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7 Tools to Explain Wellbeing

There are three kinds of lies: lies, damned lies, and statistics.
Mark Twain

To explain the level and inequality of wellbeing, we use the standard tools of quantita-
tive social science. These are mainly the techniques of multiple regression. In this
chapter, we shall show how multiple regression can address the following issues.1

(1) What is the effect of different factors on the level of wellbeing (using
survey data)?

(2) What problems arise in estimating this and how can they be handled?
(3) How far do different factors contribute to the observed inequality of wellbeing?
(4) How can experiments and quasi-experiments show us the effect of interventions

to improve wellbeing?

So suppose that a person’s wellbeing (W) is determined by a range of explanatory
variables (X1, . . ., XN) in an additive fashion. But in addition there is an unexplained
residual (e), which is randomly distributed around an average value of zero. Then the
wellbeing of the ith individual (Wi) is given by

Wi ¼ a0 þ a1Xi1 þ . . .þ aNXiN þ ei,

which we can also write as

Wi ¼ a0 þ
XN
j¼1

aj Xij þ ei: (1)

In this equation, wellbeing is being explained by the Xjs. So wellbeing is the
‘dependent’ variable (or left-hand variable) and the Xjs are the ‘independent’ or
(right-hand) variables. These right-hand variables can be of many forms. They can
be continuous like income or the logarithm of income or like age or age squared. Or
they can be binary variables like unemployment: you are either unemployed or not
unemployed. These binary variables are often called dummy variables and they take

1 The treatment is introductory and some readers will already know it all. If not, it will help you understand
what you are doing when you use statistical software. For fuller expositions, see one of the excellent
textbooks such as Angrist and Pischke (2008).
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the value of 1 when you are in that state (e.g., unemployed) and the value of 0 when
you are not in that state (e.g., not unemployed).

If we want to explain wellbeing, we have to discover the size of the effect of each
thing that affects wellbeing. In other words, we have to discover the size of the ajs. For
example, suppose

Wi ¼ a0 þ a1 log Incomei þ a2 Unemployedi þ ei: (2)

From Chapter 8, you will find as benchmark numbers that a1 = 0.3 and a2 = �0.7. This
means that when a person’s log Income increases by one point, her wellbeing increases by
0.3 points (out of 10). Similarly, when a person ceases to be unemployed, her wellbeing
increases by 0.7 points (ignoring any effect of a simultaneous change in income). And, if
both things happen together, wellbeing increases by a whole point (0.3 + 0.7).

Estimating the Effect of a Variable

But how are we to estimate, as best we can, the true values of these aj coefficients?
The best unbiased way of doing this is to find the set of ajs that leaves the smallest sum
of squared residuals ei

2, across the whole sample of people being studied.2 This is
known as the method of Ordinary Least Squares (OLS). Standard programmes like
STATA will do it for you automatically. However, there are 4 possible problems with
such estimates when obtained from a cross-section of the population.

Omitted variables

Suppose that equation (2) is not the correct model but that another X variable should
also be in the equation. Suppose, for example, that the right model is

Wi ¼ a0 þ a1 log Incomei þ a2 Unemployedi þ a3 Educationi þ ei (3)

where Education means years of education. Clearly education and income are posi-
tively correlated. So if a1 and a3 are positive, people with higher income will be
getting higher wellbeing for 2 reasons:

the direct effect of income (a1) and
the effect of education in so far as it is correlated with income.

Thus, equation (2) will give an exaggerated estimate of the direct effect (a1) of income
on wellbeing.3 To leave out education is to leave out a confounding variable. And any
such confounding variable must have two properties:

it is causally related to the dependent (LHS) variable and
it is correlated with an independent (RHS) variable.

2 This is the best unbiased estimation system (with least standard errors on the estimated ajs), provided the
errors are homoscedastic.

3 The sign of the bias in a1 equals the sign of a3 times the sign of the correlation of X1 and X3.

114 Wellbeing

https://doi.org/10.1017/9781009298957.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009298957.011


If we lack data on the confounding variable, the classic way to overcome this problem
is to use time-series panel data on the same people. Provided the omitted variable is
constant over time, it can cause no problem, since we can now estimate how changes
in income within the same person affect changes in her wellbeing. Thus, if we use
time-series data, we cease to compare different individuals at the same point of
time and we compare the same individual at different periods of time. Algebraically,
we do this by expanding equation (2) to include multiple time periods (t) and
adding a fixed effect dummy variable ( fi) for each individual. This picks up the effect
of all the fixed characteristic of the individual (which for most adults will include
education). Thus, we now explain the wellbeing of the ith person in the tth time
period by

Wit ¼ a0 þ a1 log Incomeit þ a2 logUnemployedit þ f i þ eit: (4)

There are standard programmes for including fixed-effects. A similar method to this is
used for analysing the effect of experiments, but we shall come to this later.

