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Abstract

By expressing the discounted net loss process as a randomly weighted sum, we investigate
the finite-time ruin probabilities for the Poisson risk model with an exponential Lévy
process investment return and heavy-tailed claims. It is found that in finite time, however,
the extreme of insurance risk dominates the extreme of financial risk, but, for the case of
dangerous investment (see Klüppelberg and Kostadinova (2008) for an accurate definition
of dangerous investment), the extreme of financial risk has more and more of an effect
on the total risk, and as time passes, the extreme of financial risk finally dominates the
extreme of insurance risk.
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1. Introduction

In the paper we investigate the finite-time ruin probability of a Poisson risk model with heavy-
tailed claims and the risky investment of reserve. In the model, claims, Xn, n ≥ 1, constitute
a sequence of independent, identically distributed (i.i.d.), and positive random variables with a
common distribution function (DF) F such that F̄ (x) = 1 − F(x) > 0 for all x > 0. Let the
arrival times τ1, τ2, . . . , τn, . . . constitute a homogeneous Poisson process

N(t) =
∞∑
n=1

1[τn∈[0,t]], t ≥ 0

(here and in the sequel, 1A denotes the indicator function of the set A), which is independent
of the sequence Xn, n ≥ 1, where, by convention, τ0 = 0. Hence, the total amount of claims
up to t ≥ 0 can be written as

S(t) =
N(t)∑
n=1

Xn
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Finite-time ruin probability 207

with S(t) = 0 when N(t) = 0. If N(t) follows a homogeneous Poisson process with intensity
λ > 0, then τn has a gamma distribution with probability density function

fn(t) = λntn−1

(n− 1)!e−λt , t > 0.

The total amount of premiums accumulated up to time t ≥ 0 is denoted by C(t) = ct . Assume
that an insurer invests its reserve into a Black–Scholes-type market consisting of a bond with a
constant riskless interest rate δ > 0 and some stock, modelled by an exponential Lévy process,
whose respective price processes follow the equations

X0(t) = eδt and X1(t) = eL(t), t ≥ 0.

The constant δ > 0 is the riskless interest rate. The process {(L(t))t≥0} is a Lévy process
with characteristic exponent �̌, i.e. E[eisL(t)] = et�̌(s), s ∈ R and t ≥ 0, where �̌ has the
Lévy–Khintchine representation

�̌(s) = isγ − σ 2

2
s2 +

∫
R

(eisx − 1 − isx 1[|x|≤1])ν(dx), s ∈ R,

where γ ∈ R, σ ≥ 0, and the Lévy measure ν satisfies ν(0) = 0 and
∫

R
(x2 ∧ 1)ν(dx) < ∞.

The characteristic triplet (γ, σ 2, ν) determines the Lévy process. For more details, see
Sato (1999).

Assume that an insurer uses the so-called constant mix strategy to invest their reserve,
namely, at each instant of time an initially fixed fraction θ ∈ [0, 1] of the wealth is invested in
the risky asset and a fraction 1− θ is invested in the riskless asset; see, e.g. Emmer et al. (2001)
and Emmer and Klüppelberg (2004). This strategy is dynamic in the sense that it requires a
rebalance of the portfolio at any moment of time depending on the corresponding price changes.
This approach is based on self-financing portfolios and, hence, is classical in financial portfolio
optimization; see Korn (1997, Section 2.1). The fraction θ is called the investment strategy.

Let {L(t); t ≥ 0} be a Lévy process with characteristic triplet (γ, σ 2, ν). Denote by ε(L)
the solution of the following equation:

dZ(t) = Z(t−) dL(t), Z(0) = 1.

Then Proposition 8.21 of Cont and Tankov (2004) gives the existence and uniqueness of ε(L).
Next we follow the method used by Klüppelberg and Kostadinova (2008) to introduce the

integrated risk process (IRP) as the result of the insurance business and the net gains of the
investment through a stochastic differential equation (SDE).

Definition 1.1. For an investment strategy θ ∈ [0, 1], we call the solution to the SDE

dUθ(t) = c dt − dS(t)+ Uθ(t−) dL̂θ (t), t ≥ 0, Uθ (0) = x, (1.1)

the IRP, where dL̂θ (t) = (1 − θ)δ dt + θ dL̂(t), L̂(t) satisfies ε(L̂) = eL(t), x > 0 is the initial
capital, c > 0 is the constant premium rate, S(t) is the total claim amount process, and δ > 0
is the riskless interest rate.

Provided that the insurance and the investment processes are independent, by Lemma 2.2 of
Klüppelberg and Kostadinova (2008), the solution to the SDE (1.1) is

Uθ(t) = exp(Lθ (t))

(
x +

∫ t

0
exp(−Lθ(v))(c dv − dS(v))

)
,

https://doi.org/10.1239/aap/1240319582 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319582


208 C. C. HEYDE AND D. WANG

where Lθ satisfies exp(Lθ ) = ε(L̂θ ). By Lemma 2.5 of Emmer and Klüppelberg (2004), the
Lθ(t) is a Lévy process with characteristic exponent ψθ and characteristic triplet (γθ , σ 2

θ , νθ ),
which is specified by the original process L in the following way:

γθ = γ θ + (1 − θ)

(
δ + σ 2

2
θ

)

+
∫

R

(log(1 + θ(ex − 1)) 1[| log(1+θ(ex−1))|≤1] −θx 1[|x|≤1])ν(dx), (1.2)

σ 2
θ = θ2σ 2, (1.3)

νθ (A) = ν({x ∈ R : log(1 + θ(ex − 1)) ∈ A}) for any Borel set A ⊂ R. (1.4)

Thus, the IRP Uθ fits into the framework of generalized Ornstein–Uhlenbeck processes, which
have recently attracted a lot of attention; see, e.g. Lindner and Maller (2005) or Carmona et al.
(2001).

