicz
interpolation theorem [10].

As was recently shown in [5], the main types of bases that are of interest in greedy
approximation in the setting of Banach spaces, namely greedy, almost greedy, and
quasi-greedy bases, are suitable as well for the use of the TGA in p-Banach spaces
for p < 1. The article [5] was the springboard for subsequent research of different
aspects related to the greedy algorithm in p-Banach spaces for p < 1 (see [6, 7]).
Our aim in this paper is to continue investigating the connection between quasi-
greedy bases and their democracy functions in p-Banach spaces, initiated in [7],
with an eye to the qualitative and quantitative study of the efficiency of the greedy
algorithm in Hardy spaces Hp and other important non-locally convex quasi-Banach
spaces.

Both quasi-greedy and democratic bases were introduced by Konyagin and
Temlyakov back in 1999 in their seminal paper [32]. These two special types of
bases can nowadays be regarded in hindsight as the pillars that sustain the entire
theory of greedy approximation in Banach spaces using bases. Certainly, apart
from the pioneering characterization of greedy bases as those bases that are simul-
taneously unconditional and democratic from [32] this claim is supported by the
subsequent characterization of almost greedy bases in Banach spaces as those bases
that are at the same time quasi-greedy and democratic [16].

https://doi.org/10.1017/prm.2023.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.42


908 F. Albiac, J. L. Ansorena and G. Bello

Thus, although a priori, being almost greedy is more restrictive for a basis than
being quasi-greedy, there exist spaces whose geometry forces quasi-greedy basis to
be democratic. This is what happens for example with c0, �2, and �1. The specific
techniques used to prove that property in each space exhibit the critical structural
aspect involved in making quasi-greedy basis be democratic. In �2 the decisive
ingredient is the fact that its Rademacher type and cotype are 2 ([42]). In the
space �1 it is crucial that it is a GT-space [17], while for c0 what matters is that
its dual is a GT-space [15].

The situation is different in �p when p ∈ (1, 2) ∪ (2,∞). Indeed, these spaces have
unconditional bases (in particular, quasi-greedy bases) that are not democratic: To
see this, one just has to remember that when p ∈ (1, 2) ∪ (2,∞), the space �p is
isomorphic to (

⊕∞
n=1 �n

2 )�p
[35], whose canonical basis is unconditional but not

democratic.
The study of greedy-like bases in non-locally convex spaces sprang from the

paper [5], where it is proved that the aforementioned characterizations of greedy
bases and almost greedy bases remain valid in this more general framework. In
this spirit, the authors of [7] ventured out beyond the ‘psychological’ border of the
index p = 1 and proved that all quasi-greedy bases in the spaces �p for 0 < p < 1 are
democratic. The non-locally convex nature of these spaces required the introduction
of new techniques in order to determine how the geometry of the space shapes the
structure of their quasi-greedy bases. The results obtained in [7] heavily rely on the
theory of Lp-spaces for 0 < p < 1 developed by Kalton in [29].

In this paper we investigate the democracy of quasi-greedy bases in other clas-
sical non-locally convex quasi-Banach spaces. Our approach permits to obtain,
for instance, that all quasi-greedy bases of the Hardy space Hp(D) for 0 < p < 1
(as well as all quasi-greedy bases of its complemented subspaces) are democratic,
solving thus in the positive Question 3.8 from [7] in the case when d = 1. As
far as the Hardy spaces Hp(Dd) for d � 2 is concerned, Wojtaszczyk [42] had
shown that its canonical basis (which is unconditional) is not democratic. Here,
our contribution consists of proving that, actually, no quasi-greedy basis of these
multivariate Hardy spaces is democratic. Let us point out that the approach used
to prove that quasi-greedy bases in �p are democratic falls short for the Hardy
spaces, since the linear structure of the latter spaces is far more complex that
the former. The new techniques that we had to develop to tackle the problem
critically depend on the convexity properties of a quasi-Banach space regarded as
a quasi-Banach lattice with the structure induced by its (unique) unconditional
basis.

Our research suggests the pattern that if a quasi-Banach space X (locally convex
or otherwise) has a unique unconditional basis (up to equivalence and permutation)
which is democratic (hence greedy) then all quasi-greedy bases of X are democratic
(hence almost greedy).

We also obtain valuable information about the democracy functions of quasi-
greedy bases X of other classical quasi-Banach spaces X with a unique unconditional
basis. For instance, we prove that the mixed-norm sequence spaces �q ⊕ �p for 0 <
p < q < 1 have no almost greedy bases.

We close this introduction with a brief description of the contents of the paper.
In § 2 we set the terminology that we will use and gather some background results
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that we will need. Section 3 includes our advances in the theory of quasi-greedy
bases. In § 4 we provide applications to important spaces in functional analysis and
approximation theory.

2. Terminology and background

Throughout this paper we use standard facts and notation from Banach spaces
and approximation theory (see, e.g., [8]). The reader will find the required special-
ized background and notation on greedy-like bases in quasi-Banach spaces in [5].
Nonetheless, we record the notation that is most heavily used.

2.1. Bases in quasi-Banach spaces

Throughout this paper, a basis of a quasi-Banach space X over the real or complex
field F will be a norm-bounded countable family X = (xn)n∈N which generates
the entire space X, and for which there is a (unique) norm-bounded family X ∗ =
(x∗

n)n∈N in the dual space X
∗ such that (xn,x∗

n)n∈N is a biorthogonal system. A
basic sequence will be a sequence in X which is a basis of its closed linear span. If
X = (xn)n∈N is a basis, then it is semi-normalized, i.e.,

0 < inf
n∈N

‖xn‖ � sup
n∈N

‖xn‖ < ∞,

and X ∗ is a basic sequence called the dual basis of X . Note that semi-normalized
Schauder bases are a particular case of bases.

Given a linearly independent family of vectors X = (xn)n∈N in X and scalars
γ = (γn)n∈N ∈ F

N , we consider the map

Sγ = Sγ [X , X] : span(xn : n ∈ N) → X,
∑
n∈N

an xn �→
∑
n∈N

γn an xn.

