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1. Introduction. Let F(z) be a normalized eigenform of weight κ. In this case
F(z) has the following Fourier series expansion

F(z) =
∞∑

m=1

c(m)e2πimz, c(1) = 1.

Then the function

ϕ(s; F) =
∞∑

m=1

c(m)
ms

, s = σ + it,

is called the zeta – function attached to the cusp form F(z). The Dirichlet series for
ϕ(s; F) converges absolutely in the half-plane σ > κ + 1

2 and defines there a holomorphic
function. It is well known that ϕ(s; F) is analytically continuable to an entire function.
Moreover, for σ > κ + 1

2 , ϕ(s; F) has the Euler product expansion over primes

ϕ(s; F) =
∏

p

(
1 − α( p)

ps

)−1 (
1 − β( p)

ps

)−1

with α( p) + β( p) = c( p), and satisfies the functional equation

(2π )−s�(s)ϕ(s; F) = (−1)κ/2(2π )s−κ�(κ − s)ϕ(κ − s; F).

By Deligne’s estimates [2]

|α( p)| ≤ p
κ−1

2 , |β( p)| ≤ p
κ−1

2 . (1)

Denote by � the complex plane, and let D = {s ∈ � : κ
2 < σ < κ + 1

2 }. In [8] the
universality in the Voronin sense of the function ϕ(s; F) was obtained. Let K be a
compact subset of the strip D with connected complement, and let f (s) be a non-
vanishing continuous on K function which is analytic in the interior of K . Then, for
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every ε > 0,

lim inf
T→∞

νT

(
sup
s∈K

|ϕ(s + iτ ; F) − f (s)| < ε

)
> 0.

Here, for T > 0,

νT (. . .) = 1
T

meas{τ ∈ [0; T ] : . . .},

where meas{A} stands for the Lebesgue measure of the set A ⊆ �, and in place of dots
a condition satisfied by τ is to be written.

The universality is one of remarkable properties of zeta-functions. For the
Riemann zeta-function this property was discovered by S. M.Voronin [9]. Later many
mathematicians, among them A. Reich, S. M. Gonek, B. Bagchi, K. Matsumoto H.
Mishou, R. Garunkštis, J. Steuding, W. Schwarz, R. Šleževičienė, H. Bauer, the author
and others, generalized and improved the Voronin theorem for other classical zeta-
functions and some classes of Dirichlet series. By the Linnik-Ibragimov conjecture,
all functions in some half-plane defined by absolutely convergent Dirichlet series,
analytically continuable to the left of this half-plane and satisfying some natural growth
conditions are universal in the above sense.

The universality can be applied to study some analytical properties of zeta-
functions, for example, the functional independence and zero-distribution. The
universality property also can be used for the evaluation of complicated integrals in
quantum mechanics, and in problems related to the growth order of analytic functions.

Let K and f (s) be as above, and let K1 be any compact subset of D included in
the interior of K . Then a simple application of the integral Cauchy formula shows
that

lim inf
T→∞

νT

(
sup
s∈K1

|ϕ′(s + iτ ; F) − f ′(s)| < ε

)
> 0.

Our aim is to obtain the universality of ϕ′(z; F) and ϕ′
ϕ

(s; F) in the same form as for
ϕ(s; F), and to apply this to zero-distribution of ϕ′(s; F).

THEOREM 1. Let K be a compact subset of the strip D with connected complement,
and let f (s) be a function continuous on K which is analytic in the interior of K. Then, for
every ε > 0,

lim inf
T→∞

νT

(
sup
s∈K

|ϕ′(s + iτ ; F) − f (s)| < ε

)
> 0.

THEOREM 2. Let K and f (s) be the same as in Theorem 1. Then, for every, ε > 0,

lim inf
T→∞

νT

(
sup
s∈K

∣∣∣∣ϕ′

ϕ
(s + iτ ; F) − f (s)

∣∣∣∣ < ε

)
> 0.

THEOREM 3. For every σ1, σ2,
κ
2 < σ1 < σ2 < κ + 1

2 , there exists a constant c =
c(σ1, σ2) > 0 such that, for sufficiently large T, the function ϕ′(s; F) has more than
cT zeros in the rectangle

σ1 < σ < σ2, 0 < t < T.
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Theorems 2 and 3 support the Linnik-Ibragimov conjecture. On the other hand,
since ϕ′(s; F) and ϕ′

ϕ
(s; F) have no the Euler product over primes, the approximated

function in these theorems is not necessarily non-vanishing.
Note that similar results are also valid for higher derivatives of the function ϕ(s; F).