Denote the Laplace exponents of the processes L and Lθ by

ψ(s) = log E[e−sL(1)] and ψθ(s) = log E[exp(−sLθ (1))],
provided that they exist. If ψ(s) < ∞ then E[e−sL(t)] = etψ(s) < ∞ for all t ≥ 0; see
Sato (1999, Theorem 25.17). From the proof of Lemma 4.1 of Klüppelberg and Kostadinova
(2008) we can obtain ψθ(s) < ∞ for all θ ∈ (0, 1) and s ∈ R+, and if 0 < E[L(1)] < ∞ and
either σ > 0 or ν((−∞, 0)) > 0, then, for θ ∈ (0, 1), there exists a unique positive κ = κθ > 0
such that ψθ(κ) = 0.

Let us denote the discounted net loss process by

Vθ(t) = x − exp(−Lθ(t))Uθ (t) =
∫ t

0
exp(−Lθ(ν))(dS(ν)− c dν), t ≥ 0.

Now we can define the ruin probability up to time T and the ultimate ruin probability,
respectively, by

�(x, T ) = P{Vθ(t) > x for some 0 ≤ t ≤ T }
and

�(x) = P{Vθ(t) > x for some ∞ > t ≥ 0}.
Many researchers have studied Poisson risk models with risky investment, usually modelled

by a geometric Brownian motion. For example, Frolova et al. (2002) discussed the ultimate
ruin probability with exponentially distributed claims and the risky asset of a constant fraction
of the wealth; Paulsen and Gjessing (1997) and Kalashnikov and Norberg (2002) extended their
result to light-tailed claim size distributions; Gaier and Grandits (2002) discussed the case of
regularly varying claim size distribution.

An important question often asked is whether geometric Brownian motion can appropriately
describe the change of prices of the risky assets. Many empirical investigations of stock markets
have indicated that the prices of many stocks have sudden downward (or upward) jumps, which
cannot be explained by the continuous geometric Brownian motion. A more suitable approach
is to model the price of the risky asset by a general exponential Lévy process with jumps. Using
this approach, Emmer and Klüppelberg (2004) have investigated the optimization problem of
investment portfolios. Paulsen (2002) considered the asymptotic behaviour for large initial
capital of the ultimate ruin probability for the case where the investment process is a general

https://doi.org/10.1239/aap/1240319582 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319582


Finite-time ruin probability 209

Lévy process. His result showed that the ruin probability behaves like a Pareto function of the
(large) initial capital. The Pareto exponent depends on the interaction between the insurance
claims and the investment process. Using the theory of stochastic recurrence equations (see
Goldie (1991) and Konstantinides and Mikosch (2005)), Klüppelberg and Kostadinova (2008)
studied the tail behaviour of the ultimate integrated risk for the discounted net loss process,
namely, P{V∞

θ > x}, where V∞
θ = limt→∞ Vθ(t). They showed that if the order of the

finite moment of the claim size distribution is greater than κθ then the extreme of financial risk
determines the tail behaviour of the ultimate integrated risk for the discounted net loss process.
They referred to this as the case of dangerous investment. If the distribution function of claim
sizes has a regularly varying tail with tail index −α < 0 and α < κθ , then they showed that the
extreme of insurance risk determines the tail behaviour of the ultimate integrated risk for the
discounted net loss process. They referred to this as the case of dangerous claims.

All the above papers pay attention to the ultimate ruin probability and the tail behaviour of
the ultimate integrated risk process with the claim arrival process being a Poisson process. To
the authors’ knowledge, no other paper has addressed the finite-time ruin probability with risky
investment. In fact, insurers pay more attention to their future finite-time risk, for example,
five years, ten years, and can change initial capitals by introducing new stock holders or adding
the shares of their companies and adding or decreasing premiums according to the insurers’
business situations. So, finite-time ruin probability is a more realistic model. But it is often more
difficult to investigate finite-time ruin probability. In this paper, by expressing the discounted
net loss process as a randomly weighted sum we investigate the finite-time ruin probability for
the integrated risk process under the Poisson risk model with heavy-tailed claims. We find that
in finite time, however, the extreme of insurance risk dominates the extreme of financial risk,
but, for the case of dangerous investment, extreme of financial risk has more and more of an
effect on the total risk, and as time passes, the extreme of financial risk finally dominates the
extreme of insurance risk.

The remaining part of this paper consists of two sections. In Section 2 we introduce some
notation and provide the main result of the paper. Section 3 contains the proof of the main
result.

2. Notation and main result

First of all, we recall several classes of heavy-tailed distributions, which are crucial for our
purpose. We say that a distribution function F has a regularly varying tail with tail index
−α < 0, denoted by F ∈ R−α , if there is some slowly varying function L(·) such that

F̄ (x) = x−αL(x), x > 0.

We say that a DF F belongs to the class D (has dominated variation) if, for any 0 < l < 1
(or, equivalently, for some 0 < l < 1),

lim sup
x→∞

F̄ (lx)

F̄ (x)
< ∞.

By definition we say that a DFF belongs to the subexponential class of distributions, denoted
by S, if F̄ (x) = 1 − F(x) > 0 for all x > 0 and the relation

lim
x→∞

F̄ ∗n(x)
F̄ (x)

= n
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holds for any (or, equivalently, for some) n ≥ 2, where F ∗n denotes the n-fold convolution
of F .

We say that a DF F belongs to the class L (is long tailed) if, for any L > 0,

lim
x→∞

F̄ (x + L)

F̄ (x)
= 1.

It is well known that
R−α ⊂ D ∩ S ⊂ S ⊂ L;

see Embrechts et al. (1997) for details. We remark that D ∩S is a useful subclass of the class S.
Specifically, it contains the famous class R of DFs with regular variation.