The family X is an unconditional basis of X if and only if it generates the whole
space X and Sγ is well-defined and bounded on X for all γ ∈ �∞, in which case the
uniform boundedness principle yields

Ku = Ku[X , X] := sup
‖γ‖∞�1

‖Sγ‖ < ∞. (2.1)

If X is an unconditional basis, Ku is called its unconditional basis constant. Now,
given A ⊆ N, we define the coordinate projection onto A (with respect to the
sequence X ) as

SA = SγA
[X , X],

where γA = (γn)n∈N is the family defined by γn = 1 if n ∈ A and γn = 0 otherwise.
It is known (see, e.g., [5, Theorem 2.10]) that X is an unconditional basis if and
only if it generates X and it is suppression unconditional, i.e.,

sup{‖SA‖ : A ⊆ N finite} < ∞.

Unconditional bases (indexed on the set N of natural numbers) are a particular case
of Schauder bases, and so semi-normalized unconditional bases are a particular case
of bases.
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2.2. Quasi-greedy bases

Given a basis X = (xn)n∈N of a quasi-Banach space X with dual basis
X ∗ = (x∗

n)n∈N , the coefficient transform

F : X → F
N , f �→ (x∗

n(f))n∈N

is a bounded linear operator from X into c0. Thus, for each m ∈ N there is a
unique set A = Am(f) ⊆ N of cardinality |A| = m such that whenever i ∈ A and
j ∈ N \ A, either |ai| > |aj | or |ai| = |aj | and i < j. The mth greedy approximation
to f ∈ X with respect to the basis X is

Gm(f) = Gm[X , X](f) := SAm(f)(f).

Note that the operators (Gm)∞m=1 defining the greedy algorithm on X with respect
to X are not linear nor continuous. The basis X is said to be quasi-greedy if there
is a constant C � 1 such that

‖Gm(f)‖ � C ‖f‖ , f ∈ X, m ∈ N.

Equivalently, by [42, Theorem 1] (cf. [5, Theorem 4.1]), these are precisely the bases
for which the greedy algorithm converges, i.e.,

lim
m→∞Gm(f) = f, f ∈ X.

2.3. Truncation quasi-greedy bases

Another family of nonlinear operators of key relevance in the study of the greedy
algorithm in a quasi-Banach space X with respect to a basis X = (xn)n∈N is the
sequence (Rm)∞m=1 of the so-called restricted truncation operators, whose definition
we recall next. Let

E = {λ ∈ F : |λ| = 1}.
Given A ⊂ N finite and ε = (εn)n∈A ∈ E

A we set

1ε,A =
∑
n∈A

εn xn,

and given f ∈ X we define ε(f) ∈ E
N by

ε(f) = (sign(x∗
n(f)))n∈N ,

where, as is customary, sign(·) denotes the sign function, i.e., sign(0) = 1 and
sign(a) = a/ |a| if a ∈ F \ {0}. For m ∈ N, the mth-restricted truncation operator
Rm : X → X is the map

Rm(f) = min
n∈Am(f)

|x∗
n(f)|1ε(f),Am(f), f ∈ X,

and the basis X is said to be truncation quasi-greedy if

Cr := sup
m∈N

‖Rm‖ < ∞. (2.2)

For the sake of generality, most of our results below will be stated and proved for
truncation quasi-greedy bases (or even for bases fulfilling weaker unconditionality
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conditions such as being UCC). However, the uneasy reader can safely replace
‘truncation quasi-greedy basis’ with ‘quasi-greedy basis’ and can rest assured of the
validity of the corresponding statements thanks to the following theorem.

Theorem 2.1 [5, Theorem 4.13]. If X is a quasi-greedy basis in a quasi-Banach
space X then X is truncation quasi-greedy.

Semi-normalized unconditional bases are a special kind of quasi-greedy bases, and
although the converse is not true in general, quasi-greedy bases always retain in
a certain sense a flavour of unconditionality. For example, truncation quasi-greedy
bases of quasi-Banach spaces are unconditional for constant coefficients (UCC, for
short) [5, Proposition 4.16]. This means that there is a constant C � 1 such that
‖1ε,A‖ � ‖1ε,B‖ whenever A, B are finite subsets of N with A ⊆ B and ε ∈ E

B . If
a basis X is UCC then there is another constant Cu � 1 such that

‖1δ,A‖ � Cu ‖1ε,A‖ (2.3)

for all finite subsets A of N and all choices of signs δ and ε ∈ E
A (see [5, Lemma

3.2]; for a detailed discussion on the unconditionality-related properties enjoyed by
truncation quasi-greedy bases in quasi-Banach spaces we refer to [5, Section 3]).

2.4. Democracy functions

Given a basis X = (xn)n∈N of a quasi-Banach space X and A ⊆ N finite, we set
1A = 1ε,A, where ε = 1 on A. The basis X is said to be democratic if there is a
constant D � 1 such that

‖1A‖ � D ‖1B‖

for any two finite subsets A and B of N with |A| � |B|. The lack of democracy of a
basis X exhibits some sort of asymmetry. To measure how much a basis X deviates
from being democratic, we consider its upper democracy function, also known as its
fundamental function,

ϕu[X , X](m) := ϕu(m) = sup
|A|�m

‖1A‖ , m ∈ N,

and its lower democracy function,

ϕl[X , X](m) := ϕl(m) = inf
|A|�m

‖1A‖ , m ∈ N.

Notice that given a basis X there is a constant Cs, depending only on the modulus
of concavity of the space X, such that∥∥∥∥∥∑

n∈A

an xn

∥∥∥∥∥ � Csϕu[X , X](m), |A| � m, |an| � 1. (2.4)

In the particular case that the basis X is UCC the following hold:

(i) ϕl(m) � ϕu(m) for m ∈ N;
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(ii) inf |A|=m ‖1A‖ � ϕl[X , X](m) for m ∈ N; and

(iii) X is democratic if and only ϕu(m) � ϕl(m) for m ∈ N, in which case it is
super-democratic, i.e., there is a constant D � 1 such that

‖1ε,A‖ � D ‖1δ,B‖

for any two finite subsets A, B of N with |A| � |B|, any ε ∈ EA and any
δ ∈ EB .

Here and throughout this paper, the symbol αj � βj for j ∈ N means that there is
a positive constant C such that the families of non-negative real numbers (αj)j∈N
and (βj)j∈N are related by the inequality αj � Cβj for all j ∈ N . If αj � βj and
βj � αj for j ∈ N we say (αj)j∈N are (βj)j∈N are equivalent, and we write αj ≈ βj

for j ∈ N .