2. A limit theorem for ϕ′(s; F). To obtain the universality of the function ϕ′(s; F)
we need a limit theorem in the sense of the weak convergence of probability measures
in the space of analytic functions. Let G be a region in �. Denote by H(G) the space
of analytic on G functions equipped with the topology of uniform convergence on
compacta. Let, for V > 0, DV = {s ∈ � : κ

2 < σ < κ + 1
2 , |t| < V}. Denote by B(S) the

class of Borel sets of the space S, and define the probability measure

PT (A) = νT (ϕ′(s + iτ ; F) ∈ A), A ∈ B(H(DV )).

We shall obtain a limit theorem with explicitly given limit measure for the measure PT

as T → ∞.
Let γ = {s ∈ � : |s| = 1} be the unit circle on the complex plane, and

� =
∏

p

γp,

where γp = γ for each prime p. With product topology and pointwise multiplication the
infinite – dimensional torus � is a compact topological Abelian group. Therefore, on
(�,B(�)) the probability Haar measure mH exists, and this leads to a probability space
(�,B(�), mH). Denote by ω( p) the projection of ω ∈ � to the coordinate space γp,
and on the probability space (�,B(�), mH) define an H(DV )-valued random element
ϕ′(s, ω; F) by the formula

ϕ′(s, ω; F) =
∏

p

(
1 − α( p)ω( p)

ps

)−1(
1 − β( p)ω( p)

ps

)−1

×
(

−
∑

p

α( p)ω( p)logp
ps

(
1 − α( p)ω( p)

ps

)−1

−
∑

p

β( p)ω( p)logp
ps

(
1 − β( p)ω( p)

ps

)−1
)

.

LEMMA 4. The probability measure PT weakly converges to the distribution of the
random element ϕ′(s, ω; F) as T → ∞.

Proof. We shall use a limit theorem in the space of analytic functions for the
function ϕ(s; F). Such a theorem in the space H(D̂), where D̂ = {s ∈ � : σ > κ

2 }, was
proved in [3]. However, we consider the space H(DV ), therefore we will apply Lemma 1
from [8]. Define on the probability space (�,B(�), mH) an H(DV )-valued random
element ϕ(s, ω; F) by the formula

ϕ(s, ω; F) =
∏

p

(
1 − α( p)ω( p)

ps

)−1(
1 − β( p)ω( p)

ps

)−1

.
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Then in [8] it was obtained that the probability measure

QT (A) = νT (ϕ(s + iτ ; F) ∈ A), A ∈ B(H(DV )),

converges weakly to the distribution of the random element ϕ(s, ω; F) as T → ∞.
The integral Cauchy formula shows that the function h : H(DV ) → H(DV ) defined

by the formula h( f (s)) = f ′(s), f (s) ∈ H(DV ), is continuous.
Let S and S1 be two metric spaces, and let g : S → S1 be a measurable function.

Then every probability measure P on (S,B(S)) induces on (S1,B(S1)) the unique
probability measure Pg−1 defined by the equality Pg−1(A) = P(g−1A), A ∈ B(S1). A
particular case of Theorem 5.1 of [1] asserts that if g is a continuous function, Pn and
P are probability measures on (S,B(S)), and Pn weakly converges to P as n → ∞, then
Png−1 also weakly converges to Pg−1 as n → ∞.

Taking into account the later remark, the continuity of the function h and the
weak convergence of the measure QT , we obtain the assertion of the lemma.

3. A limit theorem for ϕ′
ϕ

(s; F). Let �∞ be the Riemann sphere with spheric metric
d defined by the formula

d(s1, s2) = 2|s1 − s2|√
1 + |s1|2

√
1 + |s2|2

, d(s,∞) = 2√
1 + |s|2

, d(∞,∞) = 0,

s, s1, s2 ∈ �. Denote by M(G) the space of meromorphic on G functions g : G →
(�∞, d) equipped with the topology of uniform convergence on compacta. In this
topology, a sequence gn(s) ∈ M(G) converges to g(s) ∈ M(G) if

d(gn(s), g(s)) → 0, n → ∞,

uniformly on compact subsets of G.
On the probability space (�,B(�), mH) define an H(DV )-valued random element

ϕ′
ϕ

(s, ω; F) by

ϕ′

ϕ
(s, ω; F) = −

∑
p

α( p)ω( p)log p
ps

(
1 − α( p)ω( p)

ps

)−1

−
∑

p

β( p)ω( p)logp
ps

(
1 − β( p)ω( p)

ps

)−1

,

and let

QT (A) = νT

(
ϕ′

ϕ
(s + iτ ; F) ∈ A

)
, A ∈ B(M(DV )).