Now we recall two significant indices of a general random variable. Let X be a random
variable with a distribution function F concentrated on (−∞,∞). For any y > 0, we set

F̄∗(y) = lim inf
x→∞

F̄ (xy)

F̄ (x)
and F̄ ∗(y) = lim sup

x→∞
F̄ (xy)

F̄ (x)
,

and then we define

J
+
F = J

+(X) = inf

{
− log F̄∗(y)

log y
: y > 1

}
= − lim

y→∞
log F̄ ∗(y)

log y
,

J
−
F = J

−(X) = sup

{
− log F̄ ∗(y)

log y
: y > 1

}
= − lim

y→∞
log F̄ ∗(y)

log y
.

Here J
+
F and J

−
F are called the upper and lower Matuszewska indices of the nonnegative and

nondecreasing function f (x) = (F̄ (x))−1, x ≥ 0 (see Bingham et al. (1987, Chapter 2.1)).
Specifically, if F ∈ D then J

+
F < ∞; if F ∈ R−α with α ≥ 0 then J

−
F = J

+
F = α.

It is well known that if F ∈ D then by Proposition 2.2.1 of Bingham et al. (1987) we know
that, for p2 > J

+
F , there are positive constants C2 and D2 such that

F̄ (y)

F̄ (x)
≤ C2

(
x

y

)p2

holds for all x ≥ y ≥ D2. (2.1)

In the sequel, C always represents a positive constant, which is independent of x and may
vary from place to place. For two functions a(·) and b(·), with b(·) positive, satisfying

lim sup
x→∞

a(x)

b(x)
< ∞,

we write a(x) = O(b(x)); if

lim
x→∞

a(x)

b(x)
= 1,

we write a(x) ∼ b(x).
In this paper we only consider the case in which θ ∈ (0, 1) because it is impossible for

insurers to invest all the capital into risky assets and the pure bond strategy has been discussed
in previous papers (see, e.g. Wang (2008)). Now we are ready to state the main result of this
paper.
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Theorem 2.1. Consider the risk model introduced in Section 1 with F ∈ D ∩ S. Assume that
θ ∈ (0, 1). Then, we have, for every fixed T > 0,

�(x, T ) ∼ λ

∫ T

0
P{X1 exp(−Lθ(t)) > x} dt, x → ∞.

Specifically, if F ∈ R−α with α > 0 then we obtain, for every fixed T > 0,

�(x, T ) ∼ λ

−ψθ(α)(1 − exp(ψθ (α)T ))F̄ (x), x → ∞. (2.2)

Remark. Let us consider the case in which claims have regularly varying tails. Theorem 4.4
of Klüppelberg and Kostadinova (2008) tells us that, for the case of dangerous investment,
the extreme of financial risk finally dominates the extreme of insurance risk (for the case of
dangerous investment,ψθ(α) > 0 since α > κθ andψθ(α) is a convex function withψθ(0) = 0
and ψ

′
θ (0) < 0). In our Theorem 2.1, we do not suppose the existence of κθ . Theorem 2.1

shows that in finite time, however, the extreme of insurance risk dominates the extreme of
financial risk even for the case of dangerous investment. It is an interesting phenomenon. The
phenomenon shows that in the case of dangerous investment the financial risk has more and
more of an effect on the total risk as time passes, but in finite time the insurance risk still has
a dominant effect on the total risk. This can be seen from (2.2). In the case of dangerous
investment, financial risk finally dominates insurance risk as the cumulation of financial risk.
It is shown from (2.2) that

λ

−ψθ(α)(1 − exp(ψθ (α)T )) → ∞ as T → ∞,

and in Theorem 4.4 of Klüppelberg and Kostadinova (2008), financial risk finally dominates
insurance risk.

In the following we will give some examples.

Example 2.1. (Modelling the risky investment process by geometric Brownian motion with
jumps and letting the distribution of the claim sizes have regularly varying tails.) Assume that
the log returns of the risky asset are modelled as

L(t) = υt + σW(t)+K(t), t ≥ 0,

where υ ∈ R, σ > 0, (W(t))t≥0 is a standard Brownian motion, andK(t) = ∑M(t)
n=1 Yn, t ≥ 0,

is given by a homogeneous Poisson process M(t) with intensity µ and i.i.d. jump sizes
{Yn; n ≥ 1} with the generic random variable Y . Hence, the Laplace exponent of L is given by

ψ(s) = −υs + σ 2 s
2

2
+ µ(E[e−sY ] − 1).

Let the claim sizes constitute a sequence of i.i.d. random variables with regularly varying tail
R−α, α > 0. Hence, according to Theorem 2.1, we obtain

�(x, T ) ∼ λ

−ψθ(α)(1 − exp(ψθ (α)T ))F̄ (x), x → ∞,

where, by (1.2), (1.3), and (1.4), we have

ψθ(α) = −υθα + σ 2
θ

α2

2
+ µ(E[(1 + θ(eY − 1))−α] − 1),

where υθ = υθ + (1 − θ)(δ + σ 2θ/2) and σ 2
θ = θ2σ 2. In particular, for the case in which the
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log returns of the risky asset are modelled by classical geometric Brownian motion, namely,
K(t) ≡ 0, we have

ψθ(α) = −υθα − (1 − θ)δα + σ 2θα

2
(−1 + θ + θα).

Kou (2002) considered the case in which Y has a double-exponential distribution. For this case,
Y has density function

f (x) = fY (y) = pη1 exp(−η1y) 1[y≥0] +(1 − p)η2 exp(η2y) 1[y<0], x ∈ R,

where η1 > 0, η2 > 0, and p ∈ (0, 1). Hence,

ψθ(α) = −υθα + σ 2
θ

α2

2
+ µ

∫
R

((1 + θ(ex − 1))−α − 1)f (x) dx.

Example 2.2. (Modelling the risky investment process by the variance-gamma Lévy process
and letting the distribution of the claim sizes have regularly varying tails.) Let the claim size
be distributed by R−α, α > 0, and let the log return of the risky asset be modelled by the
variance-gamma (VG) process, as suggested in Madan and Seneta (1990). A nonsymmetric
VG model is given by

L(t) = µt +W(K(t)), t ≥ 0,

where µ > 0, W is a Brownian motion with drift a < 0 and variance b2, K(t) is a gamma
Lévy process independent of W and satisfies K(1) has the same distribution as �(η, r) whose
density is given by

f�(x) = rηxη−1e−rx

�(η)
, x ≥ 0,

for parameters r, η > 0. The characteristic triplet of K is (0, 0, ν�) with

ν� = 1[x>0] ηx−1e−rx dx.