2.5. Quasi-Banach lattices

Let 0 < r � ∞. A quasi-Banach space X is (topologically) r-convex or r-normable
if there is a constant C � 1 such that∥∥∥∥∥∑

i∈A

fi

∥∥∥∥∥ � C

(∑
i∈A

‖fi‖r

)1/r

, |A| < ∞, fi ∈ X. (2.5)

If a quasi-Banach space is r-convex then r � 1. By the Aoki–Rolewicz theorem any
quasi-Banach space is r-convex for some r ∈ (0, 1]. In turn, any r-convex quasi-
Banach space X becomes an r-Banach space under a suitable renorming, i.e., X can
be endowed with an equivalent quasi-norm satisfying (2.5) with C = 1.

The existence of a lattice structure in X leads to a (related but) different notion
of convexity. A quasi-Banach lattice X is said to be r-convex (0 < r < ∞) if there
is a constant C such that∥∥∥∥∥∥

(∑
i∈A

|fi|r
)1/r

∥∥∥∥∥∥ � C

(∑
i∈A

‖fi‖r

)1/r

, |A| < ∞, fi ∈ X, (2.6)

where the lattice r-sum (
∑

i∈A |fi|r)1/r ∈ X is defined unambiguously exactly as
for the case of Banach lattices (cf. [33, pp. 40–41] and [36]). If X is an r-convex
quasi-Banach lattice, we will denote by M (r)(X) the smallest constant C such that
(2.6) holds.

We will also consider lattice averages and use them to reformulate lattice con-
vexity in those terms. Given 0 < r � ∞, the r-average of a finite family (fi)i∈A in
a quasi-Banach lattice X is defined as

(Avei∈A |fi|r)1/r =

(
1
|A|

∑
i∈A

|fi|r
)1/r

= |A|−1/r

(∑
i∈A

|fi|r
)1/r

.

This way, a quasi-Banach lattice X is r-convex with M (r)(X) � C < ∞ if and only
if ∥∥∥(Avei∈A(|fi|r)1/r

∥∥∥ � C (Avei∈A(‖fi‖r)1/r
, |A| < ∞, fi ∈ X.
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Defining r-sums and r-averages in quasi-Banach lattices allows us to state a lattice-
valued version of Khintchine’s inequalities:

Theorem 2.2. Let X be a quasi-Banach lattice. For each 0 < r < ∞ there are
constants Tr and Cr such that for any finite family (fi)i∈A in X,

1
Cr

(
Aveεi=±1

∣∣∣∣∣∑
i∈A

εi fi

∣∣∣∣∣
r)1/r

�
(∑

i∈A

|fi|2
)1/2

� Tr

(
Aveεi=±1

∣∣∣∣∣∑
i∈A

εi fi

∣∣∣∣∣
r)1/r

.

Proof. Just apply the functional calculus τ described in [33, Theorem 1.d.1] to the
functions f , g : R

n → R given by

f((xi)n
i=1) =

(
n∑

i=1

|xi|2
)1/2

, g((xi)n
i=1) =

(
Aveεi=±1

∣∣∣∣∣
n∑

i=1

εi xi

∣∣∣∣∣
r)1/r

,

and use Khintchine’s inequalities [31]. �

If X is a r-convex quasi-Banach lattice then X is a min{r, 1}-convex quasi-Banach
space. The converse does not hold, to the extent that there are quasi-Banach lattices
that are not r-convex for any r > 0 (see [28, Example 2.4]). Theorem 2.2 from the
same paper characterizes quasi-Banach lattices with some nontrivial convexity as
those that are L-convex. A quasi-Banach lattice X is said to be L-convex if there is
ε > 0 so that whenever f and (fi)i∈A in X satisfy 0 � fi � f for every i ∈ A, and
(1 − ε) |A| f �

∑
i∈A fi we have ε ‖f‖ � maxi∈A ‖fi‖.

The aforementioned Theorem 2.2 from [28] also gives the following.

Theorem 2.3. Let X be a quasi-Banach lattice and let 0 < r < ∞. If X is lattice
r-convex then it is lattice s-convex for every 0 < s < r.

Quoting Kalton from [28], L-convex lattices behave similarly to Banach lattices
in many respects. The following result, which generalizes to quasi-Banach lattices
[34, Lemme 5], is in this spirit.

Lemma 2.4. Let X be an L-convex quasi-Banach lattice. Then for every 0 < r < ∞
there is a constant C such that∥∥∥∥∥∥

(∑
i∈A

|fi|2
)1/2

∥∥∥∥∥∥ � C

(
Aveεi=±1

∥∥∥∥∥∑
i∈A

εi fi

∥∥∥∥∥
r)1/r

, |A| < ∞, fi ∈ X.

Proof. Since that map

r �→
(

Aveεi=±1

∥∥∥∥∥∑
i∈A

εi fi

∥∥∥∥∥
r)1/r
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is increasing, by Theorem 2.3 we can assume that X is an r-convex Banach lattice.
Then, by Theorem 2.2,∥∥∥∥∥∥

(∑
i∈A

|fi|2
)1/2

∥∥∥∥∥∥ � Tr

∥∥∥∥∥∥
(

Aveεi=±1

∣∣∣∣∣∑
i∈A

εi fi

∣∣∣∣∣
r)1/r

∥∥∥∥∥∥
� TrM

(r)(X)

(
Aveεi=±1

∥∥∥∥∥∑
i∈A

εi fi

∥∥∥∥∥
r)1/r

for every finite family (fi)i∈A in X. �

Remark 2.5. In light of Khintchine–Kahane–Kalton’s inequalities (see [27,
Theorem 2.1]) the index r in Lemma 2.4 is irrelevant. From an opposite per-
spective, we point out that the proof of Lemma 2.4 does not depend on
Khintchine–Kahane–Kalton’s inequalities.

We are interested in quasi-Banach lattices of functions defined on a countable
set N . The term sequence space will apply to a quasi-Banach space B ⊆ F

N such
that:

• en := (δi,n)i∈N is a norm-one vector in B for all n ∈ N ; and

• if f ∈ X and g ∈ F
N satisfy |g| � |f |, then g ∈ X and ‖g‖ � ‖f‖.

