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We show how settling and phase change can combine to drive an instability, as a simple
model for the formation of mammatus clouds. Our idealised system consists of a layer
(an ‘anvil’) of air mixed with saturated water vapour and monodisperse water droplets,
sitting atop dry air. The water droplets in the anvil settle under gravity due to their finite
size, evaporating as they enter dry air and cooling the layer of air just below the anvil.
The colder air just below the anvil thus becomes denser than the dry air below it, forming
a density ‘overhang’, which is unstable. The strength of the instability depends on the
density difference between the density overhang and the dry ambient, and the depth of the
overhang. Using linear stability analysis and nonlinear simulations in one, two and three
dimensions, we study how the amplitude and depth of the density layer depend on the
initial conditions, finding that their variations can be explained in terms only of the size
of the droplets making up the liquid content of the anvil and by the total amount of liquid
water contained in the anvil. We find that the size of the water droplets is the controlling
factor in the structure of the clouds: mammatus-like lobes form for large droplet sizes;
and small droplet sizes lead to a ‘leaky’ instability resulting in a stringy cloud structure
resembling the newly designated asperitas.

Key words: buoyancy-driven instability, moist convection, nonlinear instability

1. Introduction

Mammatus clouds are a fascinating meteorological phenomenon. Deriving their name
from mamma, the Latin for ‘breast’, mammatus clouds are pendulous blobs, typically
found hanging underneath cumulonimbus anvils (a photograph is reproduced in figure 1
and a schematic shown in figure 2a). Their origin has been a mystery, and several

† Email address for correspondence: ravichandran@su.se
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899 A27-2 S. Ravichandran, E. Meiburg and R. Govindarajan

FIGURE 1. A photograph of mammatus clouds seen on 26 June 2012 in Regina, Saskatchewan,
Canada, following a severe storm warning and tornado watch. Taken by Craig Lindsay.
Reproduced from Wikipedia (Creative Commons Licence).

explanations, in the form of plausible physical arguments, have been suggested (listed in
the review by Schultz et al. (2006)). A promising explanation is the fallout of ice particles
or water droplets from the cumulus anvil into the subsaturated air below, suggested
first almost a hundred years ago (Troeger 1921, cited by Schultz et al. 2006), followed
by the sublimation/evaporation of these hydrometeors. This causes the layer of air just
below the cloud (the ‘sub-cloud layer’) to become denser than the dry air below it. This
density ‘overhang’ can then cause an instability, which can lead to the formation of
mammatus clouds (Kanak & Straka 2006). This mechanism, however, does not always lead
to mammatus clouds (Schultz et al. 2006). We analyse this proposed mechanism in detail
via linear stability analysis and nonlinear simulations, in order to clarify the conditions
under which mammatus-like lobes can form. We formulate a simplified description of
the problem in terms of only the amount of liquid water in the anvil, and the size of the
droplets making up the liquid water content, to provide an argument for why evaporative
cooling by itself does not necessarily result in mammatus-like lobes. We also find that the
size of the water droplets matters more than the total amount of liquid water.

The instability of a layer of fluid rendered unstable because of settling has been studied
by Yu, Hsu & Balachandar (2013, 2014) and also by Burns & Meiburg (2012, 2015).
The latter studied the instability of a layer of silt-laden fresh water atop a layer of salty
water. They characterised the instability that occurs in terms of the settling velocity and
the stability ratio, and found that for large settling velocities, the instability is ‘leaky’,
producing wisps of fluid that leak from the upper half. For small settling velocities, the
two halves of the fluid form ‘finger-like’ protrusions into each other. The settling velocity
thus decides whether the instability is of the Rayleigh–Taylor type (the leaky mode) or of
the double-diffusive type (the fingering mode).

We apply the idea of settling-driven instabilities to mammatus cloud formation, where
the settling component is the liquid/ice in the cumulonimbus anvil. The settling velocity
is the terminal velocity of the ice/water hydrometeors. The major difference between
this study and that of Burns & Meiburg (2012) is in the mechanism that causes the
instability. In Burns & Meiburg (2012) the mass of the settling sediment is sufficient to
cause a density overhang, whereas the total mass of the settling particles or droplets in
terrestrial atmospheric conditions is too low to cause a significant density overhang by
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FIGURE 2. (a) A schematic of a typical mammatus cloud forming under a cumulonimbus anvil.
(b,c) The idealisation of the red box in (a) at t = 0 (b) and t > 0 (c). The vertical direction is
along z. The horizontal direction(s) (x in two dimensions, x, y in three dimensions) are assumed
periodic. The upper half of the domain of depth δz0 has saturated vapour and liquid droplets
with an initial mixing ratio r0

l . The lower half is initially dry (i.e. has no vapour). Both halves are
at the same initial temperature T0. Other thermodynamic constants are defined in the text. The
liquid droplets that settle out of the anvil evaporate just under the anvil and cool the layer (in a
lighter shade of grey). Schematic profiles of base density at the initial and a later time are also
shown.

itself. The instability here is caused by the thermodynamics of evaporation/sublimation,
which cools the ambient temperature below the cumulus anvil, and increases air density
in that region. The necessary condition we find for our instability-driven mechanism
is in broad agreement with Kanak, Straka & Schultz (2008), who find from numerical
simulations that the evaporation/sublimation of water droplets is crucial to the formation
of mammatus clouds. Their study attempts to reproduce observations of mammatus clouds
from specific atmospheric observations, and their simulations are performed with different
scalars for liquid water and ice. We neglect the complexities of the different possible
condensed states of water, and focus instead on the fluid mechanics of settling-driven
instabilities.
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The aim of our work is thus to study the interactions between the settling of the liquid
field, the thermodynamics of phase change and the resulting buoyancy-driven flow. Since
our objective is to clarify the fluid mechanics of the problem, rather than to reproduce
specific observations, we ignore the complexities of the microphysics of freezing and work
instead with only one condensed phase (which we will henceforth call ‘liquid’). We use
linear stability analysis and simulations of the Boussinesq Navier–Stokes equations with
vapour/liquid phase change. Our aim and approach are thus different from the numerical
studies cited above. In § 2, we set up the problem and derive the non-dimensional equations
we solve. In § 3, we report results from linear stability analysis of density profiles obtained
by one-dimensional nonlinear evolution of the governing equations. In § 4, we describe the
numerical method for solving the full equations, and the results of the simulations. In § 5,
we discuss the results of §§ 3 and 4; compare the instability studied here with known fluid
dynamical instabilities without and with a settling component; and discuss the limitations
of the present approach to the study of mammatus clouds. We then conclude with some
thoughts about future work.

2. Problem set-up

We take the cumulonimbus ‘anvil’ as our starting point (see figure 2b). Away from the
updraught of cloudy fluid in the centre, there is a layer of cloud fluid, consisting of air
saturated with water vapour and containing water droplets/ice particles forming a given
liquid/ice density. The mammatus clouds of interest to us are ‘suspended’ under these
anvils.

Our idealisation of the cumulonimbus anvil before the formation of the mammatus lobes
is also shown (figure 2c). Our system consists of a layer of warm air that is saturated with
water vapour and contains liquid water, below which lies a layer of dry air of the same
temperature. For simplicity, we assume that the condensed phase in the cloud consists of
only liquid droplets (i.e. no ice particles). We do this with the knowledge that the latent
heat of vaporisation of water is about five times greater than the latent heat of fusion of
ice, and is therefore the more significant reason for the density overhang.

Humid air is lighter than dry air. On the other hand, liquid water ‘settles’ in air. The
amounts of liquid and vapour in air are given in terms of their mixing ratios r̃l and r̃v,
respectively. The tilde indicates that these quantities are unnormalised (see (2.9) below).
These are defined as

r̃i = ρi/ρd, (2.1)

where ρd is the density of the dry air component of the mixture and ‘i’ can be l or v
for liquid or vapour, respectively. In other words, ρd,v,l are the ‘partial densities’ of the
three components of the mixture. The net density of the fluid is the sum of these partial
densities:

ρ = ρd + ρv + ρl

= ρd (1 + r̃v + r̃l) . (2.2)

The above expression is exact. Further simplification is possible (see (2.6) below) if
r̃v,l � 1, which is true of atmospheric conditions.