The Laplace exponent of L is

ψ(s) = −µs − η log

(
1 − 1

r

(
b2 s

2

2
− sa

))
, s ∈ R.

The Lévy measure of L is given by

ν(dx) = r2

η|x| exp

(
ax

b2 −
√
a2 + 2b2r2/η|x|

b2

)
dx, x ∈ R.

Hence, according to Theorem 2.1, we can obtain

�(x, T ) ∼ λ

−ψθ(α)(1 − exp(ψθ (α)T ))F̄ (x), x → ∞,

where, by (1.2), (1.3), and (1.4), we have

ψθ(α) = −µθα +
∫ ∞

−∞
(e−αx − 1)νθ (dx)

= −θµα − (1 − θ)δα

+
∫
x>log(1−θ)

((1 + θ(ex − 1))−α − 1)
r2

η|x| exp

(
ax

b2 −
√
a2 + 2b2r2/η|x|

b2

)
dx.

For more details, see Cont and Tankov (2004).
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As θ is fixed,ψθ(α) is a convex function withψθ(0) = 0 and dψθ(α)/dα < 0, which means
that at small α, the index of the tail of insurance risk, insurance risk always dominates financial
risk and, as α exceeds a threshold κθ , financial risk will finally dominate insurance risk. As
α is fixed, ψθ(α) is an increasing function. From Table 1 and Table 2 we know that, when
θ ≥ 0.75, for almost all α > 0, ψθ(α) is positive, i.e. it is a dangerous investment; if θ = 0.25
then ψθ(α) < 0 for α ≤ 40, which means that insurance risk dominates financial risk. Hence,
it is dangerous for insurers to invest a large fraction of their wealth in the risky asset.

Table 1: ψθ(α) for the model in Kou (2002) with p = 0.3, η1 = 50, and η2 = 25 for the parameters of
Y , and using the following generic stock return figures: a mean of 15 per year, a standard deviation of 20
per year, a jump rate of 10 per year (giving a jump rate of 10/250 per day when converted into daily rates

for the calculations), and a riskless interest rate of 10% per year.

α θ = 0.25 θ = 0.5 θ = 0.75

1 –0.000 222 390 54 –0.000 051 420 36 0.000 133 209 82
2 –0.000 438 861 08 –0.000 077 160 72 0.000 325 459 64
3 –0.000 649 251 62 –0.000 076 181 08 0.000 581 589 46
4 –0.000 853 562 16 –0.000 025 521 44 0.000 907 159 28
5 –0.001 051 272 70 0.000 006 898 20 0.001 308 849 10
6 –0.001 242 623 24 0.000 093 877 84 0.001 792 818 92
7 –0.001 427 253 78 0.000 213 817 48 0.002 368 428 74
8 –0.001 603 604 32 0.000 367 117 12 0.003 047 758 56
9 –0.001 774 294 86 0.000 557 616 76 0.003 833 048 38

10 –0.001 937 545 39 0.000 786 196 40 0.004 746 218 20
20 –0.003 128 030 27 0.005 897 955 05 0.025 921 537 80
30 –0.003 324 268 26 0.020 208 844 29 0.137 065 336 6
40 –0.002 143 415 30 0.059 395 581 38 2.478 260 297
50 0.001 027 503 19 0.193 034 603 7 662.671 890 7

Table 2: ψθ(α) for the VG model using the following generic stock return figures: µ = 0.000 624 640 5,
standard deviation b = 0.011 361 55, drift a = −0.000 375 435 9, riskless interest rate δ = 10% per year,

and r = 1.005 205 for the parameters of L.

α θ = 0.25 θ = 0.5 θ = 0.75

1 –0.000 417 916 –0.000 315 274 –0.000 197 204
2 –0.000 826 290 –0.000 604 616 –0.000 331 239
3 –0.001 227 325 –0.000 858 451 –0.000 380 516
4 –0.001 626 658 –0.001 073 567 –0.000 361 672
5 –0.002 013 134 –0.001 261 096 –0.000 273 805
6 –0.002 391 529 –0.001 416 231 –0.001 096 17
7 –0.002 756 264 –0.001 542 656 0.000 127 846
8 –0.003 117 696 –0.001 633 436 0.000 438 739
9 –0.003 471 038 –0.001 691 719 0.000 823 237

10 –0.003 816 291 –0.001 717 466 0.001 281 529
20 –0.006 828 308 –0.000 177 407 0.009 972 25
30 –0.009 023 775 0.004 686 1 0.026 382 23
40 –0.010 402 73 0.012 966 8 0.051 004 33
50 –0.010 949 6 0.024 797 14 0.084 565 77
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214 C. C. HEYDE AND D. WANG

Examples 2.1 and 2.2 were also considered in Klüppelberg and Kostadinova (2008). Next
we give another example.

Example 2.3. (Modelling the risky investment process by a skewed β/2-stable process and
letting the distribution of the claim sizes have regularly varying tails.) In Example 2.2,
instead of a gamma Lévy process, we supposed that K(t) was a scaled, maximally skewed
β/2-stable Lévy process. This asset price model was considered in Hurst et al. (1999). A scaled,
maximally skewed β/2-stable Lévy process is a process with stationary nonnegative indepen-
dent increments,

K(t + s)−K(t) ∼ Sβ/2(cs
β/2, 1, 0), s, t ≥ 0,

where β ∈ (0, 2). Hence, the increment K(t + s)−K(t) has an index of stability less than 1,
maximal skewness of 1, zero location parameter, and characteristic function

exp

(
−scβ/2|y|β/2

(
1 − i tan

(
πβ

4

)
sgn(y)

))
, y ∈ R.