Reverse causality

However, there is another problem. Suppose we are interested in the effect of income
on wellbeing. But suppose that there is also the reverse effect – of wellbeing on
income.4 How can we be sure that, when we estimate equation (2), we are really
estimating the effect of income on wellbeing rather than the reverse relationship or a
mixture of the two? In other words is equation (2) in principle ‘identifiable’?

For an equation to be identifiable, it must exclude at least one of the variables that
appears in the second relationship (the one that determines income).5 But, even if it is
identifiable, there is still the problem of getting a causal estimate of the effects of the
endogenous variable.

The aim has to be to isolate that part of the endogenous variable that is due to
something exogenous to the system. A variable that can isolate that part of the
endogenous variable is called an instrumental variable. For example, if tax rates
or minimum wages changed over time, these would be good instruments. Instrumental
variables can also be used to handle the problem of omitted variables. In every case a
good instrument

(i) is well related in a causal way to the variable it instruments and
(ii) should not itself appear in the equation, (i.e., it is not correlated with the error term

in the equation).

There are programmes for the use of instrumental variables (IVs).

4 For evidence on the reverse relationship (the effect of adolescent wellbeing on later earnings), see De
Neve and Oswald (2012).

5 In a three-equation system, it would need to exclude two variables from the rest of the system and so on.
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Another way to isolate causal relationships is through the timing of effects. For
example, income affects wellbeing in the next period rather than the current period.
We can then identify its effect by regressing current wellbeing on income in the
previous period. Similarly with unemployment. This gives us

Wit ¼ a0 þ a1 log Incomei,t�1 þ a2Unemployedi,t�1 þ f i þ eit: (5)

Measurement error

Another source of biased estimates is measurement error. If the left-hand variable has
high measurement error, this will not bias the estimated coefficients aj. But, if an
explanatory variable Xj is measured with error, this will bias aj towards zero. If the
measurement error is known, this can be used to correct for the bias. But, if not, an
instrumental variable can again come to the rescue, provided it is uncorrelated with the
measurement error in the variable it is instrumenting.

Mediating variables

A final issue is this. A multiple regression equation such as (3) shows us the effect of
each variable upon wellbeing holding other things constant. But suppose we are
interested in the total effect of changing one variable upon wellbeing. For example,
we might ask What is the total effect of unemployment upon wellbeing?

The total effect is clearly

� a2, plus
� a1 times the effect of unemployment upon log income.

That is one way you could estimate it. An alternative way is to take equation (2) and
leave income out of the equation, so that the estimated coefficient on unemployment
includes any effect that unemployment has on wellbeing via its effect on income.

In a case like this, income is a mediating variable. If we are only interested in the
total effect of unemployment, we can simply leave the mediating variable out of the
equation. Or we can estimate a system of structural equations consisting of (2) and the
equation that determines income. This discussion brings out one crucial point in
wellbeing research. We should always be very clear what question we are trying to
answer. We should choose our equation or equations accordingly.

Standard errors and significance

All coefficients are estimated with amargin of uncertainty. Each estimated coefficient has a
‘standard error’ (se) around the estimated value. The true value will lie within 2 ‘standard
errors’ on either side of the estimated coefficients in 95% of samples. Thus the ‘95%
confidence interval’ for the αj coefficient runs from baj � 2sej to baj þ 2sej, where baj means
the estimated value of αj. If this confidence interval does not include the value zero, the
estimated coefficient is said to be ‘significantly different from zero at the 95% level’.
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For many psychologists, this issue of significance is considered crucial. It answers
the question ‘Does X affect W at all?’ But for policy purposes the more important
question is ‘How much does X affect W?’ So the coefficient itself is more interesting
than its significance level. For any sample size, the estimated coefficient is the best
available answer to the question of how much X changes W. And, if you increase the
size of the sample, the expected value of the estimated aj does not change but its
standard error automatically falls (it is inversely proportional to the square root of the
sample size). So in this book we focus more heavily on the size of coefficients than on
their significance (though we sometimes show standard errors in brackets in the
tables).

The question we have been asking thus far in this chapter is How does wellbeing
change when an independent variable changes? In algebraic terms, we have been
studying dW/dXj? This is the type of number we need in order to evaluate a policy
change. For example, suppose we increased the income of poor people by 20%, how
much would their wellbeing change (on a scale of 0–10)? If aj ¼ 0.3, it would increase
by 0.06 points (0.3 � 0.2). A quite different question is In which areas of life should
we look hardest in the search for better policies?