We employ the Boussinesq Navier–Stokes equations with a constant ambient
temperature T0. The velocity field u is incompressible (∇ · u = 0). The liquid and vapour
mixing ratios, r̃v and r̃l, are advected with the fluid velocity, except that the liquid also
settles with a velocity ṽp. Temperature differences and vapour and liquid concentrations
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all contribute to the buoyancy, and thus to the flow driven by these buoyancy differences.
Under the conditions we have chosen, the contribution from temperature differences has
the greatest effect of these three. Note also that the background state, denoted by subscript
0, is assumed to be unchanging; in the atmosphere, this will not be the case, since, even in
the absence of wind, the instability discussed below will develop simultaneously with the
base density overhang shown in figure 2.

The buoyancy may be expressed in terms of the temperature and liquid and vapour
mixing ratios as follows. We write the density of dry air in terms of the density ρ0 of the
air outside the flow (assumed to contain no vapour). In the following, quantities ()d pertain
to dry air and ()v to water vapour. Thus, Rd is the gas constant for dry air and Rv the gas
constant for water vapour; Md is the molecular mass of dry air and Mw is the molecular
mass of water. We then have

pd + pv = p0, (2.3)

ρdRdT + ρdr̃vRvT = ρ0RdT0, (2.4)

ρdRd (1 + r̃v (1 + χ)) T = ρ0RdT0, (2.5)

where Rv = (1 + χ)Rd and χ + 1 = Md/Mw. We then have, assuming r̃v, r̃l � 1,

ρd = T0

T
ρ0 (1 − r̃v (1 + χ)) (2.6)

and

ρ

ρ0
= ρd

ρ0
(1 + r̃v + r̃l) = T0

T
(1 + r̃v + r̃l) (1 − r̃v (1 + χ)) = T0

T
(1 − χ r̃v + r̃l) . (2.7)

The buoyancy is proportional to the differences between the ambient density ρ0 and the
local density, and is given by

B = g
(

1 − ρ

ρ0

)
= g

(
1 − T0

T
(1 − χ r̃v + r̃l)

)
≈ g

(
T − T0

T0
+ χ r̃v − r̃l

)
, (2.8)

where we have used the fact that T/T0 ≈ 1 when this term multiplies r̃v or r̃l.
With this, the equations governing the motion, the temperature T and vapour and liquid

mixing ratios r̃v and r̃l are

∇ · u = 0,

Du
Dt

= −∇p
ρ0

+ gez

(
T − T0

T0
+ χ r̃v − r̃l

)
+ ν∇2u,

DT
Dt

= κ∇2T − Lv

Cp
E,

Dr̃v

Dt
= κv∇2r̃v + E,

Dr̃l

Dt
= ṽp

∂ r̃l

∂z
+ κl∇2r̃l − E,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

where D/Dt is the material derivative, κv, κl and κ are the diffusivities associated with
vapour, liquid and temperature, respectively, E is the rate of evaporation, Lv is the enthalpy
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of vaporisation and Cp is the specific heat at constant pressure. For the present work, we
take

ν = κ = κv and κl = 0. (2.10a,b)

For air, the Prandtl number Pr = ν/κ ≈ 0.7 and the Schmidt number for water vapour
Scv = ν/κv ≈ 0.66. We use Pr = Scv = 1 for simplicity. The diffusivity of the liquid
water component is zero (see § 4 for the numerical method used), since the droplets
that make up the liquid water content, being tens of micrometres in size, are too large
for Brownian diffusion. We also find, from simulations that are not reported here, that
similar results are obtained if the Schmidt number for the liquid Scl = ν/κl is set equal
to one. It is important to note that a Schmidt number of one for the liquid component
rules out ‘double’-diffusive instabilities, which are usually important in mixing-driven
evaporatively cooled instabilities (and were also identified as the cause of the fingering
instability in Burns & Meiburg (2012, 2015)), as the cause of mammatus lobe formation.

2.1. Non-dimensionalised equations and initial conditions
Since the flow is buoyancy-driven, the buoyancy velocity U = (gLΔT/T0)

1/2 is the
appropriate velocity scale, where L is a length scale given by the size of the mammatus
lobes. Together, these define the time scale T . Other relevant scales are the scale of
temperature variations ΔT (which gives θ = (T − T0)/ΔT) and the saturation mixing
ratio r0

s = r0
s (T0) at a base temperature T0. We write the non-dimensional equations as

follows:

Du
Dt

= −∇p + ez
(
θ + r0 (χrv − rl)

) + 1
Re

∇2u, (2.11)

Dθ

Dt
= 1

Re Pr
∇2θ − L1E, (2.12)

Drv

Dt
= 1

Re Scv

∇2rv + E, (2.13)

Drl

Dt
= vp

∂rl

∂z
+ 1

Re Scl
∇2rl − E. (2.14)

In the above, Re = UL/ν is the Reynolds number. The number r0 = r0
s T0/ΔT is a stability

ratio and governs the relative contributions of the water components and the temperature
difference to the buoyancy, and vp = ṽp/U is the non-dimensional settling velocity. The
evaporation rate E has also been non-dimensionalised with the inverse of the time scale T .
We choose a base temperature T0 = 273 K, which is a representative temperature at which
mammatus clouds are seen (see table 1 in Schultz et al. (2006)). For this base temperature,
r0 = 1.2285. The parameter L1 = (Lvr0

s )/(CpΔT) is the non-dimensional latent heat of
vaporisation. We point out again that we consider only liquid water droplets and not ice
particles. A condensed phase made entirely of ice would increase the latent heating by
about 15 % because of the additional enthalpy of fusion. We use the value for the enthalpy
of vaporisation of water of Lv = 2.5 × 106. The dimensional length scale and time scale
are chosen so as to make the non-dimensional vp = 1.0 for a0 = 50 μm. This fixes the
length scale at L ≈ 8 m. The time scale is then T = L/ṽp ≈ 14 s. For r0

l = 0.3, this makes
the non-dimensional τs ≈ 2.86 (see (2.22)).

For these values, along with the kinematic viscosity ν = 10−5 m2 s−1, the Reynolds
number Re = O(107). Since numerical simulations at such high Reynolds numbers are not
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Mammatus clouds 899 A27-7

feasible, we use an artificially low value of Re. The linear stability results (§ 3.2) across
varying Reynolds numbers suggest that this is reasonable. Note also that since we do all
our calculations in non-dimensional units, the only difference in simulations at a different
length scale will be the magnitude of the Reynolds number.

The expressions for the phase change rate E are model-dependent. We choose the
simplest non-equilibrium model (Shaw et al. 1998; Kumar, Schumacher & Shaw 2013)
given, in non-dimensional units, as

E = −H 1
τs

(
rv

rs
− 1

)
, (2.15)

where τs is the time scale for phase relaxation (in units of T ) and the function H is

H =
{

1 if the parcel is saturated, or if liquid is evaporating,

0 if the parcel is unsaturated.

The saturation vapour density rs is a strong function of temperature (see e.g. Bohren &
Albrecht 1998, chap. 5.3):

rs (T)

r0
s

= exp
[

Lv

Rv

(
1
T0

− 1
T

)]
. (2.16)

The equation can be simplified if we assume that deviations from the base temperature are
small. We then get rs/r0

s ≈ exp(L2θ), where

L2 = LvΔT
RvT2

0
. (2.17)

In two dimensions, simulations are done in a domain [−Lx/2, Lx/2] × [0, Lz]; in
three dimensions, in a domain [−Lx/2, Lx/2] × [−Ly/2, Ly/2] × [0, Lz]. At t = 0, the
horizontal interface separating the cloudy anvil from the dry air is at z = Lz/2. The
unperturbed system is given by

θ = 0,

u = 0,

rv =
{

1, z > Lz/2,

0, z < Lz/2,

rl =
{

r0
l + noise, Lz/2 + δz0 > z > Lz/2,

0 otherwise.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.18)

In the simulations in one dimension in § 3, we move to a coordinate frame z′= z − Lz/2 ⊂
[−Lz/2, Lz/2], with the interface at t = 0 at z′ = 0.