According to Theorem 2.1, we obtain

�(x, T ) ∼ λ

−ψθ(α)(1 − exp(ψθ (α)T ))F̄ (x), x → ∞.

Next we calculate ψθ(α). Because the increment K(t + s) − K(t) is a stable process with
stationary, nonnegative independent increments, we find that the generating triplet of the Lévy
process is (0, 0, ρ) with

ρ(dr) = c1 dr

r1+β/2 , r > 0,

where λ is some positive constant. Therefore, according to Theorem 30.1 of Sato (1999), we
find that W(K(t)) is a Lévy process with generating triplet (0, 0, ν) such that

ν(dx) =
∫ ∞

0

1√
2πs

exp

(
−x

2

2s

)
c1 ds

s1+β/2 dx

= c12β/2√
π
�

(
β + 1

2

)
dx

|x|1+β , −∞ < x < ∞.

Now we calculate c1. Clearly, by the uniqueness of the characteristic function and Lemma 14.11
of Sato (1999), we have

− cβ/2|y|β/2
(

1 − i tan

(
πβ

4

)
sgn(y)

)

=
∫

R

(eiyr − 1)ρ(dr)

= c1

∫ ∞

0
(eiyr − 1)

dr

r1+β/2

= c1�

(
−β

2

)
|y|β/2 exp

(
−i
πβ

4
sgn(y)

)

= c1�

(
−β

2

)
|y|β/2 cos

(
πβ

4

)(
1 − i tan

(
πβ

4

)
sgn(y)

)
. (2.3)
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Therefore,

c1 = − cβ/2

�(−β/2) cos(πβ/4)
.

By (1.2), (1.3), and (1.4), we have

ψθ(α) = −µθα +
∫ ∞

−∞
(e−αx − 1)νθ (dx)

= −θµα − (1 − θ)δα

+
∫
x>log(1−θ)

((1 + θ(ex − 1))−α − 1)
c12β/2√
π
�

(
β + 1

2

)
dx

|x|1+β .

3. Proof of Theorem 2.1

To prove Theorem 2.1, we start by establishing four necessary lemmas.
Let X and Y be two independent random variables, where X is concentrated on (−∞,∞)

with a DF F and Y is a nonnegative random variable with DF G, which is not degenerate at 0.
We write

Z = XY, (3.1)

and denote the distribution of Z by F ⊗ G. The lemma below is a direct consequence
of Theorem 3.3(iv) of Cline and Samorodnitsky (1994) (see also Lemma 3.8 of Tang and
Tsitsiashvili (2003a)).

Lemma 3.1. Consider the model in (3.1). If F ∈ D ∩ S and
∫ ∞

0 xr dG(x) < ∞, where
∞ > r > J

+
F , then the distribution of the product XY belongs to the intersection D ∩ S and

we have
F̄ ⊗G(x) � F̄ (x).

The proof of Lemma 3.2, below, parallels the argument in Tang and Tsitsiashvili (2004) with
some adjustments.

Lemma 3.2. Suppose that a nonnegative random variableXwith DFF ∈ D and a nonnegative
random variable ξ are independent. Then, for arbitrarily fixed δ > 0 and p > 0 such that
J
+
F < p < ∞, there exists some positive constant C without relation to ξ and δ such that, for

all positive integers i and all large x,

P{Xξ > δx | ξ} ≤ CF̄ (x)(δ−pξp 1[δ≤ξ ] + 1[δ>ξ ]). (3.2)

Proof. To avoid triviality, we assume that ξ �= 0. We divide P{X+ξ > δx | ξ} into the sum
of the following three parts:

V1(x) = P

{
X+ξ > δx, ξ ≥ δx

D2

∣∣∣∣ ξ
}
,

V2(x) = P

{
X+ξ > δx,

δx

D2
> ξ ≥ δ

∣∣∣∣ ξ
}
,

V3(x) = P{X+ξ > δx, ξ < δ | ξ},
where D2 is given in (2.1). Applying inequality (2.1), we find that

V1(x) ≤ 1[ξ≥δx/D2] ≤ D
p
2 δ

−px−pξp 1[ξ≥δ] ≤ Cδ−pF̄ (x)ξp 1[ξ≥δ]
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holds uniformly for large x. Applying inequality (2.1) again, we find that

V2(x) ≤ Cδ−pF̄ (x)ξp 1[δx/D2>ξ≥δ] ≤ Cδ−pF̄ (x)ξp 1[ξ≥δ]
holds uniformly for large x. We can also find that

V3(x) ≤ P{X > x, ξ < δ | ξ} = F̄ (x) 1[ξ<δ]
holds uniformly for all x > 0. Hence, we conclude (3.2). This completes the proof.

Lemma 3.3. For the risk model introduced in Subsection 1.1, we have
∞∑
j=1

P{Xj exp(−Lθ(τj )) 1[τj≤T ] > y} = λ

∫ T

0
P{X1 exp(−Lθ(t)) > y} dt.

Proof. Let Gj(t) denote the distribution function of τj . Hence, we obtain

∞∑
j=1

P{Xj exp(−Lθ(τj )) 1[τj≤T ] > y} =
∞∑
j=1

∫ T

0
P{X1 exp(−Lθ(t)) > y} dGj(t)

=
∞∑
j=1

∫ T

0
P{X1 exp(−Lθ(t)) > y}λ (λt)

j−1

(j − 1)!e−λt dt

= λ

∫ T

0
P{X1 exp(−Lθ(t)) > y} dt.

Lemma 3.4. Let {Xk; 1 ≤ k ≤ n} be n i.i.d. random variables with common distribution
function F ∈ S. Then, for any fixed 0 < a ≤ b < ∞,

P

{ n∑
k=1

ckXk > x

}
∼

n∑
k=1

P{ckXk > x}

holds uniformly for all real numbers {ck; 1 ≤ k ≤ n} such that ck ∈ [a, b], 1 ≤ k ≤ n.