That way, B becomes a quasi-Banach lattice with the natural order. In this
particular case, r-sums take a more workable form: given fi = (ai,n)n∈N for i ∈ A,(∑

i∈A

|fi|r
)1/r

=

Ñ(∑
i∈A

|ai,n|r
)1/r

é
n∈N

.

There is a close relation between sequence spaces and unconditional bases. If B

is a sequence space the unit vector system EN = (en)n∈N is a 1-unconditional
basic sequence of B whose coordinate functionals are the restrictions to B of the
coordinate functionals (e∗

n)n∈N defined as

e∗
n(f) = an, f = (an)n∈N ∈ F

N .

And, conversely, every semi-normalized unconditional basis X of a quasi-Banach
space X becomes normalized and 1-unconditional after a suitable renorming of X;
this way we can associate a sequence space with X .

2.6. Embeddings via bases and squeeze-symmetric bases

Let X be a quasi-Banach space with a basis X = (xn)n∈N and let (B, ‖·‖
B
) be

a sequence space on N . Let us recall the following terminology, which we borrow
from [1].

(a) We say that B embeds in X via X , and put B
X
↪→ X, if there is a constant C such

that for every g ∈ B there is f ∈ X such that F(f) = g, and ‖f‖ � C ‖g‖
B
.
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(b) We say that X embeds in B via X , and put X
X
↪→ B, if there is a constant C

such that F(f) ∈ B with ‖F(f)‖
B

� C ‖f‖ for all f ∈ X.

The sequence space B is said to be symmetric if fπ := (aπ(n))n∈N ∈ B and
‖fπ‖B

= ‖f‖
B

for all f = (an)n∈N ∈ B and every permutation π of N .
Loosely speaking, by squeezing the space X between two symmetric sequence

spaces we obtain qualitative estimates on the symmetry of the basis in X. Thus, a
basis X is said to be squeeze-symmetric if there are symmetric sequence spaces S1

and S2 on N , which are close to each other in the sense that

‖1A[EN , S1]‖ ≈ ‖1A[EN , S2]‖ , |A| < ∞,

such that S1
X
↪→ X

X
↪→ S2. A basis of a quasi-Banach space is squeeze-symmetric if

and only if it is truncation quasi-greedy and democratic (see [5, Lemma 9.3 and
Corollary 9.15]). In particular, almost greedy bases are squeeze-symmetric.

Embeddings involving weighted Lorentz sequence spaces play an important role in
greedy approximation theory using bases. For our purposes here, it will be sufficient
to deal with weak Lorentz spaces.

Let w = (wn)∞n=1 be a weight, i.e., a sequence of nonnegative numbers with w1 >
0, and let s = (sm)∞m=1 be its primitive weight defined by sm =

∑m
n=1 wn. The

weighted Lorentz sequence space (on the countable set N ) d1,∞(w) consists of all
functions f ∈ c0(N ) whose non-increasing rearrangement (am)∞m=1 satisfies

‖f‖∞,w := sup
m∈N

sm am < ∞.

We must pay attention to whether s is doubling, i.e., whether s satisfies the
condition

s2m � sm, m ∈ N.

The L-convexity of the space will play a key role as well.

Theorem 2.6 [12, Theorem 2.2.16] and [3, Theorem 6.1]. Let s be the primitive
weight of a weight w.

(i) The space (d1,∞(w), ‖·‖∞,w) is quasi-normed if and only if s is doubling.
Moreover,

(ii) if s is doubling then d1,∞(w) is an L-convex symmetric sequence space.

Suppose X is a truncation quasi-greedy basis of a quasi-Banach space X. Then,
regardless of whether X is democratic or not, the mere definition of lower democracy
function yields a constant C such that

sup
m

am ϕl[X , X](m) � C ‖f‖ , f ∈ X, (2.7)

where (am)∞m=1 is the non-increasing rearrangement of f .
We point out that since ϕl[X , X] is not necessarily doubling (see [43]), inequality

(2.7) might not hold for an embedding of X into a sequence space; thus we will need
to appeal to the following consequence of (2.7).
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Lemma 2.7 see [5, Corollary 9.13]. Let X be a truncation quasi-greedy basis of a
quasi-Banach space X. Let w be a weight whose primitive weight s = (sm)∞m=1 is

doubling. Then X
X
↪→ d1,∞(w) if and only if s � ϕl[X , X].

2.7. Banach envelopes

When dealing with a quasi-Banach space X it is often convenient to know which is
the ‘smallest’ Banach space containing X. Formally, the Banach envelope of a quasi-
Banach space X consists of a Banach space X̂ together with a linear contraction
JX : X → X̂ satisfying the following universal property: for every Banach space Y

and every linear contraction T : X → Y there is a unique linear contraction T̂ : X̂ →
Y such that T̂ ◦ JX = T . Pictorially we have

X̂

T̂

����������������

X

JX

��

T

�� Y.

If a Banach space V and a bounded linear map J : X → V are such that Ĵ : X̂ → V

is an isomorphism, we say that V is an isomorphic representation of the Banach
envelope of X via J . For instance, given 0 < p < 1, the Bergman space A1

1−p/2 is an
isomorphic representation of the Banach envelope of Hp(D) via the inclusion map
(see [19, 37]).

If a quasi-Banach space X has a basis X and X
X
↪→ �1, then �1 is an isomorphic

representation of the Banach envelope of X via the coefficient transform ([2, Propo-
sition 2.10]). The following lemma is an immediate consequence of this and so we
leave its verification to the reader.

Lemma 2.8. Let X be a basis of a quasi-Banach space X, and let B be a sequence

space. Suppose that X
X
↪→ B and that B ⊆ �1 continuously. Then the envelope map

JX : X → X̂ factors through the coefficient transform regarded as map from X into
B, i.e., there is a bounded linear map J : B → X̂ such that JX = J ◦ F .

2.8. The Marriage Lemma

A classical problem in combinatorics is to determine whether a given family
(Ni)i∈I of subsets of a set N admits a one-to-one map ν : I → N such that ν(i) ∈ Ni

for all i ∈ I. A necessary condition for the existence of such a map is

|F | �
∣∣∣∣∣⋃
i∈F

Ni

∣∣∣∣∣ , F ⊆ I, |F | < ∞. (2.8)

P. Hall proved in [23] that (2.8) is also sufficient provided the set I of indices and
all the sets Ni are finite. Subsequently, M. Hall [22] extended this result to the case
when I is not necessarily finite. Here, we will use a generalization by Wojtaszczyk
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[41] of the latter result which was effectively used in his study of the uniqueness of
unconditional bases in quasi-Banach spaces.