We perturb the system in two ways, results from which are presented in § 4. In the
first way, the interface remains horizontal, but we add noise externally to r0

l . Second, the
interface itself is perturbed sinusoidally with a wavenumber in the horizontal direction in
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899 A27-8 S. Ravichandran, E. Meiburg and R. Govindarajan

addition to the noise added to r0
l . Our simulation box is of height Lz, and the initial anvil

depth is δz0. The interface is therefore perturbed about z = Lz/2 with an amplitude ξ :

θ = 0,

u = 0,

rv =
{

1, z > Lz/2 + ξ cos (kx x) cos
(
ky y

)
,

0, z < Lz/2 + ξ cos (kx x) cos
(
ky y

)
,

rl =
{

r0
l + noise, Lz/2 + δz0 > z > Lz/2 + ξ cos(kx x) cos(ky y),

0 otherwise.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)

Therefore, the horizontal wavelengths at which the interface is perturbed are λx =
2π/kx and λy = 2π/ky and the number of wavelengths in the simulation box (along x ,
say) is Lx/λx = Lx kx/2π.

The quantities rl, τs and vp are functions of the number density n and size a0 of the
droplets making up the condensed phase, as explained below. Therefore, only two of these
three are independent parameters:

r0
l ∼ na3

0, (2.20)

ṽp = (2ρwa2
0g)/(9ρdν), (2.21)

τ̃s = Cρ0
s

4πna0
, (2.22)

where C is a dimensional constant with units of m s kg−1 (see e.g. Kumar et al. 2013). For
T0 = 273 K, C = 1.5 × 107 m s kg−1. As droplets settle out of the anvil and shrink, both
the settling velocity and τs change as a result of the decreasing droplet radius. We assume
that n is constant in time. This variation is taken into account in the two-dimensional (2-D)
and three-dimensional (3-D) simulations in § 4, but ignored in § 3 for simplicity. This does
not affect results significantly.

We note also that, in what follows, we report results as being for a (dimensional) droplet
size. What we mean is that vp and τs were calculated using this droplet size, and then
non-dimensionalised using the length and time scales of § 2.1.

3. Parameters, scaling arguments and linear stability analysis

As the droplets settle into the dry ambient in the lower half of our domain, they
evaporate, cooling the sub-cloud layer and making it denser than the dry air below it. This
causes an instability which we aim to characterise. The problem, even in our simplified
description, has several governing parameters. We list them in table 1.

Of these, the parameters L1, L2 and r0
s are functions of the absolute temperature T0.

Schultz et al. (2006) report that mammatus clouds are observed at temperatures ranging
from T0 = 273 K to T0 = 235 K, with a majority of observations around 273 K. We fix
T0 = 273 K.

As the liquid droplets settle out of the cloud anvil and into the sub-cloud air, the
quantities of interest in the dynamics are the depth h of the resulting evaporatively cooled
layer and the maximum density difference ρmax , or the amplitude of the density overhang
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L1, latent heating δz0, initial depth of cloudy layer
L2, Clausius–Clapeyron exponent τs, phase change time scale
r0

s , baseline saturation mixing ratio vp, settling velocity
Re, Reynolds number r0

l , liquid mixing ratio in the cloudy layer
Pr, Prandtl number
Scv = ν/κv , Schmidt number for the vapour
Scl = ν/κl, Schmidt number for the liquid

TABLE 1. (Non-dimensional) parameters in the problem.

in the layer:

h = h
(
a0, r0

l , δz0) , (3.1)

ρmax = ρmax

(
a0, r0

l , δz0) . (3.2)

In the above, the settling velocity of the liquid droplets is determined by their size a0. We
recall that vp(a0) and τs(a0, r0

l ) do not vary with time in this section. The total amount of
liquid available to be evaporated, which will determine the total cooling, is given by the
combination of δz0 and r0

l .
The functional relationships are obtained in this section using nonlinear simulations in

one space dimension (the vertical) and time. The resulting density overhang then forms
the base flow for our linear instability computations. For the discussion in this section we
move to the coordinate system z′ = z − Lz/2 with its origin at the lower interface between
the anvil and the dry air. Representative density profiles that result from this process are
shown in figure 3. It can be seen from these profiles that the depth of the density overhang
increases steeply with increasing droplet radius a0. On the other hand, the maximum
density difference between the sub-cloud layer and the anvil (i.e. the horizontal extent
of the spikes in the figure) increases only marginally with increasing liquid mixing ratio
r0

l . The variations are studied in § 3.1.

3.1. Scaling arguments
We now study how the depth and amplitude of the density overhang vary with the droplet
size and initial mixing ratio. We use the initial conditions of (2.19) with ξ = 0, and the
anvil depth δz0 = 1. (This value of δz0 is chosen so that all the liquid has evaporated in
these simulations in a short time.) The liquid then settles and evaporates in the z′ < 0
region. It is important to remember that this evaporation modifies the z′ < 0 region and
that this is a function of time.

3.1.1. Scaling of the depth of the density overhang
We first examine how the depth h of the density overhang (plotted by finding points at

which the net density is greater by a threshold (= 0.001) than the base state value of 1.0
after all the liquid has evaporated) varies with the initial liquid mixing ratio in the anvil
r0

l and the initial droplet radius a0. The results are shown in figure 4. These plots suggest
that for sufficiently large a0 and r0

l , the depth h scales as h ∼ r0
l (a0)

3.6 over a small range
of a0. Thus, in this range, the depth of the density overhang grows faster than the settling
velocity vp ∼ a2

0 as a0 increases. The time over which the droplets persist accounts for
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ρ

ρρ
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FIGURE 3. The evolution of the density profiles that result from different combinations of a0
and r0

l . These profiles are obtained from nonlinear simulations in one space dimension (the
vertical) and time. (a) The liquid mixing ratio rl and (b) the time variation of the density profiles,
both for a0 = 60 μm, r0

l = 0.5. (c,d) Density profiles at t = 10 for (c) r0
l = 0.1 and (d) r0

l = 0.3.
Note that the liquid water has completely disappeared by t = 8 for a0 = 60 μm, but the density
overhang persists. For smaller a0, the liquid takes longer to settle and evaporate; for larger a0,
the time required is shorter. In this figure and in figures 4 and 5, the values of a0 correspond to
the droplet size in micrometres that gives the corresponding values for r0

l and τs (see § 2.1 in the
text).

this. However, given that there is less than one decade along either axis, we do not use
this power law to make any physical predictions (see e.g. Stumpf & Porter 2012). For a
given droplet size, the depth of the density overhang grows linearly with the initial liquid
mixing ratio for rl > rl,cr(a0). For large r0

l , the amount of liquid is sufficient to saturate
the initial layers of fluid just below the anvil. This means that the remaining liquid water
simply falls through the newly saturated layers. Thus, the larger the r0

l , the further the liquid
droplets can fall, explaining the linear behaviour. Between a0 = 20 μm and a0 = 40 μm,
the density profiles have different time evolutions, but look similar when all the liquid has
evaporated (i.e when figure 4 is plotted).

3.1.2. Scaling of the amplitude of the density overhang
Figure 5 shows the maximum density difference ρmax − 1 between the density overhang

and the base state. As with the depth of the density overhang, the maximum density
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FIGURE 4. The depth of the cooled sub-cloud layer, h, after all the liquid has settled and
evaporated. (a) Depth h increases linearly with the initial liquid mixing ratio, r0

l , if the amount
of liquid present is not very small. The sizes of the markers correspond to the droplet sizes.
(b) Depth h increases with droplet size, a0, with a power-law dependence for large r0

l over a
small range. The thicknesses of the dashed lines increase with increasing r0

l . The thin solid line
is y ∝ x3.6.