Proof. See Proposition 5.1 of Tang and Tsitsiashvili (2003b).

We are now in a position to give a proof of Theorem 2.1.

Proof of Theorem 2.1. Clearly,

Vθ(t) =
∞∑
n=1

Xn exp(−Lθ(τn)) 1[τn≤t] −c
∫

[0,t]
exp(−Lθ(y)) dy, t ≥ 0.

Thus,

�(x, T ) ≤ P

{ ∞∑
n=1

Xn exp(−Lθ(τn)) 1[τn≤T ] > x

}
.

Klüppelberg and Kostadinova (2008) have shown that ψθ(s) < ∞ for all s > 0 and 0 < θ < 1
(see the proof of Lemma 4.1(a) in Klüppelberg and Kostadinova (2008)). Denote ϑn(t) =
exp(−Lθ(τn)) 1[τn≤t], and let Gj be the DF of τj . For every β > 0, we have

∞∑
n=1

E[ϑβn (T )] =
∞∑
n=1

E

[∫ T

0
exp(−βLθ(t))λ(λt)

n−1

(n− 1)! e−λt dt

]
= λ

∫ T

0
exp(tψθ (β)) dt < ∞.

(3.3)
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Take p2 > J
+
F . We have, for every δ

′
> 0,

∞∑
n=1

n8p2+6(E[ϑ2p2
n (T )] + E[1[ϑn(T )<δ′ ]])

=
∞∑
n=1

n8p2+6
(

E

[∫ T

0
exp(−2p2Lθ(t)) dGn(t)

]

+
∫ T

0
P

{
exp(−Lϑ(t)) < δ

′
}

dGn(t)

)

=
∞∑
n=1

n8p2+6
(∫ T

0
exp(tψθ (2p2)) dGn(t)+

∫ T

0
P

{
exp(−Lϑ(t)) < δ

′
}

dGn(t)

)

≤ max{2, exp(T ψθ (2p2))+ 1}
∞∑
n=1

n8p2+6Gn(T )

= max{2, exp(T ψθ (2p2))+ 1}
∞∑
n=1

n8p2+6 P{N(T ) ≥ n}

≤ Cmax{2, exp(T ψθ (2p2))+ 1}
∞∑
k=1

k8p2+7 P{N(T ) = k}

< ∞. (3.4)

Clearly, for every m0 > 1, using the Cauchy–Schwartz inequality, we obtain

E

[( ∞∑
n=m0+1

n4p2+2 max{ϑp2
n (T ), 1[ϑn(T )<1/n2]}

)2]

≤ E

[ ∞∑
n=m0+1

n−2
]( ∞∑

n=m0+1

n8p2+6 max{ϑ2p2
n (T ), 1[ϑn(T )<1/n2]}

)

≤ C

∞∑
n=m0+1

n8p2+6
(

E[ϑ2p2
n (T )] + E[1[ϑn(T )<1/n2]]

)
.

Hence, for any ε > 0, we can take m0 = m0(ε) large enough such that

m
2p2+2
0 E1/2

[( ∞∑
n=m0+1

1[ϑn(T )<1/n2]
)2]

≤ E1/2
[( ∞∑

n=m0+1

n2p2+2 1[ϑn(T )<1/n2]
)2]

< ε,

(3.5)

m
2p2+2
0 E1/2

[( ∞∑
n=m0+1

ϑ
p2
n (T )n

2p2

)2]
≤ E1/2

[( ∞∑
n=m0+1

ϑ
p2
n (T )n

4p2+2
)2]

< ε, (3.6)

∞∑
n=m0

1

n2 < 1.

Denote the conditional distribution functions of
∑m0
n=1 ϑn(T )Xn and

∑∞
n=m0+1 ϑn(T )Xn, given
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{ϑn(T ), n ≥ 1}, by F1ϑ and F2ϑ , respectively. By Lemma 3.2 we obtain

F̄2ϑ(x) ≤ P

{ ∞∑
n=m0+1

ϑn(T )Xn >

∞∑
n=m0+1

1

n2 x

∣∣∣∣ ϑn(T ), n ≥ 1

}

≤
∞∑

n=m0+1

P

{
ϑn(T )Xn >

1

n2 x

∣∣∣∣ ϑn(T ), n ≥ 1

}

≤ CF̄ (x)

∞∑
n=m0+1

(ϑ
p2
n (T )n

2p2 + 1[ϑn(T )<1/n2])

= CF̄ (x)(Lϑ1(T ,m0)+ Lϑ2(T ,m0)).

Therefore, for some M and x ≥ M ,

�(x, T ) ≤ E

[
P

{ m0∑
n=1

ϑn(T )Xn +
∞∑

n=m0+1

ϑn(T )Xn > x

∣∣∣∣ ϑn(T ), n ≥ 1

}]

= E

[(∫ x−M

−∞
+

∫ ∞

x−M

)
F̄2ϑ(x − y)F1ϑ(dy)

]

≤ C E

[
(Lθ1(T ,m0)+ Lθ2(T ,m0))

∫ x−M

−∞
F̄ (x − y)F1ϑ(dy)

]

+ E

[∫ ∞

x−M
F1ϑ(dy)

]

≤ C E

[
(Lθ1(T ,m0)+ Lθ2(T ,m0))

× P

{
Xm0+1 +

m0∑
n=1

ϑn(T )Xn > x

∣∣∣∣ ϑn(T ), n ≥ 1

}]

+ P

{ m0∑
n=1

ϑn(T )Xn > x −M

}

= I1(T )+ I2(T ). (3.7)

By the dominated convergence theorem we have

lim
r→0

P{ϑi(T ) < r} =
∫ T

0
lim
r→0

P{exp(−Lθ(t)) < r} dGi(t) = 0.