The Explanatory Power of a Variable

If our main aim is to help the people with the lowest wellbeing (as we discussed in
Chapter 2), then our focus should be on what explains the inequality of wellbeing. To see
why, suppose first that wellbeing depends only on one variable X1, withW¼ α0þ α1X1.
Then the distribution of W depends only on the distribution of X1. If W is unequal, it is
because X1 is unequal and α1 is high. The higher the standard deviation (σ1) of X1 and the
higher α1, the greater the inequality of W. This is illustrated in Figure 7.1. For high
variance of W, the numbers in misery correspond to the areas A and B. But for the low
variance ofW the numbers in misery correspond only to the area B.

A next natural step is to compare the standard deviation of a1σ1 with the standard
deviation of wellbeing itself. Obviously, if they were equal in size, the spread of X1

would be ‘explaining’ the whole spread of wellbeing σw – in other words, the two
variables would be perfectly correlated. The correlation coefficient (r) between W and
X1 is therefore a1σ1/σw:

r ¼ a1σ1
σw

¼ Correlation coefficient

However, this can be either positive or negative depending on the sign of a1. So a
natural measure of the explanatory power of a right-hand variable is the squared
value of r (which is also often written as R2):

r2 ¼ a21σ
2
1

σ2w
¼ Share of variance explained

Since the denominator is the variance of wellbeing, this shows what proportion of the
variance in wellbeing is explained by the variance of X1.
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In the real world, wellbeing depends on more than one variable (see equation [1]).
The policy-maker may then ask Which of these variables is producing the largest
amount of misery?6 For this purpose, we need to compare the explanatory power of
the different variable. This is done by computing for each variable its partial correl-
ation coefficient with wellbeing. This partial correlation coefficient is normally
described as βj where

βj ¼
ajσj
σw

¼ Partial correlation coefficient:

This β-coefficient will appear frequently throughout this book.7

These β-coefficients are hugely interesting, as we shall see via two steps. First,
starting from equation (1) we can readily derive the following equation.8

Wi � �W

σw
¼

X
βj

Xij � �Xj

� �
σj

þ ei
σw

(6)

Figure 7.1 How the numbers in misery are affected by a1σ1

6 As discussed in Chapter 18, the policy-maker can then develop policies in these areas and target them at
those individuals least favoured in these variables. This is reasonably practical, while it is not really
practical to identify the individuals with the lowest wellbeing and then target them with the best policies
(though that would be the most logical approach).

7 Sociologists often call it the ‘path coefficient, p’.
8 (i) Divide both sides by σw. (ii) Multiply and divide Xj by σj. (iii) Derive the average equation for the
whole population and subtract it from the original equation (to eliminate a0/σw).

118 Wellbeing

https://doi.org/10.1017/9781009298957.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009298957.011


Here we have standardised each variable by measuring it from its mean and dividing it
by its standard deviation. These standardised equations appear many times in this book.9

But, to see the importance of these βs, we move on to a second equation, which is
derived from (6).10 This says

r2 ¼
X

β2j þ
XX

βg βk rgk g 6¼ kð Þ; (7)

r2 is the proportion of the variance of W that is explained by the right-hand variables.
And rgk is the correlation coefficient between Xg and Xk.

Thus, the left-hand side is the share of the variance of wellbeing that is explained.
The right-hand side consists of Σβj

2, which includes all the effects of the independent
variation of the Xjs, plus the effects of all their covariances. Thus βj (or the partial
correlation coefficient) measures the explanatory power of a variable (just as the
correlation coefficient does in a simple bivariate relationship).

But some readers may wonder if this approach can handle independent variables
that are binary. It can, because the standard deviation of a binary variable is simplyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þp
, where p is the proportion of people answering Yes to the binary question.

For example, the standard deviation of Unemployed is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 1� uð Þp

where u is the
unemployed rate. Thus, if Xj is Unemployed, its β coefficient is aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 1� uð Þp

=σw.

Binary dependent variables

The matter is more complicated when it is the dependent variable that is binary. For
example, suppose we divide the population into those who are in misery (with wellbeing
below say 6) and the rest. How can we handle this? The most natural approach is, as
normal, to regress the binary variable on all the other variables. This iswhatwe often do in
this book and, since it provides statistics of the standard kind, it is easy to understand.11

Box 7.1 Odds ratios
In analysing the effect of one binary variable on another binary variable, psycholo-
gists and sociologists often use the concept of an ‘odds ratio’ rather than the values
of aj and βj we have been discussing. Suppose, for example, we ask: How much
more likely are unemployed people to be in misery, compared with people who are
not unemployed? Imagine 100 people were distributed as follows (Table 7.1):

9 The standardised value of a variable is often called its z-score. In other words, Xij��Xj

σj
is individual i’s

z-score for the variable Xj.
10 To derive this, (i) square both sides of equation (6) and (ii) add up the equations, for all the individuals.