0.030

0.025

0.020

0.015

0.010

0.005

0

ρ
m

ax
 –

 1

0.2 0.4 0.6 0.8

Increasing rl
0
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a0 (μm)rl
0
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FIGURE 5. The maximum (relative) density in the density overhang, ρmax − 1, plotted after all
the liquid has evaporated. (a) Difference ρmax − 1 increases linearly with r0

l , but saturates at a
certain value (≈ 0.028). (b) Difference ρmax − 1 is nearly constant for small a0, but decreases
roughly linearly with increasing a0 at large a0.

difference varies linearly with r0
l . However, there is a maximum value (of about 0.028; see

figure 5) for the density excess for r0
l ≤ 1. This is because the evaporating liquid droplets

saturate the sub-cloud layer, by cooling and adding vapour to the sub-cloud layer. Any
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further liquid entering such a saturated layer simply falls through the layer. For a given
base temperature T0, the maximum amount of liquid that can be evaporated into vapour
in a given parcel of air is fixed. The resulting fall in temperature increases the density as
does any remaining liquid, while the vapour added decreases the density. With increasing
a0, as the droplets fall at greater velocities vp, and the depth of the overhang grows, the
maximum density falls linearly for moderately large a0. Thus, the density overhangs will
be thinner and sharper for smaller a0 or r0

l , and wider and shallower for larger a0 or r0
l . We

next discuss the linear stability of such density profiles.

3.2. Linear stability analysis
Linear stability analysis is typically done by assuming that the base states vary on time
scales much longer than those on which the instability evolves. This assumption is not
valid in the present scenario, since it will be seen, by comparing the one-dimensional
simulations with those in higher dimensions in the following sections, that the instability
evolves on time scales comparable to that of the formation of the density overhang. Despite
this, linear stability analysis can often give insight into the physics of pattern formation.
Moreover it can provide some estimate of the range of length scales we may expect in
the patterns, and an estimate for their growth rate. We therefore perform a linear stability
analysis assuming that an instantaneous base state is frozen for the duration of disturbance
growth. In order to get such instantaneous base-state profiles which are uniform in the
direction parallel to the interface, we use results from the nonlinear simulations in one
dimension described in § 3. Given that the flow is time-varying, and the ‘base flow’
and instabilities are evolving together, there is actually no completely fair profile whose
stability will describe the observations. The assumption of an unperturbed density profile
as we have done is therefore the best we can do to elucidate the mechanism. We next derive
linear stability equations in two dimensions.

We start by recalling that the net density is a linear combination of the temperature and
the two mixing ratios

ρ = ρ0

[
1 − ΔT

T0

(
θ + χr0rv − r0rl

)]
, (3.3)

ρ = ρ0 − Δρ

ρ0

(
ρ̄ + ρ ′) , (3.4)

where ρ̄(z) and ρ ′(x, z, t) are the mean value and perturbations of the density, respectively,
both rendered non-dimensional by the density scale Δρ, which is chosen such that
Δρ/ρ0 = ΔT/T0. Note the negative sign in (3.4) by convention. Also, the base-state
velocity ū = 0, giving u ≡ u′(x, z, t).

An equation describing the evolution of the density may be obtained by combining the
last three equations of (2.9). At the end of the evaporation process, when no liquid remains
(and thus there is no further settling of liquid), we may set E and vp to zero in (2.9) to get
(after linearising about the mean profile ρ̄(z) and recalling that Pr = Scv = 1)

∂ρ ′

∂t
= −dρ̄

dz
w + 1

Re
∇2ρ ′. (3.5)

We eliminate the horizontal component of the velocity from (2.9), and split the
perturbations of the vertical velocity w′ and the density ρ ′ into normal modes

[w′, ρ ′] = [ŵ, ρ̂] (z) exp [i (kx − ωt)] , (3.6)
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where k is the wavenumber in the horizontal (x) direction and the real and imaginary parts
of ω give the circular frequency and growth rate, respectively. The stability equations can
then be written as

AX = −iωBX , (3.7)

where X = [ŵ, ρ̂]T and the matrices A and B are given by

A =
[

A11 A12
A21 A22

]
, (3.8)

B =
[

B11 B12
B21 B22

]
, (3.9)

with

A11 = 1
Re

[
D2 − k2I

]2
, (3.10)

A12 = k2I, (3.11)

A21 = −Dρ̄, (3.12)

A22 = 1
Re Pr

[
D2 − k2I

]
, (3.13)

B11 = [
D2 − k2I

]
, (3.14)

B22 = I, (3.15)

B12 = B21 = 0. (3.16)

In the above, I is the identity matrix, D is the matrix for differentiation in the vertical
direction and Dρ̄ is the vertical derivative of the mean density profile. We solve the
stability equation (3.7) for a given perturbation wavenumber k as an eigenvalue problem for
ω by the Chebychev collocation method, upon discretising the domain in the z direction
over a domain of size chosen to be ±10 on either side of the initial interface. Dirichlet
boundary conditions are applied for the velocity, the gradient of the velocity and the
density perturbations at the top and bottom boundaries. It was found that 301 collocation
points were sufficient to give an accuracy of four decimal places, and a change in the
domain size affected the results much less than this.

Density (and rl) profiles from one-dimensional simulations for representative sets of
values of the mixing ratio r0

l and the droplet radius a0 are shown in figure 3. These density
profiles show that increasing the amount of liquid increases the magnitude and depth of
the density overhang that forms under the anvil. They also show that the droplet size a0
is the more important controlling parameter. The net density profiles are narrow for small
droplet sizes (i.e. small settling velocities), and become broader for larger a0.

For a chosen few of these cases, the growth rates are shown in figure 6. We find that
the eigenvalues of (3.7) are purely imaginary; their horizontal wave speeds are therefore
zero. This agrees with the results from the nonlinear simulations of § 4. The maximum
growth rates and the wavenumbers at which these maximum growth rates are obtained
are complicated functions of the density profile. Despite this, our stability results show
that the maximum growth rate for a0 = 75 μm and r0

l = 0.5 is lower than, and occurs at a
smaller wavenumber (larger wavelength) than, the maximum growth rate for a0 = 25 μm,
r0

l = 0.5, which will be seen below to be consistent with nonlinear simulations.
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FIGURE 6. The growth rate as a function of wavenumber (at Re = 1000) for density profiles
obtained as in figure 3. All the least stable modes are standing modes, with zero circular
frequency.
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–10

–5

0

5

10

z

r1 = 0.1, a = 25
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FIGURE 7. The eigenfunctions from the solution of (3.7) corresponding to the maximum
growth rate. The eigenfunctions are purely real. Note the smaller depths of the eigenfunctions
for the case with smaller droplet size and smaller liquid water content. Symbols: ρ̂k. Plain
lines: ŵk.

The depth of the density layer (figure 3) is an important length scale in the problem. The
wavelengths predicted in figure 6 therefore need to be normalised with respect to the depth
of the density layer in order to be compared to those obtained from nonlinear simulations.
We will revisit this point in § 4.1.1.

The eigenfunctions corresponding to two of the cases from figure 6 are shown in
figure 7. The locations of the peaks in the eigenfunctions correspond to the lower edges of
the density overhang. It is also apparent that the density and velocity eigenfunctions are
out of phase, suggesting a finger-like mode.
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FIGURE 8. The growth-rate curves as a function of the Reynolds number (a0 = 75 μm,
r0

l = 0.5), showing the influence of the Reynolds number assumed.

The artificial Reynolds number of 1000 prescribed in § 2.1 can also be judged using
this analysis. Figure 8 shows the changes in one of the growth-rate curves of figure 6
with changing Reynolds number. Increasing (decreasing) the Reynolds number expands
(shrinks) the range of wavenumbers over which the system is unstable, but increasing Re
by a factor of 106 only changes the maximum growth rate by a factor of about 3, and
the wavelength at which the growth rate is maximum by a factor of 102. Moreover, the
growth rate is comparable for a wide range of wavelengths. Note that the depth of the
density-stratified layer, which determines the range of unstable wavenumbers, has been
held fixed for all the Reynolds numbers in this stability calculation, but could be very
different in a mammatus cloud.