Therefore, by (3.3) we can take 1 > η > 0 and B > 0 such that, for all j, n = 1, 2, . . . , m0,

E[ϑp2
n (T ) 1[ϑj (T )<η]] <

ε

m
p2+2
0

, P{ϑj (T ) < η} < ε

m
p2+2
0

, (3.8)

and

E[ϑp2
n (T ) 1[ϑj (T )>B]] < ε

m
p2+2
0

, P{ϑj (T ) > B} < ε

m
p2+2
0

. (3.9)
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For I2(T ), we obtain

I2(T ) ≤ P

{ m0∑
n=1

Xnϑn(T ) > x −M,
⋂

1≤j≤m0

{ϑj (T ) ≤ B};
⋂

1≤j≤m0

{ϑj (T ) ≥ η}
}

+ P

{ m0∑
n=1

Xnϑn(T ) > x −M,
⋃

1≤j≤m0

{ϑj (T ) < η};
⋂

1≤j≤m0

{ϑj (T ) ≤ B}
}

+ P

{ m0∑
n=1

Xnϑn(T ) > x −M,
⋃

1≤j≤m0

{ϑj (T ) > B}
}

= I3(T )+ I4(T )+ I5(T ). (3.10)

Now we treat I4(T ). By Lemma 3.2, (2.1), the definition of η, and the property of the long tail,
we have, for all large x > M ,

I4(T ) ≤
m0∑
j=1

P

{ m0∑
n=1

Xnϑn(T ) > x −M, ϑj (T ) < η

}

≤
m0∑
j=1

m0∑
n=1

P

{
Xnϑn(T ) >

x −M

m0
, ϑj (T ) < η

}

=
m0∑
j=1

m0∑
n=1

E

[
1[ϑj (T )<η] P

{
Xnϑn(T ) >

x −M

m0

∣∣∣∣ ϑk(T ), 1 ≤ k ≤ m0

}]

≤ CF̄ (x −M)

m0∑
j=1

m0∑
n=1

E[1[ϑj (T )<η](m
p2
0 ϑ

p2
n (T )+ 1[ϑn(T )<1/m0])]

≤ Cm
p2
0 F̄ (x −M)

m0∑
j=1

m0∑
n=1

(E[ϑp2
n (T ) 1[ϑj (T )<η]] + P{ϑj (T ) < η})

≤ CεF̄ (x). (3.11)

Let A1 = ⋂
1≤j≤m0

{η ≤ ϑj (T ) ≤ B}. Using Lemma 3.4 and F ∈ D ∩ S, and noting that
Xnϑn(T ) ∈ D ∩ S by Lemma 3.1 and (3.3), we derive

I3(T ) = E

[
P

{ m0∑
n=1

Xnϑn(T ) > x −M,A1

∣∣∣∣ ϑn(T ), n = 1, . . . , m0

}]

∼
m0∑
n=1

E

[
P

{
Xnϑn(T ) > x −M,A1

∣∣∣∣ ϑn(T ), n = 1, . . . , m0

}]

≤
m0∑
n=1

P

{
Xnϑn(T ) > x −M

}

∼
m0∑
n=1

P{Xnϑn(T ) > x}. (3.12)
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Next we treat I5(T ). Similarly to I4(T ) we have, for large x,

I5(T ) ≤
m0∑
j=1

P

{ m0∑
n=1

Xnϑn(T ) > x −M, ϑj (T ) > B

}

≤ Cm
p2
0 F̄ (x −M)

m0∑
j=1

m0∑
n=1

(E[ϑp2
n (T ) 1[ϑj (T )>B]] + P{ϑj (T ) > B})

≤ CεF̄ (x). (3.13)

Combining (3.10)–(3.13) we obtain, for all large x > 0,

I2(T ) ≤ CεF̄ (x)+ (1 + ε)

∞∑
n=1

P{Xnϑn(T ) > x}. (3.14)

Next we deal with I1(T ). Clearly, by Lemma 3.2 and (2.1), we obtain, for large x,

P

{
Xm0+1 +

m0∑
n=1

ϑn(T )Xn > x

∣∣∣∣ ϑn(T ), n ≥ 1

}

≤
m0∑
n=1

P

{
ϑn(T )Xn >

x

m0 + 1

∣∣∣∣ ϑn(T ), n ≥ 1

}

+ P

{
Xn+1 >

x

m0 + 1

∣∣∣∣ ϑn(T ), n ≥ 1

}

≤ CF̄

(
x

m0 + 1

) m0∑
n=1

(ϑ
p2
n (T )+ 1[ϑn(T )<1])+ F̄

(
x

m0 + 1

)

≤ Cm
p2
0 F̄ (x)

(
m0 + 1 +

m0∑
n=1

ϑ
p2
n (T )

)

= Lϑ3(T ,m0)F̄ (x). (3.15)

Substituting (3.15) into I1(T ) and using (3.5) and (3.6), we obtain, from the Cauchy–Schwartz
inequality, for large x,

I1(T ) ≤ CF̄ (x)E[(Lϑ1(T ,m0)+ Lϑ2(T ,m0))Lϑ3(T ,m0)]
≤ CF̄ (x)E1/2[Lϑ1(T ,m0)+ Lϑ2(T ,m0)]2 E1/2[L2

ϑ3(T ,m0)]
≤ CF̄ (x)(E[L2

ϑ1(T ,m0)] + E[L2
ϑ2(T ,m0)])1/2 E1/2[L2

ϑ3(T ,m0)]
≤ CF̄ (x)

ε

m
2p2+2
0

E1/2[L2
ϑ3(T ,m0)]. (3.16)

For E[L2
ϑ3(T ,m0)], we derive, from (3.3),

E[L2
ϑ3(T ,m0)] ≤ Cm

2p2
0

(
(m0 + 1)2 +m0

m0∑
k=1

E[ϑ2p2
n (T )]

)
≤ Cm

2p2+2
0 .

https://doi.org/10.1239/aap/1240319582 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319582


Finite-time ruin probability 221

Combining the above formula with (3.16) we have

I1(T ) ≤ CεF̄ (x). (3.17)

Substituting (3.14) and (3.17) into (3.7), we obtain, for large x,

�(x, T ) ≤ CεF̄ (x)+ (1 + ε)

∞∑
n=1

P{Xnϑn(T ) > x}. (3.18)

On the other hand, we have

E[ϑp2
1 (T )] = E

[∫ T

0
exp(−p2Lθ(t))λe−λt dt

]
=

∫ T

0
exp(tψθ (p2))λe−λt dt > 0.