(iii) Note that r2 = 1�Σei
2/σw

2.
11 This linear probability model (LPM) has the problem that whereas the left-hand variable is either 1 or 0,

the regression equation predicts all kinds of values for different individuals including some which are
greater than 1 or less than 0. Thus, there is an alternative approach to binary dependent variables which
assumes that a person has a given probability of being 1 or 0 as a function of the Xjs and then chooses that
function which makes what actually happened to appear as likely as possible. Depending on the
functional form, this type of analysis is called either Logit or Probit analysis which is again available
in STATA.
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Box 7.1 (cont.)

In this situation, the chance of an unemployed person being in misery is much higher
than the chance of a non-unemployed person being in misery. The odds-ratio is

2
8
=
9
81

≏2:25:

But odds ratios do not answer either of the main questions we are addressing in this
chapter. First, if we are interested in the effect on wellbeing of reducing unemploy-
ment, the propermeasure of this effect is not the odds ratio but the absolute difference
in the probabilities of misery between unemployed and non-unemployed people, that
is, 0.2�0.1 ¼ 0.1. Second, if we are interested in the power of unemployment to
explain the prevalence of misery, the correct statistic is the correlation coefficient
between the two. So we shall not be showing odds ratios in this book, though the
reader is able to compute them, given the necessary information.

Effect size of a binary independent variable

We have so far considered two ways in which to report regression results. One is to
report the absolute effect of say unemployment on wellbeing in units of wellbeing.
The other is to look at the relationship when both variables are standardised. However,
there is the third approach that is often useful. This is to measure only the dependent
variable in a standardised fashion. For example, we might ask ‘When a person
becomes unemployed, by how many standard deviations does his wellbeing go
down?’ This is a measure known as the effect size of the independent variable
(sometimes knows as Cohen’s d):

Effect size ¼ Absolute effect
SD of depdendent variable

¼ Cohen’s d:

This is particularly useful when reporting the effect of an experiment.12

Table 7.1 Distribution of 100 people by unemployment status and misery status

In misery Not in misery Total

Unemployed 2 8 10
Not unemployed 9 81 90
Total 11 89 100

12 Much less useful is the odds ratio (see Box 11.1). It is also useful to know that, if someone started at the
median of a normal distribution and experienced a treatment with a given effect size, the resulting rise in
the person’s position in the distribution would be given approximately by

Change in percentile points ¼ 40 � Effect size
unless the effect size is very large.
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Experiments

So far, we have been discussing the use of naturalistic data – mainly obtained by
surveys of the population. As we have mentioned, it is often difficult to establish the
causal effect of one variable on another from this type of data. The simplest way to
establish a causal relationship is through a properly controlled experiment. Moreover,
if you want to examine the effect of a policy that has never been tried before, it is the
best way to get convincing evidence of its effects.

So how do we estimate the effects of being ‘treated’ in an experiment? Let’s begin
with a simple example. Suppose we want to try introducing a wellbeing curriculum
into a school. Our aim is to see whether it makes any difference to those who receive
it. So we would select two groups of pupils who were as similar to each other as
possible. Then we would give the wellbeing curriculum to the treatment group (T) but
not the control group (c). We would also measure the wellbeing of both groups before
and after the treatment. So we would have the following values of wellbeing for each
of four situations (Table 7.2).

To find the average effect of the treatment, we would compare the change in
wellbeing experienced by the treatment group (T) with that experienced by the control
group (C). Thus, the ‘average treatment effect on the treated’ (ATT) would be
estimated as

ATT ¼ WT1 �WT0ð Þ � WC1 �WC0ð Þ: (8)

In other words, the ATT is the ‘difference in differences’, or for short the ‘diff in diff’.
There may of course be many ways in which both groups changed between periods

0 and 1 – they will become older, they may experience a flu epidemic or whatever. But
those changes should be similar for both groups. Thus the only observable thing that
can produce a different change in wellbeing is the fact that Group T took the course
and Group C did not.

Of course, there may also be some unobservable difference in experience, which
means that the ATT is always estimated with a standard error. So, to put things into a
more general form, let’s imagine we have observations over a number of years. We
then estimate

Wit ¼ a0 þ a1Tit þ vt þ f i þ eit: (9)

Here Tit is a variable which takes the value 1 in all periods after someone has taken the
course, vt is a year dummy, fi is a person fixed effect and eit is random noise.