4. Numerical simulations

Our primary findings are obtained from numerical simulations in two space dimensions
and time. We show how this restriction does not affect our conclusions, by comparing
results from simulations in two and three dimensions in § 4.2. We solve (2.9) in two
and three dimensions using a modified version of the second-order finite-volume solver
Megha-5, developed first for the study of free-shear flows. The code has been extensively
validated for jets and plumes, and earlier versions of Megha have been used in the study
of heated jets and plumes in Prasanth (2014) and Diwan et al. (2014).

We describe the current version, Megha-5, in brief here; it is described in detail in
Ravichandran & Narasimha (2020). The main differences from earlier versions are in the
Poisson solver (which now uses Fourier transforms) and the implementation of simple
outflow boundary conditions. As in the earlier versions, Megha-5 uses second-order
central differences in space and a second-order Adams–Bashforth time-marching scheme.
The momentum equation is split using the operator-splitting technique, and the resulting
Poisson equation is solved using a Fourier-transform-based Poisson solver.

Since we assume that the horizontal direction(s) are homogeneous, the horizontal
boundaries are periodic, and convective boundary conditions (Orlanski 1976) are used
at the top and bottom boundaries. The Poisson solver uses sine and cosine waves in the
periodic horizontal directions and only cosine modes in the vertical. The wavenumbers
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FIGURE 9. Instantaneous snapshots from simulations with the broadband noise initial
perturbation (§ 4.1.1) for a0 = 25 μm and r0

l = 0.1 and 0.3 (a,b,c and d,e, f, respectively). The
data are plotted at the instant when the fingers are most pronounced. Soon after the times shown,
the lobes disintegrate into turbulence. In each row, the three contour plots show (a,d) liquid,
(b,e) temperature and (c, f ) vapour. With increasing liquid water content, the instability becomes
increasingly lobe-like (in liquid water).

are modified such that the accuracy of the Poisson solver is second order in space (e.g.
van der Poel et al. (2015). The scalar equations (including the liquid water equation
with zero diffusion) are discretised using the Kurganov–Tadmor scheme which combines
second-order central differences with a flux limiter and has a numerical viscosity ∼ dx3

while avoiding the oscillations associated with small or zero viscosities (see Kurganov &
Tadmor 2000).

A sample validation case for the model thermodynamics used here is presented in the
appendix.

As will be discussed in the following sections, the nonlinear evolution of the instability
depends on the total amount of liquid water in the cloudy layer and on the size of the water
droplets making up the liquid, which decides the settling velocity and the time scale of
phase change. The results agree qualitatively with the results from linear stability analysis
(§ 3.2): the increases of liquid water content or droplet size increase the wavelength of the
perturbations. The base temperature is chosen to be T0 = 273 K. This gives r0

s = 4.5 ×
10−3, L1 = 11.25, L2 = 0.0727.

4.1. Two-dimensional simulations
In two dimensions, we set y ≡ 0, ky ≡ 0 in the equations of motion (2.9) and the initial
conditions (2.19). Our simulations are performed in a domain of size Lx × Lz = 40 × 20,
with 2048 × 1024 grid points. The time step used is δt = 0.0005. We have verified the
solutions for grid independence. We perform our 2-D simulations with two kinds of initial
conditions, as described below.
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FIGURE 10. Results for r0
l = 0.3 and a0 = 40, 50 and 65 μm ((a,b,c), (d,e, f ), and (g,h,i),

respectively). In each row, the three contour plots show (a,d,g) liquid, (b,e,h) temperature and
(c, f,i) vapour. As with figure 9, the data are plotted when the lobes are most pronounced. With
increasing droplet size, the instability manifests itself as longer and thicker lobes.

4.1.1. Externally added broadband noise
First, we report simulations where external noise is added to the initial conditions (in

particular, we add a noise of 10 % of the initial value to the liquid water content). Unlike
in § 4.1.2, no wavelength is imposed. This is similar to what is done in Kanak et al.
(2008), but smaller in magnitude. Since the noise added is broadband, structures at the
wavenumber for which the growth rate is highest (see § 3.2) are expected to outgrow the
others. The resultant structures in the flow show the properties in which we are interested:
for small droplet sizes and small liquid water content, the instability takes the form of
thin wisps (see figure 9); for larger droplet sizes and/or liquid content, the protrusions
become progressively more lobe-like (figure 10). For a given droplet size, as the liquid
content increases, the instability becomes more lobe-like. This is visualised in figure 9,
where the finger widths are seen to increase as r0

l is increased for a given a0 (= 25 μm).
The figures are each plotted at the time when the lobes are most pronounced. Holding the
liquid water content r0

l fixed, and increasing the droplet size (figure 10), mammatus-like
lobes are clearly in evidence. Moreover, the time up to which lobes are manifested is
greater, and due to this and the increased settling velocity, lobes are longer with increasing
droplet size.
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a0 \ r0
l 0.1 0.3 0.5 a0 \ r0

l 0.1 0.3 0.5 a0 \ r0
l 0.1 0.3 0.5 a0 \ r0

l 0.1 0.3 0.5

25 μm 0.04 0.06 0.09 25 μm 0.87 0.21 0.19 25 μm 22 73 70 25 μm 0.05 0.29 0.47
40 μm 0.12 0.12 0.16 40 μm 0.93 0.24 0.1 40 μm 18 55 76 40 μm 0.25 0.52 1.67
50 μm × 0.23 0.28 50 μm × 0.19 0.13 50 μm × 47 48 50 μm × 1.22 2.24
65 μm × 0.28 0.29 65 μm × 0.55 0.34 65 μm × 23 31 65 μm × 0.51 0.85
80 μm × 0.33 0.31 80 μm × 0.92 0.46 80 μm × 16 24 80 μm × 0.36 0.67

Finger widths Separations No. of fingers Width/separation

TABLE 2. Average widths of fingers, the average separation between fingers, the number of
fingers and the ratio between finger width and separation in simulations with externally added
noise (§ 4.1.1). Here ‘×’ indicates that the threshold used for counting fingers produced no
fingers. The sum of the average finger width and the average separation between fingers is the
‘natural’ wavelength (see text).
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λ

FIGURE 11. (a) The finger widths, from table 2, of the instabilities resulting from broadband
perturbations added to the initial liquid mixing ratio. (b) The natural wavelength from the 2-D
simulations along with the wavelength of the mode for maximum growth from the linear stability
calculations (see figure 6) multiplied by a factor of 0.25.

Since the fingers and the separations between them arise out of broadband perturbations,
we call finger widths obtained here the ‘natural’ finger widths and the wavelength (finger
width + separation) obtained here the ‘natural’ wavelength for given a0 and r0

l .
The fingers are separated by regions of dry air with upward flow. A wispy or leaky

pattern may be defined as a finger-like protrusion of liquid water where the width of the
finger is thin and the separation between fingers is large. A lobe, in contrast, is one where
the width of the finger is equal to or greater than the separation between fingers. Except
for the case of the largest droplet size, a clear trend is seen in table 2 (see also figure 11).
The average widths and the total number of the fingers that form due to the instability are
given in this table along with the average separation between the fingers. In a horizontal cut
through the fingers, the number of fingers is calculated by counting the number of times
a threshold value of 0.5r0

l is crossed. The average width is then obtained by appropriately
scaling the number of grid points with rl > 0.5r0

l divided by the number of fingers. We
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also present the ratio of finger width to the gap between fingers. This quantity would be
significantly smaller than unity for a wispy shape and O(1) or larger for mammatus lobes.
The ratio of finger width to separation reaches a maximum around a0 = 50 μm, even
though the finger widths continue to increase for larger a0.

The time at which the fingers are most pronounced depends on the initial conditions
(r0

l , vp). These fingers merge into larger structures after they form. As this happens,
convection also continues to get more vigorous, with the fingers disappearing in the
ensuing vigorous convection. For example, for the case of r0

l = 0.3, a0 = 65 μm, the lobes
that first appear at t ≈ 6.75 and are most pronounced at t = 7.5 (as shown in figure 10),
merge into more turbulent structures of roughly twice the width by t ≈ 9, and disintegrate
by t = 12.