Theorem 2.9 see [41, Corollary 3.1]. Let N be a set and (Ni)i∈I be a family of
finite subsets of N . Let K ∈ N. Suppose that

|F | � K

∣∣∣∣∣⋃
i∈F

Ni

∣∣∣∣∣
for every F ⊆ I finite. Then there is a partition (Ij)K

j=1 of I and one-to-one maps
νj : Ij → N for j = 1, . . . ,K such that νj(i) ∈ Ni for each i ∈ I.

3. Strongly absolute bases and their effect on the democracy functions
of quasi-greedy basic sequences

Loosely speaking, one could say that strongly absolute bases are ‘purely non-locally
convex’ bases, in the sense that if a quasi-Banach space X has a strongly absolute
basis then X is far from being a Banach space. The strong absoluteness of a basis
was identified and coined by Kalton et al. in [30] as the crucial differentiating
feature of unconditional bases in quasi-Banach spaces. Here we work with a slightly
different but equivalent definition.

Definition 3.1. An unconditional basis B = (bn)n∈N of a quasi-Banach space X

is strongly absolute if for every constant R > 0 there is a constant C > 0 such that∑
n∈N

|b∗
n(f)| ‖bn‖ � max

{
C sup

n∈N
|b∗

n(f)| ‖bn‖ ,
‖f‖
R

}
, f ∈ X. (3.1)

By definition, if we rescale a strongly absolute basis we obtain another strongly
absolute basis. A normalized unconditional basis B of X is strongly absolute if

X
B
↪→ �1, and X is ‘far from �1,’ in the sense that whenever the quasi-norm of a

vector in X and the �1-norm of its coordinate vector are comparable then the �∞-
norm of its coordinates is comparable to both quasi-norms. We refer to [3] for a
list of quasi-Banach spaces with a strongly absolute unconditional basis. Some of
those spaces will appear in § 4, but for the time being we recall two different ways
to find strongly absolute bases.

Theorem 3.2 [3, Proposition 6.5]. Let X be a quasi-Banach space with a semi-
normalized unconditional basis B. Suppose that

∞∑
m=1

1
ϕl[B, X](m)

< ∞.

Then B is strongly absolute.

Theorem 3.3 [3, Proposition 6.2]. Let w be a weight whose primitive weight s =
(sm)∞m=1 is doubling. Then the unit vector system of d1,∞(w) is strongly absolute
if and only if

∑∞
m=1 1/sm < ∞.
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We point out that the fundamental function of the unit vector system of d1,∞(w)
is the primitive weight of w. Hence, the ‘if’ part of Theorem 3.3 can be directly
derived from Theorem 3.2.

Our goal in this section is to determine how the fact that a quasi-Banach space
X has a strongly absolute basis B = (bn)n∈N affects the democracy functions of
quasi-greedy bases in X. To that end, if Y = (yi)i∈M is another basis of X, we must
estimate the size of

∥∥∑
i∈A yi

∥∥ for any A ⊂ M finite in terms of the democracy
functions of B. The following lemma from [7] highlights the role played by the strong
absoluteness of the basis in making possible to pick (uniformly) large coefficients
from the vectors of Y. The ‘large coefficient’ technique was introduced by Kalton
in [26] in his study of the uniqueness of unconditional basis in non-locally convex
Orlicz sequence spaces.

Given δ > 0 and a finite family S = (yi,y
∗
i )i∈A we consider the set of indices

Ωδ(S,B) = {n ∈ N : |y∗
i (bn) b∗

n(yi)| � δ for some i ∈ A},

where (b∗
n)n∈N is the dual basis of B. The explicit definition of these sets goes

back to the work of Wojtaszczyk on uniqueness of unconditional structure of quasi-
Banach spaces [41].

Lemma 3.4 [7, Lemma 3.3]. Let B be a quasi-Banach space with a strongly absolute
basis B. Then, given a ∈ (0,∞) and C ∈ (1,∞), there is δ > 0 such that, whenever
S = (yi,y

∗
i )i∈A is a finite family in B × B

∗ with y∗
i (yi) = 1 and ‖yi‖ ‖y∗

i ‖ � a for
all i ∈ A, we have

|A| � C
∑

n∈Ωδ(S,B)

∣∣∣∣∣∑
i∈A

y∗
i (bn) b∗

n(yi)

∣∣∣∣∣ .
Since we will also come across sets Ωδ(S,X ) associated with conditional bases X

of a quasi-Banach space X, in order to make headway we will need the following
alteration of Lemma 3.4.

Lemma 3.5. Let X be a quasi-Banach space with a basis X = (xn)n∈N . Suppose that
X embeds via X in a sequence space B whose unit vector system is strongly abso-
lute. Then, given a ∈ (0,∞) there are positive scalars K and δ such that, whenever
S = (yi,y

∗
i )i∈A is a finite family in X × X

∗ with y∗
i (yi) = 1 and ‖yi‖ ‖y∗

i ‖ � a for
all i ∈ A, we have

|A| � K |Ωδ(S,X )| .

Proof. The hypothesis implies that the space B embeds continuously into �1.
Therefore, by Lemma 2.8, there is a bounded linear map J : B → X̂ such that
J(F(f)) = JX(f) for all f ∈ X. Let C1 denote its norm, and let C2 be the norm of
the coefficient transform F with respect to X , regarded as an operator from X to
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B. Let

C3 = sup
i∈A

‖yi‖ ‖y∗
i ‖ < ∞, and

C4 = sup
n∈N

‖xn‖ ‖x∗
n‖ < ∞.