LEMMA 5. The probability measure QT weakly converges to the distribution of the
random element ϕ′

ϕ
(s, ω; F) as T → ∞.

Proof. Let

�(s, ω; F) = (ϕ′(s, ω; F), ϕ(s, ω; F))
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Then by standard method (see, for example, [7], [6]), using Lemma 1 and Lemma 1
of [8], it can be proved that the probability measure

νT ((ϕ′(s + iτ ), ϕ(s + iτ )) ∈ A), A ∈ B(H2(DV )), (2)

where H2(DV ) = H(DV ) × H(DV ), weakly converges to the distribution of the random
element �(s, ω; F) as T → ∞. Since

d
(

1
g1

,
1
g2

)
= d(g1, g2),

the function h : H2(DV ) → M(DV ) given by the formula h(g1, g2) = g1
g2

, g1, g2 ∈
H(DV ), is continuous, the lemma follows from Theorem 5.1 of [1] and the weak
convergence of the measure (2).

4. The support of the random element ϕ′(s, ω; F). Let S be a separable metric
space, and let P be a probability measure on (S,B(S)). We recall that a minimal closed
set SP ⊆ S such that P(SP) = 1 is called a support of P. The set SP consists of all x ∈ S
such that for every neighbourhood G of x the inequality P(G) > 0 is satisfied.

Let X be a S-valued random element defined on a certain probability space
(�̂,B(�̂), �). Then the support of the distribution �(X ∈ A), A ∈ B(S), of X is called
a support of the random element X .

To prove the universality of ϕ′(s, F) we need the support of the random element
ϕ′(s, ω; F).

LEMMA 6. The support of the random element ϕ′(s, ω; F) is the whole of H(DV ).

Proof. Let

S = {g ∈ H(DV ) : g(s) �= 0 or g(s) ≡ 0}.
Then in [8] it is proved that the support of the random element ϕ(s, ω; F) is the
set S. The function h : S → H(DV ), given by the formula h(g(s)) = g′(s), g(s) ∈ S, is
continuous. Therefore, for any open set G ⊂ H(DV ), we have that h−1G is an open set
of S. Moreover, we note that the set h−1G is non empty. Note that, by Lemma 1.7.1 of
[5], there exists a sequence {Kn} of compact subsets of DV such that

DV =
∞⋃

n=1

Kn,

Kn ⊂ Kn+1 and, if K is compact and K ⊂ DV , then K ⊆ Kn, for some n. Clearly, the sets
Kn can be chosen with connected complement. For example, we can take the rectangles.
Define, for f, g ∈ H(DV ),

ρ( f, g) =
∞∑

n=1

2−n ρn( f, g)
1 + ρn( f, g)

,

where

ρn( f, g) = sup
s∈Kn

| f (s) − g(s)|.
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Then, clearly, ρ is a metric in H(DV ) that induces its topology. Hence it follows that
g approximates f with a given accuracy in the sense of the topology of H(DV ) if
g approximates f with a suitable accuracy uniformly on Kn for sufficiently large n.
Therefore, it suffices to consider an approximation on compact subsets.

Let f ∈ h−1G; then h( f ) ∈ G. Let K be a compact subset of DV with connected
complement. Then by the Mergelyan theorem (see, for example, [10]) there exists a
polynomial p(s) which approximates h( f (s)) with a given accuracy uniformly on K .
Hence we may assume that p(s) ∈ G. Therefore, we deduce that there exists a polynomial
q(s) ∈ h−1{p} and q(s) �= 0 on DV . This shows that h−1G is non empty.

Now we have that

mH(ω ∈ � : (ϕ(s, ω; F))′ ∈ G) = mH(ω ∈ � : ϕ(s, ω; F) ∈ h−1G) > 0,

and the lemma is proved.