In figure 10 we see that the finger widths increase as droplet size increases, which is in
qualitative agreement with the linear stability results of figure 6. Figure 11(a) shows a plot
of this variation.

The stability analysis of § 3.2 was conducted on density profiles obtained at t = 10.
In the nonlinear simulations, on the other hand, the instability appears at t ≈ 2–3
(figure 9 and 10). Thus, if we assume that the wavelength depends linearly on the depth of
the density overhang, and that the growth of the density layer is roughly linear in time, the
prediction from the linear stability analysis can be ‘corrected’ by multiplying by a factor. A
factor of 4, which may be expected from the argument presented above, gives a reasonable
match between the stability analysis and the simulations. This is shown in figure 11(b),
where the wavelengths in table 2 are plotted versus a0 for two values of r0

l . Also plotted
are the wavelengths at which the growth is maximum according to the stability analysis,
‘corrected’ by multiplying by a factor of 1/4.

We also note that the initial conditions in the simulation are idealised: the interface
between the anvil and the dry air is sharp, and the droplets are initially monodisperse.
In a real cloud, the droplet distribution would be polydisperse, leading to distributions
of vp and τs. This would result in density profiles that look different from what we have
obtained.

The results of the linear stability analysis of § 3.2 predict that the growth rate is
similar across a wide range of wavenumbers – i.e. the dispersion curve is relatively flat
(see figure 8). This suggests that the natural wavelength seen in this section need not
always prevail, and that the length scales which manifest themselves would depend on the
spectral content of imposed disturbances. In particular, if an external perturbation at some
wavelength were imposed on the system, the imposed wavelength could dominate. In the
following section, we test this prediction.

4.1.2. Sinusoidal perturbations of the anvil interface
The radially outward motion of the anvil from the cumulonimbus tower and the resulting

shear at the interface could cause perturbations of the anvil interface at wavelengths
unrelated to the natural wavelengths associated with given vp, r0

l . Thus, we perform
simulations where the lower edge of the cloudy anvil is perturbed sinusoidally with a
prescribed wavenumber kx and amplitude ξ ((2.19); ξ = 0.1 unless otherwise stated).
Broadband noise of the same amplitude as in § 4.1.1 is also added to r0

l .
The results show that the perturbation imposed on the interface may be amplified in

preference to the natural wavelength of the system. Whether this occurs depends on the
ratio of the wavelength of the imposed perturbation to the natural finger width. When
the imposed wavelength is a factor >100 times larger than the natural finger width, lobes
similar to those seen in § 4.1.1 occur and the sinusoidal perturbation is forgotten in the
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FIGURE 12. Results with small sinusoidal perturbations at a wavelength λx = 10 for a0 =
25 μm and r0

l = 0.1 (a,b,c) and r0
l = 0.3 (d,e, f ). In each row, the three contour plots show

(a,d) liquid, (b,e) temperature and (c, f ) vapour.

nonlinear evolution. When the imposed wavelength is a factor <30 times the natural finger
width, the instability takes the wavelength of the imposed sinusoid and the natural mode
is not seen. For intermediate cases, lobes at the natural finger width are superposed on
the growing sinusoidal perturbation. This may be expected from the linear instability
computations, since the instability is broadband, and the growth rates for a range of
wavenumbers close to the natural wavenumber are similar.

Thus, when the imposed wavelength is λx = 10 and a0 = 25 μm (with a natural finger
width O(0.1); see table 2), the instability takes the form of wisps similar to those seen in
figure 9. This is shown in figure 12.

For λx = 10 and large droplet sizes of a0 = 65 μm or a0 = 80 μm (where the natural
finger width is ≈0.3), only the imposed wavelength is seen in the nonlinear evolution (see
figure 13).
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FIGURE 13. Results with small sinusoidal perturbations of λx = 10 for a0 = 65 μm (a,b,c)
and 80 μm (d,e, f ) for r0

l = 0.3. In each row, the three contour plots show (a,d) liquid, (b,e)
temperature and (c, f ) vapour. For r0

l = 0.1, the growth of the instability is interrupted when
the liquid is exhausted. For r0

l = 0.5, the lobes look similar, but are more sharply defined (as in
figure 14).

The intermediate case can be seen in figure 14 for a0 = 65 μm and λx = 20 (about 70
times the natural finger width of a0 = 65 μm in table 2), where lobes of the natural finger
width are seen ‘riding on’ the sinusoidal interface.

The foregoing observations suggest a competition between the natural mode and the
imposed perturbation. The small head-start that the imposed perturbation provides seems
to be enough to beat the natural mode for a suitably chosen imposed wavelength.
Rayleigh–Taylor instabilities are known (see also § 5.1) to grow faster for larger
perturbation wavelengths in the nonlinear regime (see e.g. Abarzhi 2010). The competition
is therefore between how quickly the imposed perturbation reaches the nonlinear regime
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FIGURE 14. Results with small sinusoidal perturbations for a0 = 65 μm for r0
l = 0.3 (a,b,c)

and r0
l = 0.5 (d,e, f ). In each row, the three contour plots show (a,d) liquid, (b,e) temperature

and (c, f ) vapour. Fingers of width ≈ 0.5 can be seen growing in addition to the λx = 20 mode
that was imposed at t = 0.

and how quickly the natural mode can grow because of the noise added. The ratio of
amplitudes of the broadband noise added to that of the sinusoidal imposed perturbation
would control which of the two will prevail, but we do not attempt a systematic study of
these parameters.

Another observation is of further dynamical interest. We find that for a0 < 50 μm and
small r0

l (= 0.1), the growth of the instability is oscillatory in time but not periodic, in
that the lengths of the fingers (wisps) go up and down with no fixed time period. This
behaviour, shown in the snapshots in figure 15 for the case a0 = 25 μm, λx = 1.25, r0

l =
0.02, is less apparent for large r0

l ≥ 0.3 even for a0 = 25 μm, and completely disappears
for large a0 ≥ 50 μm. The linear stability analysis of § 3.2 predicts non-oscillatory modes
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FIGURE 15. A sequence of images showing the oscillatory mode for the case r0
l = 0.02,

a0 = 25 μm. The data are plotted at the extrema of the oscillation at times t = 0, 2.5, 4.0,
6.0, 7.75.
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FIGURE 16. Iso-surfaces rl = 0.15 in simulations with r0
l = 0.3 for (a) a0 = 25 μm, (b) a0 =

50 μm and (c) a0 = 65 μm, showing that the lobes formed due to the instability become larger
with increasing droplet size, analogously to figure 10.

in all cases, so the origin of the oscillatory nature of perturbation growth is presumably
nonlinear. In the oscillatory mode, the wisps that form seem to merge before the flow
becomes turbulent, similar to the evolution in figure 12.
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FIGURE 17. The characteristic size of the lobes in figure 16 plotted (a) as a function of the
droplet radius a0 and (b) as a function of the finger widths obtained from 2-D simulations
(table 2). The lobe sizes are calculated at sections z = 19.8, 17.9, 14, respectively, for the cases
in figure 16(a–c).
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FIGURE 18. Contour plots of rl, θ and rv at a vertical section at y = −5 (domain of size
40 × 20 × 20) for a0 = 25 μm and r0

l = 0.3. The contours are plotted at t = 10 and may be
compared with figure 12, showing that the depth of the mixed region is well predicted by the 2-D
simulations.

4.2. Three-dimensional simulations
We next perform simulations in three space dimensions analogous to the simulations
of § 4.1, for representative cases. As with the 2-D simulations, we perform simulations
with broadband initial noise, and with imposed initial sinusoidal perturbation of the
interface. These simulations are done with the same grid spacing as for the corresponding
2-D simulations. For the Reynolds number chosen, the grid spacing is ≈4 times the
Kolmogorov length.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

43
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.439


Mammatus clouds 899 A27-25

– 4
0

5

10

15

20

25

30

35

0 4

0

0.075

0.150

0.225
–0.5

Time = 9.00

–1.0

–1.5

–2.0

1.00

0.75

0.50

0.25

0

rl rv

x
– 4 0 4

x
– 4 0 4

x

z

θ

FIGURE 19. Contour plots of rl, θ and rv at a vertical section at y = −3.75 in a 3-D simulation
(domain size 40 × 10 × 10) for a0 = 80 μm and r0

l = 0.3. The contours are plotted at t = 9 and
may be compared with figure 20, showing that the nonlinear evolution of the initial sinusoidal
perturbation is well predicted in 2-D simulations.