Hence, we have, P{ϑ1(T ) > 1} + C−1
2 E[ϑp2

1 (T ) 1[ϑ1(T )≤1]] > 0 , where C−1
2 is as defined

in (2.1). Note that, for large enough x,

P{X1ϑ1(T ) > x} = P{X1ϑ1(T ) > x, ϑ1(T ) > 1} + P{X1ϑ1(T ) > x, ϑ1(T ) ≤ 1}
≥ P{X1 > x, ϑ1(T ) > 1} + C−1

2 F̄ (x)E[ϑp2
1 (T ) 1[ϑ1(T )≤1]]

= F̄ (x)(P{ϑ1(T ) > 1} + C−1
2 E[ϑp2

1 (T ) 1[ϑ1(T )≤1]]). (3.19)

By (3.18) and (3.19), we obtain, for large x,

�(x, T ) ≤ Cε P{X1ϑ1(T ) > x} + (1 + ε)

∞∑
n=1

P{Xnϑn(T ) > x}

≤ (1 + Cε)

∞∑
n=1

P{Xnϑn(T ) > x}.

Next we consider the lower bound. By Lemma 3.2, (3.3), and (3.4), we find that, for any ε > 0,
there exists a positive integerm0 = m0(ε) such that, for anym ≥ m0, p2 > J

+
F , and all large x,

∞∑
n=m

P{Xnϑn(T ) > x} =
∞∑
n=m

E[P{Xnϑn(T ) > x | ϑn(T )}]

≤ F̄ (x)

∞∑
n=m

(E[ϑp2
n (T )] + P{ϑn(T ) < 1})

≤ CεF̄ (x). (3.20)

Since E[∫ T0 exp(−Lθ(t)) dt] = ∫ T
0 E[exp(−Lθ(t))] dt = ∫ T

0 exp(tψθ (1)) dt < ∞, by (3.3)
we can take a positive number A such that, for all n = 1, . . . , m0,

E[ϑp2
n (T ) 1[∫ T0 exp(−Lθ (t)) dt>A]] <

ε

m0
, P

{∫ T

0
exp(−Lθ(t)) dt > A

}
<

ε

m0Bp2
,

and let

A2 =
{ ⋂

1≤j≤m0

{η ≤ ϑj (T ) ≤ B},
∫ T

0
exp(−Lθ(t)) dt ≤ A

}
,
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where B and η are defined in (3.8) and (3.9). Next we deal with the lower bound of �(x, T ).
By Lemma 3.4,

�(x, T ) ≥ P

{ ∞∑
n=1

Xnϑn(T ) > c

∫ T

0
exp(−Lθ(t)) dt + x

}

≥ P

{ m0∑
n=1

Xnϑn(T ) > cA+ x,A2

}

= E

[
1A2 P

{ m0∑
n=1

Xnϑn(T ) > cA+ x

∣∣∣∣ ϑk(T ), 1 ≤ k ≤ m0,

∫ T

0
exp(−Lθ(t)) dt

}]

∼
m0∑
n=1

P{Xnϑn(T ) > cA+ x,A2}

≥
m0∑
n=1

P

{
Xnϑn(T ) > x + cA,

⋂
1≤j≤m0

{η ≤ ϑj (T ) ≤ B}
}

−
m0∑
n=1

P

{
Xnϑn(T ) > x,

⋂
1≤j≤m0

{η ≤ ϑj (T ) ≤ B},
∫ T

0
exp(−Lθ(t)) dt > A

}

= I12(T )− I13(T ). (3.21)

By the same approach used to prove I4(T ) and I5(T ), we obtain, for large x and all n =
1, 2, . . . , m0,

m0∑
n=1

{
Xnϑn(T ) > x,

⋃
1≤j≤m0

{η > ϑj (T )}
}

≤ CεF̄ (x)

and

m0∑
n=1

P

{
Xnϑn(T ) > x,

⋃
1≤j≤m0

{ϑj (T ) > B}
}

≤ CεF̄ (x).

Note thatXnϑn(T ) ∈ S ∩D by Lemma 3.1. Hence, for I12(T ), by the property of S ∩D ⊂ L
we have, for large enough x > 0,

I12(T ) ≥
m0∑
n=1

P{Xnϑn(T ) > x + cA} −
m0∑
n=1

P

{
Xnϑn(T ) > x + cA,

⋃
1≤j≤m0

{η > ϑj (T )}
}

−
m0∑
n=1

P

{
Xnϑn(T ) > x + cA,

⋃
1≤j≤m0

{ϑj (T ) > B}
}

≥ (1 − ε)

m0∑
n=1

P{Xnϑn(T ) > x} − CεF̄ (x). (3.22)
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As for I13(T ), by (2.1) we have, for large x,

I13(T ) ≤
m0∑
n=1

P{XnB > x} P

{∫ T

0
exp(−Lθ(t)) dt > A

}

≤ C2m0B
p2 F̄ (x)P

{∫ T

0
exp(−Lθ(t)) dt > A

}

≤ CεF̄ (x). (3.23)

Combining (3.20)–(3.23) and using (3.19), we obtain, for large x,

�(x, T ) ≥ (1 − ε)

m0∑
n=1

P{Xnϑn(T ) > x} − CεF̄ (x)

≥ (1 − ε)

∞∑
n=1

P{Xnϑn(T ) > x} − CεF̄ (x)

≥ (1 − Cε)

∞∑
n=1

P{Xnϑn(T ) > x}.

where in the last step we have used (3.19).
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