5. The support of the random element ϕ′
ϕ

(s, ω; F). In this section we shall prove
the following statement.

LEMMA 7. The support of the random element ϕ′
ϕ

(s, ω; F) is the whole of H(DV ).

Proof. We shall give a direct proof of the lemma. By the definition, {ω( p)} is a
sequence of independent random variables. Therefore, {hp(s, ω)}, where

hp(s, ω) = −α( p)ω( p)logp
ps

(
1 − α( p)ω( p)

ps

)−1

− β( p)ω( p)logp
ps

(
1 − β( p)ω( p)

ps

)−1

,

is a sequence of independent H(DV )-valued random elements. The support of each
ω( p) is the unit circle γ . Therefore, the support of random element hp(s, ω) is the set

{g ∈ H(DV ) : g(s) = hp(s, a) with a ∈ γ }.

Hence by Theorem 1.7.10 of [5] the support of the random element ϕ′
ϕ

(s, ω; F) is the
closure of the set of all convergent series∑

p

hp(s, ap) (3)

with ap ∈ γ . For the proof of the lemma it remains to check that the latter set is dense
in H(DV ). For this we shall apply Theorem 6.3.10 of [5].

Let, for every fixed p0,

ĥp(s, 1) =
{

hp(s, 1) if p > p0,

0 if p ≤ p0.

First we shall prove that the set of all convergent series∑
p

âpĥp(s, 1), âp ∈ γ, (4)
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is dense in H(DV ). Clearly,

hp(s, 1) = −c( p)logp
ps

+ rp(s),

where, in view of estimates (1), the series∑
p

rp(s)

converges uniformly on compact subsets of D̂ = {s ∈ � : σ > κ
2 }. Since

∑
p

c2( p)log2p
p2σ

< ∞

for σ > κ
2 , by Lemma 6.5.3 of [5] there exists a sequence {ãp : ãp ∈ γ } such that the

series ∑
p

c( p)ãplogp
ps

converges for s ∈ D̂. Therefore, by the well-known property of Dirichlet series it
converges uniformly on compact subsets of D̂. Thus, there exists a sequence {̃ap :
ãp ∈ γ } such that the series ∑

p

ãp̂hp(s, 1)

converges in H(DV ). Let gp(s) = ãp̂hp(s, 1). Obviously, to prove the denseness of all
convergent series (4) it suffices to show that the set of all convergent series∑

p

apgp(s), ap ∈ γ, (5)

is dense in H(DV ). For this we shall use Theorem 6.3.10 of [5]. We note that the series∑
p

gp(s)

converges in H(DV ), and, for any compact K ⊂ D̂,∑
p

sup
s∈K

|gp(s)|2 < ∞.

Therefore, it remains to verify the first hypothesis of Theorem 6.3.10 of [5].
Let µ be a complex-valued measure on (�,B(�)) with compact support contained

in DV such that

∑
p

∣∣∣∣∣
∫
�

gp(s) dµ(s)

∣∣∣∣∣ < ∞. (6)
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Define

lp(s) = −c( p)̃aplogp
ps

.

Then we have that ∑
p

sup
s∈K

|gp(s) − lp(s)| < ∞,

for every compact K ⊂ D̂. This and (6) yield

∑
p

∣∣∣∣∣∣
∫
�

lp(s) dµ(s)

∣∣∣∣∣∣ < ∞,

or

∑
p

|c( p)|logp

∣∣∣∣∣∣
∫
�

p−s dµ(s)

∣∣∣∣∣∣ < ∞.

Hence, clearly,

∑
p

|c( p)|
∣∣∣∣∣∣
∫
�

p−s dµ(s)

∣∣∣∣∣∣ < ∞.

It was proved in [8] that the latter condition implies the relation∫
�

sm dµ(s) = 0, (m = 0, 1, 2, . . .).

Consequently, the first hypothesis of Theorem 6.3.10 of [5] is also satisfied, and we
have that the set of all convergent series (5) is dense in H(DV ). As was noted above,
this gives the denseness of all convergent series (4).