Figure 16 shows the structures that form for different droplet sizes for the same r0
l = 0.3.

The formation of lobes for a0 ≥ 50 μm is apparent. The lobe size can be quantified by
taking a cross-section of the liquid field at the lobe location and finding the average areas
of the lobes. The square root of the average area then gives a characteristic width for the
lobes. In figure 17(a), this characteristic width of the lobes (or wisps) is plotted against a0.
Figure 17(b) shows the variation of this width against the finger widths predicted from 2-D
simulations (figure 11a; table 2), suggesting that the characteristic lobe size grows faster
in three than in two dimensions.

Figure 18 shows 2-D sections of the flow variables in a simulation (a0 = 25 μm,
r0

l = 0.3). The simulation is done in a domain of size 40 × 20 × 20 and 2048 × 1024 ×
1024 grid points, with an initial perturbation λx = λy = 10 and an amplitude ξ = 0.1
(2.19). The sections are plotted at y = −5 at t = 10; this may be compared with figure 12,
showing that the mixed region in the 3-D simulation is more developed than the
corresponding 2-D case.

Figure 19 shows 2-D sections of the flow variables for a mammatus case (a0 = 80 μm,
r0

l = 0.3, λx = λy = 5, in a domain of size 40 × 10 × 10, with 2048 × 512 × 512 grid
points) at t = 9. This can be compared against a snapshot at the same time instant from
a 2-D simulation for the same initial conditions, plotted in figure 20. The evolution of
the instability can be seen to agree qualitatively. Minor differences can be seen in the
dynamics between two and three dimensions. Figure 21 shows a perspective view of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

43
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.439


899 A27-26 S. Ravichandran, E. Meiburg and R. Govindarajan

– 4
0

5

10

15

20

25

30

35

40

0 4

0

0.075

0.150

0.225
–0.5

Time = 9.00

–1.0

–1.5

–2.0

1.00

0.75

0.50

0.25

0

rl rv

x

z

– 4 0 4

x
– 4 0 4

x

θ

FIGURE 20. Contour plots of rl, θ and rv for a0 = 80 μm and r0
l = 0.3 in a 2-D simulation.

The contours are plotted at t = 9 and may be compared with figure 19.
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FIGURE 21. Results for a0 = 80 μm and r0
l = 0.3, λx = λy = 5. Iso-surfaces of the liquid

water mixing ratio rl are shown in the bulk, with colour contour plots on two faces of the
simulation box.

iso-surface rl = 0.5r0
l for the 3-D simulation; the arrangement of the lobes is along the

diagonals owing to the initial perturbation being the product of sinusoids in x and y.
The foregoing comparisons of the results of §§ 4.1 and 4.2 suggest that the transition

from wisp-like to lobe-like instability is captured reasonably well in 2-D simulations. In
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addition, lobe sizes seem to grow faster in 3-D than in 2-D simulations. However, given
that there are only three points in figure 17, further evidence is necessary and this point is
worth further study.

5. Discussion

5.1. Leaky versus mammatus
Flow structures resembling lobes or fingers are known to be produced in double-diffusive
and Rayleigh–Taylor instabilities. While the instability observed here is also generated
by vertical density gradients, we may distinguish it from these known instabilities
as discussed below. We also distinguish the instability here from those observed by
Burns & Meiburg (2012, 2015) in § 5.2.

Double-diffusive instabilities require two components with opposing contributions to
the net density. Here, however, the effect of vapour on the density is negligible in the
density overhang. The two remaining components, namely liquid water and cooling, both
act to make the fluid denser (see (2.6)). The contribution of temperature to the overall
density is the strongest. Thus, although the temperature and the liquid components have
different diffusivities, the instability at the leading edge of the overhang is not of the
‘double’-diffusive kind.

Rayleigh–Taylor instabilities result from a heavier fluid lying atop a lighter fluid
as we have at the lower edge of the density overhang. The linear inviscid growth of
Rayleigh–Taylor instabilities is greatest at the largest wavenumbers (see e.g. Abarzhi
2010). Viscosity introduces a cut-off wavenumber, above which disturbances do not grow.
In the nonlinear regime, in Boussinesq fluids, bubbles of each fluid penetrate the other; in
non-Boussinesq fluids, the lighter fluid takes the form of bubbles while the heavier fluid
forms spikes (Aref & Tryggvason 1989; Lee & Kim 2012). The velocity v at which the
bubbles grow is proportional to the square root of the imposed disturbance wavelength λ:
v ∼ √

g′λ, where g′ is the reduced gravity.
In contrast, for the settling-driven instabilities we report here, both linear stability results

and nonlinear simulations suggest that (a) the wavelength of the instability increases with
the settling velocity; (b) the growth rates of the instabilities decrease with increasing
settling velocity; and (c) the structures that the light and heavy fluids take as they penetrate
one another are asymmetric, even in the Boussinesq limit; the fluid in the density overhang
which is heavier than the dry ambient air forms bubbles, while the dry air penetrates the
density overhang in spikes (see e.g. figure 20). Thus, the instability here may be considered
a modified Rayleigh–Taylor instability.

The settling-driven instability becomes more lobe-like with increasing r0
l and a0, with

the latter being the more important parameter. Our results from § 4.1.1 suggest that if the
settling velocity is greater than the buoyancy velocity, the resulting instability is lobe-like.

We have chosen length and time scales such that a0 = 50 μm droplets have a settling
velocity equal to the buoyancy velocity. Thus, for droplet sizes a0 < 50 μm, with vp < 1,
the instability that results is leaky (or wispy). For these droplet sizes, a larger initial liquid
mixing ratio leads to more vigorous convection (figure 12). For a0 > 50 μm, with vp > 1,
the instability that results is lobe-like, except for small liquid water content. If the liquid
water mixing ratio is very small (r0

l = 0.1, say), the instability does not grow appreciably
within our simulation times.

Increasing the liquid water content allows the mammatus-like instability to develop
fully. However, comparing the cases in figure 14 shows that increases in the liquid water
content beyond a certain level (r0

l = 0.3, for the base temperature chosen here) make little
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difference to the nature of the instability, although the lobes do become more sharply
defined. If r0

l > χ , the anvil is denser than the dry air below it (see (2.7)), making the
system Rayleigh–Taylor unstable at the upper edge of the density overhang at very early
times. However, this instability is (at least for the Reynolds numbers considered here) not
strong enough to change the dynamics.

To reiterate, settling velocities greater than the buoyancy velocity lead to the formation
of mammatus-like lobes. While these lobes will not form if the anvil contains too little
liquid water, higher values of the initial liquid water mixing ratio r0

l seem to only serve to
make the lobes more prominent.

5.2. Comparison with the results of Burns & Meiburg (2012)
Our results here suggest that the larger settling velocities associated with larger droplet
sizes are crucial in the formation of mammatus lobes. This is in contrast with the results
of Burns & Meiburg (2012, 2015), who find that larger settling velocities lead to the wispy
mode. This apparent contradiction arises due to the fact that the three scalars in our system
are coupled.

The relative contributions of the three scalars to the buoyancy is decided by the stability
ratio r0 and the parameter L1. Since the amount of liquid water in the system rl < r0

l < 1,
the settling of the liquid component itself is not enough to cause a strong instability. More
crucially, the liquid evaporates as it descends, and L1 
 1 ensures that the contribution of
the temperature to the negative buoyancy, and therefore to the instability, is significantly
larger than that of the liquid. For sufficiently large r0

l and a0, an instability that may start
as a wisp tends to become lobe-like after the entire sub-cloud layer is cooled because of
evaporation.