If we set

zi = F(yi) ∈ B and z∗
i = ŷ∗

i ◦ J ∈ B
∗, i ∈ M,

then we have

z∗
i (zi) = ŷ∗

i ◦ J ◦ F(yi) = y∗
i (yi) = 1 and

‖zi‖ ‖z∗
i ‖ � ‖F‖

X→B
‖yi‖ ‖J‖

∥∥∥ŷ∗
i

∥∥∥ � C1C2 ‖yi‖ ‖y∗
i ‖ � C1C2C3

for all i ∈ A. Moreover,

e∗
n(zi) = e∗

n(F(yi)) = x∗
n(yi) and

z∗
i (en) = ŷ∗

i (J(F(xn))) = ŷ∗
i (JX(xn)) = y∗

i (xn)

for all i ∈ A and n ∈ N .
Set a = C1C2C3 and an arbitrary C > 1. We pick δ > 0 as in Lemma 3.4 with

respect to the unit vector system of B. We infer that

|A| � C
∑

n∈Ωδ(S,X )

|y∗
i (xn)x∗

n(yi)| � CC3C4 |Ωδ(S,X )| . �

The following elementary lemma puts an end to the auxiliary results of this
preparatory section.

Lemma 3.6. Let X = (xn)n∈N be a basis a quasi-Banach space X. The set

{n ∈ N : |f∗(xn)x∗
n(f)| � δ}

is finite for any given f ∈ X, f∗ ∈ X
∗, and δ > 0.

Proof. We need to prove that (f∗(xn)x∗
n(f))n∈N ∈ c0(N ). But this follows from

the facts that (x∗
n(f))n∈N ∈ c0(N ) and (f∗(xn))n∈N ∈ �∞(N ). �

The machinery developed above will permit us to obtain estimates for democracy
functions of basic sequences in a quasi-Banach space that embeds in �1 via a basis
that is far from the canonical �1-basis in a sense that will be made clear in place. We
divide these estimates in two, depending on whether they involve lower or upper
democracy functions.
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3.1. Lower estimates for democracy functions

A subtle, yet important, obstruction to apply Lemma 3.5 to basic sequences Y in
a quasi-Banach space X is that the coordinate functionals associated with Y are not
defined on X but on the closed subspace of X generated by Y, denoted by Y. If X

is locally convex, the Hahn-Banach theorem comes to our aid: any bounded linear
functional on Y extends to a bounded linear functional on X without increasing
its norm. However, there are important spaces, such as Hardy spaces, that are not
locally convex and so this extension cannot be taken for granted. This situation
motivated Day [14] to define the Hahn-Banach Extension Property (HBEP for
short). We say that Y has the HBEP in X if there is a constant C such that for
every f∗ ∈ Y

∗ there is g∗ ∈ X
∗ such that g∗|Y = f∗ and ‖g∗‖ � C ‖f∗‖. Needless

to say, X has the HBEP in X. For the purposes of this paper it suffices to keep in
mind that any complemented subspace of a quasi-Banach space X has the HBEP
in X. We say that the basic sequence Y has the HBEP in X if Y does.

The results in this section rely on the following lemma.

Lemma 3.7. Let X be a quasi-Banach space with a basis X = (xn)n∈N . Suppose
that X embeds in an L-convex sequence space B via X and that the unit vector
system of B is strongly absolute. Then, for every UCC basic sequence Y = (yi)i∈M
with the HBEP in X there is a constant c such that

ϕl[Y, X](m) � ϕl[EN , B](cm�), m ∈ N.

Proof. Choose for each i ∈ M an extension z∗
i of the coordinate functional y∗

i in
such a way that a = supi∈M ‖yi‖ ‖z∗

i ‖ < ∞, and pick K and δ as in Lemma 3.5.
For each i ∈ M, let fi ∈ F

N be given by

fi = (z∗
i (xn)x∗

n(yi))n∈N .

Notice that for each A ⊆ M finite, maxi∈A |fi| � δ on the set

ΩA = {n ∈ N : |z∗
i (xn)x∗

n(yi)| � δ for some i ∈ A}.

Fix m ∈ N. Let A ⊆ M be a finite set with |A| � m. Using Lemma 2.4 we obtain

‖1A[Y, X]‖ ≈ Aveεi=±1

∥∥∥∥∥∑
i∈A

εi yi

∥∥∥∥∥
� Aveεi=±1

∥∥∥∥∥∑
i∈A

εi F(yi)

∥∥∥∥∥
B
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�

∥∥∥∥∥∥
(∑

i∈A

|F(yi)|
2

)1/2
∥∥∥∥∥∥

B

�

∥∥∥∥∥∥
(∑

i∈A

|fi|2
)1/2

∥∥∥∥∥∥
B

�
∥∥∥∥max

i∈A
|fi|
∥∥∥∥

B

� ‖1ΩA
[EN , B]‖ .

Now the statement follows since |ΩA| � m/K�. �

Theorem 3.8. Let X be a quasi-Banach space with a strongly absolute semi-
normalized unconditional basis X which induces an L-convex lattice structure on
X. Suppose that Y is a UCC basic sequence with the HBEP in X. Then there is a
constant c > 0 such that

ϕl[Y, X](m) � ϕl[X , X](cm�), m ∈ N.

Proof. Just apply Lemma 3.7 with B the sequence space induced by the semi-
normalized basis X . �

Theorem 3.9. Let X be a quasi-Banach space with a truncation quasi-greedy basis
X . Let s = (sm)∞m=1 be a non-decreasing doubling sequence of positive scalars such
that ϕl[X , X] � s and

∞∑
m=1

1
sm

< ∞.

Suppose that Y is a UCC basic sequence with the HBEP in X. Then

ϕl[Y, X](m) � sm, m ∈ N.

Proof. By Theorem 3.3, Theorem 2.6, and Lemma 2.7 we can apply Lemma 3.7
with B = d1,∞(w), where w is the weight with primitive weight s. �

Corollary 3.10. Let X be a squeeze-symmetric basis of a quasi-Banach space X.
Suppose that

∞∑
m=1

1
ϕu[X , X](m)

< ∞.

Let Y be a UCC basic sequence with the HBEP in X. Then

ϕl[Y, X] � ϕu[X , X] ≈ ϕl[X , X].

Proof. Notice that s := ϕu[X , X] is doubling (see [5, §8]) and that, using democ-
racy, ϕl[X , X] � s. Hence, we can apply Theorem 3.9. �

https://doi.org/10.1017/prm.2023.42 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.42


922 F. Albiac, J. L. Ansorena and G. Bello

3.2. Upper estimates for democracy functions

Our results here heavily depend on the complementability of the closed subspaces
of X generated by the basic sequences we tackle. A basic sequence in X that spans
a complemented subspace is said to be a complemented basic sequence of X.