Now let x0(s) ∈ H(DV ), K be a compact subset of DV and ε > 0. We fix p0 such
that

sup
s∈K

(
1 − 1

2κ/2

)−1 ∑
p>p0

(α2( p) + β2( p))logp
p2σ

<
ε

4
. (7)

Since the set of all convergent series (4) is dense in H(DV ), there exists a sequence
{âp : âp ∈ γ } such that

sup
s∈K

∣∣∣∣x0(s) − sup
p≤p0

hp(s, 1) − sup
p>p0

âphp(s, 1)

∣∣∣∣ <
ε

2
. (8)

Let

ap =
{

1 if p ≤ p0,

âp if p > p0.
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Then, taking into account (7) and (8), we find that

sup
s∈K

∣∣∣∣∣x0(s) −
∑

p

hp(s, ap)

∣∣∣∣∣ = sup
s∈K

∣∣∣∣∣x0(s) −
∑
p≤p0

hp(s, 1) − sup
p>p0

hp(s, âp)

∣∣∣∣∣
≤ sup

s∈K

∣∣∣∣∣x0(s) −
∑
p≤p0

hp(s, 1) − sup
p>p0

âphp(s, 1)

∣∣∣∣∣
+ sup

s∈K

∣∣∣∣∣∑
p>p0

âphp(s, 1) − sup
p>p0

hp(s, âp)

∣∣∣∣∣
<

ε

2
+ sup

s∈K
2
(

1 − 1
2κ/2

)−1 ∑
p>p0

(α2( p) + β2( p))logp
p2σ

< ε.

This shows the denseness of the set of all convergent series (3). Therefore, the closure
of this set is the whole of H(DV ), and the lemma is proved.

6. Proof of Theorems 1, 2 and 3. Proof of Theorem 1. Obviously, there exists
V > 0 such that K ⊂ DV . First we suppose that f (s) has analytic continuation to DV .
Denote by G the set of functions g ∈ H(DV ) such that

sup
s∈K

|g(s) − f (s)| < ε.

By Lemma 3 the function f (s) is contained in the support of the random element
ϕ′(s, ω; F). Since the set G is open, Lemma 1 and the properties of weak convergence
[1] and support yield

lim inf
T→∞

νT

(
sup
s∈K

|ϕ(s + iτ ; F) − f (s)| < ε

)
≥ mH(ω ∈ � : ϕ′(s, ω; F) ∈ G) > 0.

Now let f (s) be as in the statement of Theorem 1. By the Mergelyan theorem (see,
for example, [10]) there exists a polynomial pn(s) such that

sup
s∈K

| f (s) − pn(s)| <
ε

2
. (9)

From the first part of the proof we have that

lim inf
T→∞

νT

(
sup
s∈K

|ϕ(s + iτ ; F) − pn(s)| <
ε

2

)
> 0.

This and (9) prove the theorem.

Proof of Theorem 2. The proof is similar to that of Theorem 1 and uses Lemmas 2
and 4.

Proof of Theorem 3. Let

σ̂ = σ1 + σ2

2
, σ0 = max

(∣∣∣∣σ1 − 2κ + 1
4

∣∣∣∣, ∣∣∣∣σ2 − 2κ + 1
4

∣∣∣∣)
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96 A. LAURINČIKAS

and f (s) = s − σ̂ . Suppose that 0 < ε < σ2 − σ1
20 . Then, by Theorem 1, there exists a

constant c = c(σ1, σ2) > 0 such that for sufficiently large T

νT
(
max|s− 2κ+1

4 |≤σ0
|ϕ′(s + iτ ; F) − f (s)| < ε

)
> c. (10)

The circle |s − σ̂ | = σ2−σ1
2 is contained in the disc |s − 2κ+1

4 | ≤ σ̂ , therefore for σ

satisfying (10)

max|s−σ̂ |= σ2−σ1
2

|ϕ′(s + iτ ; F) − (s − σ̂ )| <
σ2 − σ1

20
.

This shows that the functions (s − σ̂ ) and ϕ′(s + iτ ; F) − (s − σ̂ ) in the disc |s − σ̂ | =
σ2−σ1

2 satisfy the hypotheses of the Rouché theorem. However, the function (s − σ̂ ) in
the interior of the disc |s − σ̂ | = σ2 − σ1

2 has precisely one zero, therefore by Rouché’s
theorem the function ϕ′(s + iτ ; F) also has in this disc one zero. Since the number of
such τ ∈ [0, T ] by (10) is greater than cT , the theorem is proved.
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