5.3. Asperitas clouds: mammatus clouds with shear?
We have ignored, thus far, the influence of any shear that exists between the cloudy
and dry layers. Shear could exist, of course, simply by the fact that the anvil is still
developing. This would bring into play shear-driven mixing and its effects, as discussed
by Shy & Breidenthal (1990). In 2017, a new type of cloud was added to the World
Meteorological Organisation’s classification scheme. Called asperitas (from the Latin for
‘severity’), these clouds are reminiscent of mammatus clouds in that they have lobes of
cloudy air. These lobes are, however, significantly distorted. We think that the settling- and
evaporation-driven mechanism discussed here, with the addition of shear, could provide a
simple explanation for asperitas clouds. This will be the subject of future work.

5.4. Instabilities driven by evaporative cooling
We have seen how the settling and evaporation of water droplets can lead to instabilities
under cumulonimbus anvils. Instabilities owing to evaporative cooling can also occur at
the top of stratocumulus clouds, where mixing between dry ambient air above the moist
cloudy layer leads to a higher density (de Lozar & Mellado 2015). This requires that
the density be a nonlinear function of the degree of mixing (Shy & Breidenthal 1990).
In clouds, the nonlinear nature of the Clausius–Clapeyron law provides this nonlinear
variation of density with mixing. Shy & Breidenthal (1990) assume that the mixing is
shear-driven; however the same instability occurs if the mixing is entirely diffusive (de
Lozar & Mellado 2015). It seems therefore that shear is not necessary for this kind of
instability (see § 5.3). In contrast to mixing-driven instabilities, settling-driven instabilities
do not directly depend on the nonlinear nature of the Clausius–Clapeyron law, but only on
the fact that the evaporation or condensation of water involves a large amount of energy.
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5.5. Limitations of the present study
Since the study presented here is highly idealised, it is necessary to discuss its limitations
and the extent of their impact on the predictions. We list these below, in roughly decreasing
order of importance.

(a) Lobes formed with the broadband initial conditions in § 4.1.1 last for O(1) flow
time units, thus limiting when this mechanism may be active in the formation of
mammatus clouds in the absence of external perturbations of finite wavelength. It
has been suggested in the literature that more than one mechanism may be active in
mammatus formation.

(b) The Reynolds number used in the simulations is four orders of magnitude smaller
than those in realistic clouds. Apart from the turbulence that would result from
these higher Reynolds numbers, the linear stability analysis of § 3.2 (using a model
density profile) predicts a much higher wavenumber, and thus far smaller lobe sizes,
at the high Reynolds numbers than those observed in nature. This reduction in lobe
size is offset by the fact that the droplet sizes considered here are much smaller
than seen in cumulonimbus anvils, and larger droplet sizes would produce larger
lobes.

(c) The droplets or particles considered here are several tens of micrometres in radius,
with particle Reynolds numbers for which the Stokes drag approximation (2.21) is
reasonable, but not strictly applicable. Realistic droplet sizes would need nonlinear
drag terms, and corrections for departures from sphericity. This would affect the lobe
sizes. A realistic treatment of these droplets would also account for the polydisperse
sizes of the droplets, which cannot be done with the single-fluid approach taken
here.

(d) Translating the observations here to observations of real mammatus clouds is also
made difficult because we assume an initially monodisperse suspension of droplets
for simplicity. In particular, what is visible from the ground would be light scattered
from droplets much smaller than precipitation-size droplets. These droplets would
have to form by the evaporation of larger ones. These effects cannot be captured with
the formalism presented here.

(e) Droplets of water or ice particles, especially for sizes outside the Stokes regime,
falling in a subsaturated environment are subject to ventilation effects which can
significantly reduce the phase-change relaxation times (Pruppacher & Klett 2010,
chap. 13). This would reduce the size of the lobes that form.

( f ) Ambient stratification, which we have ignored here, can be of importance. Typically,
ambient lapse rates are between the dry adiabatic and the moist adiabatic lapse
rates. The fluid in the mammatus lobes, which warm at close to the moist adiabatic
lapse rate, will be colder and denser than the ambient if the ambient warms at the
dry adiabatic lapse rate. If the ambient lapse rate is smaller, therefore, the density
difference and thus the strength of the instability driving lobe formation will be
smaller. This has been reported in earlier studies (Kanak et al. 2008).

(g) Water droplets and ice particles have slightly different enthalpies of conversion to
vapour and slightly different saturation vapour pressures. For ambient temperatures
of above −20 ◦C, the differences in vapour pressure are minor (see e.g.Murphy &
Koop 2005). The mechanism by which snow crystals grow is different from how
water droplets grow, but the net effect is similar (see Pruppacher & Klett 2010,
chap. 13).
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6. Conclusion

In summary, we propose settling- and evaporation-driven instability as a mechanism
for the formation of mammatus clouds under cumulonimbus anvils. We have studied,
analytically and numerically, the instabilities of a system where a component which settles
under the influence of gravity also undergoes a thermodynamic change of phase. We have
performed linear stability analysis of a simplified system, finding that this analysis predicts
the tendency of the most unstable wavelength to increase with increasing droplet size and
liquid water content. It also predicts that there exist a wide range of wavelengths for which
the growth rates are similar.

Using detailed numerical simulations, we have shown that for large droplet sizes and
liquid mixing ratios (i.e. when the ratio of the settling velocity of the particles to the
buoyancy velocity ṽp/U > 1), the instability develops in the form of lobes, whereas for
small droplet sizes and small liquid mixing ratios, the instability is leaky. We have found
that the droplet size, which directly decides the settling velocity, is a more important factor
than the liquid mixing ratio. These results agree broadly with the linear stability results;
in particular, since the growth rates are similar for a wide range of wavenumbers, small
sinusoidal perturbations imposed on the anvil interface are amplified in preference to the
natural wavelength. In our 2-D simulations, we have also found an oscillatory instability
mode that linear stability analysis does not predict. Lastly, we have shown that 2-D and 3-D
simulations agree at least qualitatively on the transition from wispy to lobe-like instability
as the droplet size increases.

Our study has been highly idealised. We have ignored the effects of background
stratification and shear, and have simplified the thermodynamics by ignoring the presence
of ice. In spite of all these simplifications, the striking similarity between the lobes
obtained numerically and pictures of actual mammatus clouds suggests that settling-driven
instabilities are an eminently viable mechanism for mammatus cloud formation. This
mechanism also makes clear predictions for when evaporation will not lead to mammatus
cloud formation, which we hope to test against observational data in the near future.
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FIGURE 22. The vertical velocity u (a) and the equivalent potential temperature θe (b) for an
initially circular patch of vapour starting with zero velocity in an unstratified ambient. The
velocity contours are drawn at intervals of 0.1 with dashed lines for negative values. The θe
contours are drawn at intervals of 0.4.

Appendix

The test case of a rising parcel of vapour that condenses into liquid water droplets which
are carried with the flow (without settling) is presented below. The initial circular patch of
vapour is of radius 1.0 and centred at x = 20, y = 0 (note that x is the vertical direction
here) with rv = 1.05 (i.e. 5 % supersaturation), and rl = 0, θ = 0, u = 0. The ambient
temperature is T0 = 253 K. The time scale for phase change is set to τs = 1.0, and the
liquid is not allowed to settle, vp = 0. The Reynolds number is Re = 1000.

Thus, from (2.9), the potential temperature θe = θ + L1rv is conserved (except for
diffusive losses). We plot, in figure 22, contours of the potential temperature and the
vertical velocity after the patch has risen by about 2.5 initial radii. Figure 22 may be
compared with figure 3 of Bryan & Fritsch (2002), in which the patch, after rising 2.5
radii, has grown to 1.5 diameters in horizontal width. This is very similar to what is seen
in figure 22.

The two rotors that are characteristic of the rising moist thermal are seen. However, the
fact that we have a finite Reynolds number leads to smaller velocities than are seen in
Bryan & Fritsch (2002) and the slight flattening of the arch connecting the two rotors. For
higher Reynolds numbers, the instability reported by Grabowski & Clark (1991) takes over
and the thermal breaks up into turbulent flow.
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