Lemma 3.11. Suppose that a quasi-Banach space X embeds via a basis X =
(xn)n∈N in a sequence space B whose unit vector system is strongly absolute. Let
Y = (yi)i∈M be a complemented basic sequence of X. If Y is truncation quasi-greedy
then

ϕu[Y, X] � ϕu[X , X].

Proof. Let P : X → Y be a bounded linear projection, where Y is the closed subspace
of X generated by Y. Put

z∗
i = y∗

i ◦ P, i ∈ I,

where (y∗
i )i∈M in Y

∗ are the coordinate functionals of Y. We have z∗
i (yi) = y∗

i (yi)
and ‖z∗

i ‖ ‖yi‖ � ‖P‖ ‖y∗
i ‖ ‖yi‖ for every i ∈ I. Hence, by Lemma 3.5, there are

K ∈ N and δ > 0 such that, if we put

Ωi = {n ∈ N : |z∗
i (xn)x∗

n(yi)| � δ}, i ∈ M,

then |A| � K |∪i∈AΩi| for all A ⊆ M finite. Moreover, by Lemma 3.6, |Ωi| < ∞
for all i ∈ M. Thus, by Theorem 2.9, there are a partition (Mj)K

j=1 of M and
one-to-one maps νj : Mj → N such that∣∣∣z∗

i (xνj(i))x∗
νj(i)

(yi)
∣∣∣ � δ, 1 � j � K, i ∈ Mj .

Pick m ∈ N, and let A ⊆ M be such that |A| � m. Put Aj = A ∩Mj for j = 1,
. . . , K. Set also

ai,n = |x∗
n(yi)| sign(z∗

i (xn)), i ∈ M, n ∈ N .

For each l ∈ Aj we have

y∗
l

Ñ
P

Ñ∑
i∈Aj

al,νj(i)xνj(i)

éé
=
∑
i∈Aj

∣∣∣z∗
l (xνj(i))x∗

νj(i)
(yl)

∣∣∣
�
∣∣∣z∗

l (xνj(l))x∗
νj(l)

(yl)
∣∣∣

� δ.

Consequently, if Cu is as in (2.3) and Cr is the truncation quasi-greedy constant of
Y (see (2.2)), we have

∥∥1Aj
[Y, Y]

∥∥ � CuCr

δ

∥∥∥∥∥∥P
Ñ∑

i∈Aj

εl,νj(i)xνj(i)

é∥∥∥∥∥∥ , j = 1, . . . , K.
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If we put a = supn∈N ‖x∗
n‖, b = supi∈M ‖yi‖, and let κ be the optimal constant

such that ∥∥∥∥∥
K∑

j=1

yj

∥∥∥∥∥ � κ
K∑

j=1

‖yj‖ , yj ∈ Y,

and Cs be as in (2.4), we obtain

‖1A[Y, Y]‖ =

∥∥∥∥∥
K∑

j=1

1Aj
[Y, Y]

∥∥∥∥∥
� κ

K∑
j=1

∥∥1Aj
[Y, Y]

∥∥
� κK

CuCr

δ
‖P‖ abCsϕu[X , X](m). �

Theorem 3.12. Let X be a quasi-Banach space with a basis X . Assume that:

(a) Either X is unconditional and strongly absolute, or

(b) there is a non-decreasing doubling sequence s = (sm)∞m=1 such that ϕl[X , X] �
s and

∞∑
m=1

1
sm

< ∞.

Suppose that Y is a complemented truncation quasi-greedy basic sequence of X. Then

ϕu[Y, X] � ϕu[X , X].

Proof. If (a) holds, we let B be the sequence space induced by the semi-normalized
basis X . If (b) holds, we take B = d1,∞(w), where w is the weight with primitive
weight s, and we appeal to Theorem 3.3 to claim that the unit vector system of B

is strongly absolute. This way, in both cases an application of Lemma 3.11 yields
the desired result. �

4. Applications to quasi-greedy bases in Hardy spaces

We are now in a position to apply the results of the previous section to the case
when X is the Hardy space Hp(D) for 0 < p < 1. Our main result will be a ready
consequence of the following theorem.

Theorem 4.1. Let X be a quasi-Banach space with a truncation quasi-greedy basis
X such that ϕl[X , X] is doubling and

∞∑
m=1

1
ϕl[X , X](m)

< ∞.

Suppose that Y is a complemented truncation quasi-greedy basic sequence of X. Then

ϕl[X , X] � ϕl[Y, X] � ϕu[Y, X] � ϕu[X , X].
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Proof. Just combine Theorem 3.9 with Theorem 3.12. �

Corollary 4.2. Let X be a squeeze-symmetric basis of a quasi-Banach space X.
Suppose that

∞∑
m=1

1
ϕu[X , X](m)

< ∞.

Let Y be a complemented truncation quasi-greedy basis of X. Then Y is democratic,
and

ϕl[X , X] ≈ ϕl[Y, X] ≈ ϕu[Y, X] ≈ ϕu[X , X].

Proof. Since ϕl[X , X] ≈ ϕu[X , X], ϕl[X , X] is doubling, and

∞∑
m=1

1
ϕl[X , X](m)

< ∞.

Thus, the result follows from Theorem 4.1. �

Corollary 4.3. Let 0 < p < 1. If Y is a truncation quasi-greedy basis of a com-
plemented subspace of Hp(D) then Y is democratic with ϕu[Y,Hp(D)](m) ≈ m1/p

for m ∈ N. In particular, all quasi-greedy bases of Hp(D) are almost greedy.

Proof. The basis H of Hp(D) constructed in [40] is unconditional (hence truncation
quasi-greedy) and democratic with

ϕl[H,Hp(D)](m) ≈ m1/p ≈ ϕu[H,Hp(D)](m), m ∈ N,

(see [30]). Now our claim follows from Theorem 4.2. �

We note that for d > 1 the canonical unconditional basis Hd of the Hardy space
Hp(Dd), constructed from the canonical unconditional basis H of Hp(D) by means
of tensor products, inherits the unconditionality from H but not its democracy.
Indeed, for every d ∈ N we have

ϕu[Hd,Hp(Dd)](m) ≈ m1/p, m ∈ N,

whereas

ϕl[Hd,Hp(Dd)](m) ≈ hm := m1/p(1 + log m)(d−1)(1/2−1/p), m ∈ N, (4.1)

(see [38, §4] and [42, §4]).
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Theorem 4.4. Let X be a quasi-Banach space with a truncation quasi-greedy basis
X . Suppose that ϕl[X , X] is doubling with

∞∑
m=1

1
ϕl[X , X](m)

< ∞.

If Y is a truncation quasi-greedy basis of X then

ϕu[Y, X] ≈ ϕu[X , X].

Moreover, if ϕl[Y, X] is doubling then

ϕl[Y, X] ≈ ϕl[X , X].

Proof. Apply Theorem 4.1 to obtain the estimates given there. Using Theorem
3.12 with s = ϕl[X , X] and the roles of X and Y swapped, we deduce the equiva-
lence between the upper democracy functions. If ϕl[Y, X] is doubling, we can apply
Theorem 3.9 with s = ϕl[Y, X] and the roles of X and Y swapped. This gives the
equivalence between the lower democracy functions. �

Theorem 4.5. Let X be a quasi-Banach space with a truncation quasi-greedy basis
X . Suppose that ϕl[X , X] is doubling with

∞∑
m=1

1
ϕl[X , X](m)

< ∞.

If X is not democratic then X has no squeeze-symmetric bases.

Proof. Assume by contradiction that X has a squeeze-symmetric basis Y. Then the
function ϕl[Y, X] ≈ ϕu[Y, X] is doubling. By Theorem 4.4 we have ϕu[Y, X] ≈
ϕu[X , X] and ϕl[Y, X] ≈ ϕl[X , X], which leads to the absurdity ϕl[X , X] ≈
ϕu[X , X]. �

Corollary 4.6. Let 0 < p < 1 and d ∈ N. If d � 2 the space Hp(Dd) has no
squeeze-symmetric bases. In particular, Hp(Dd) has no almost greedy bases.

Proof. Let h = (hm)∞m=1 be as in (4.1). Since h is doubling and non-equivalent to
(m1/p)∞m=1, the result follows from Theorem 4.5. �

We close this section with a quantitative estimate for the performance of the
thresholding greedy algorithm implemented in Hardy spaces. To put this in context,
we recall that in order to analyse the efficiency of the greedy algorithm with respect
to a basis X of a quasi-Banach space X, it is customary to consider, for each m ∈ N,
the smallest constant C � 1 such that

‖f − Gm(f)‖ � C ‖f − z‖

for all f ∈ X and all m-term linear combinations z of vectors from X . This constant
is called the mth Lebesgue constant, and it is denoted by Lm[X , X]. The growth
of the Lebesgue constants of bases in Banach spaces has been studied in [11, 21].
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We point out that the relation between the Lebesgue constants, the conditionality
parameters, and the democracy deficiency parameters established in [11] still holds
in the non-locally convex setting. To be precise, if we put

km[X , X] = sup
|A|�m

‖SA[X , X]‖ , m ∈ N,

and

μm[X , X] = sup
|A|=|B|�m

‖1A[X , X]‖
‖1B [X , X]‖ , m ∈ N

then for any basis X of a quasi-Banach space X we have

Lm[X , X] ≈ max{km[X , X],μm[X , X]}, m ∈ N. (4.2)

Moreover, if X is UCC, then

μm[X , X] ≈ sup
l�m

ϕu[X , X](l)
ϕl[X , X](l)

, m ∈ N, (4.3)

(see [4, §1]).

Corollary 4.7. Let 0 < p < 1 and d ∈ N. Suppose X is a truncation quasi-greedy
basis of a complemented subspace of Hp(Dd). Then for m ∈ N we have

m1/p(1 + log m)−α � ϕl[X ,Hp(Dd)](m) � ϕu[X ,Hp(Dd)](m) � m1/p,

where α = (d − 1)(1/2 − 1/p). Consequently,

μm[X ,Hp(Dd)] � (1 + log m)α, m ∈ N.

Proof. Just combine Theorem 4.1 with equations (4.1) and (4.3). �

Corollary 4.8. Let 0 < p � 1 and d ∈ N. Suppose that X is a truncation quasi-
greedy basis of a complemented subspace of Hp(Dd). Then

Lm[X ,Hp(Dd)] � (1 + log m)α, m ∈ N,

where α = max{1/p, (d − 1)(1/2 − 1/p)}.

Proof. Combine (4.2), Corollary 4.7, and [6, Theorem 5.1]. �

5. Further applications

Apart from the spaces Hp(D) and �p for 0 < p < 1, Corollary 4.2 also applies to
Fefferman–Stein’s real Hardy spaces Hp(Rd) for d ∈ N. More generally, applying
Corollary 4.2 with X a suitable wavelet basis gives that, if 0 < p < 1, 0 < p �
q � ∞, s ∈ R and d ∈ N, then all quasi-greedy bases of the homogeneous and the
inhomogeneous Triebel–Lizorkin spaces F̊ s

p,q(R
d) and F s

p,q(R
d) and their comple-

mented subspaces are democratic, with fundamental function of the same order as
(m1/p)∞m=1 (see [5, §11.3]).
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Corollary 4.2 also applies to the p-convexified Tsirelson space T (p), 0 < p < 1.
The fundamental function of the unit vector system of the Lorentz sequence

spaces �p,q, 0 < q � ∞, is equivalent to (m1/p)∞m=1. We infer from Corollary 4.2
that all quasi-greedy bases of �p,q (we take its separable part if q = ∞) is formed
by democratic with fundamental function equivalent to (m1/p)∞m=1.

An important class of sequence space whose unit vector system is not democratic
is formed by mixed-norm sequence spaces

�p ⊕ �q, �p(�q), �q(�p),

( ∞⊕
n=1

�n
q

)
�p

,

( ∞⊕
n=1

�n
p

)
�q

, 0 < q < p. (5.1)

The lower democracy function of all these spaces is (m1/p)∞m=1, whereas their upper
lower democracy function is (m1/q)∞m=1. In the case when p < 1, we apply Theorem
4.5 to obtain that no space from the list in (5.1) has an almost greedy basis. This
partially solves [5, Problem 13.8].
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