Table 7.2 Average wellbeing of each group before and after the experiment

Before After

Treatment group (T) WT0 WT1

Control group (C) WC0 WC1

121Tools to Explain Wellbeing

https://doi.org/10.1017/9781009298957.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009298957.011


So far, we have assumed that in our experiment we can easily arrange for the
treatment group and the control group to be reasonably similar. This is never in fact
completely possible. But the method that gets us closest to it is ‘random
assignment’.13 In this case, we select an overall group for the experiment and then
randomly assign people to either Group T or Group C (e.g., by tossing a coin for each
individual). In this way, the groups are more likely to be similar than in any other way.
Of course we can then check whether they differ in observable characteristics (X) and
we can then allow in our equation for the possibility that these variables affect the
measured ATT. Our equation then becomes

Wit ¼ a0 þ a1Tit þ a2TitXit þ a3Xit þ vt þ f i þ eit: (10)

Estimating equations like this are quite common.
However, randomisation between individuals is often not practicable. For example,

suppose you wanted to test whether higher income transfers raised wellbeing enough
to justify the cost. You could not randomly allocate money within a given population –
it would be considered unfair since the transfer clearly benefits the recipient. You
might, however, choose to transfer money to all eligible people in some areas and not
in others, with the allocation between areas being random. This might not be con-
sidered unfair. Similarly, suppose you wanted to test the effects of improved teaching
of life-skills in schools. Within a school it might be organisationally impossible to
give improved teaching to some children and not others – or even to some classes. But
you could use random assignment across schools. Or you could even argue that it is
‘quasi-random’ whether a child is born in Year t or Year t � 1; in this case, you could
use children born in year t as a control group in the trial of a treatment applied to those
born in year t þ 1 (see Chapter 9). So all experiments should, if at all possible, use
randomisation to reduce the unobservable differences between the treatment and
control groups.

Selection bias

But suppose an innovation is made without an experiment and we then want to know
its effects. For example, an exercise programme has been established, which some
people have decided to adopt. Has it done them any good?

The only information that we have is for the period after the innovation. But we
do also have information on people who did not opt in to the programme. So, can
we answer our question by comparing the wellbeing of those who took the
programme with those who didn’t? Probably not, because the people who opted
into the programme may have differed from those who didn’t: they may well have
started with higher wellbeing in the first place. So, if we just compared their final
wellbeing with those of non-participants, the difference could be largely due to
‘selection bias’.

13 For the limits of this method, see Deaton and Cartwright (2018).
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One method to deal with this is called Propensity Score Matching. In it we first take
the whole sample of participants and non-participants and do a logit (or probit)
analysis to identify that equation that best predicts whether they participate or not.
From this analysis, we can say for every participant what was the probability they
participated. We then find, for each participant, a non-participant with the same (or
nearly the same) probability of participating. It is those non-participants who become
the control group and we now compare their wellbeing with that of the treatment
group. This gives us our estimate of the average treatment effect on the treated:

ATT ¼ ~W of treated� �W of matched sample: (11)

Summary

(1) If W ¼ a0 þ
P

aj Xj +e, then the best unbiased way to estimate the values of the
ajs is by Ordinary Last Squares (choosing the ajs to minimise the sum of squared
residuals e2).

(2) Omitted variables are confounders that can lead to biased estimates of the effect
of the variables which are included.

(3) Time series estimation can eliminate any problem caused by omitted variables
which are constant over time. Time series can also help to identify a causal effect
if this takes place with a lag, so that for example Xt-1 is affecting Wt.

(4) If a right-hand variable is endogenous, it should if possible be instrumented by
an instrumental variable that is independent of the error in the equation.
Instrumental variables can also help with omitted variables and
measurement error.

(5) If an explanatory variable is measured with error, its estimated coefficient will be
biased towards zero. This problem can again be solved by using an instrumental
variable uncorrelated with the original measurement error.

(6) All regression estimates are estimated with ‘standard errors’ (se). The 95%
confidence interval is the coefficient � 2 se. Provided this interval does not
include zero, the coefficient is ‘significantly different from zero at the 95%
level’. But the coefficient estimate is more interesting that its significance.

(7) To find the explanatory power of the different variables, we run the equation
using standardised variables, that is, the original variables minus their mean and
divided by their standard deviation. The resulting coefficients (βj) – or partial
correlation coefficients – reflect the explanatory power of the independent
variation of each variable Xj. They are equal to ajσj/σw where w is the
dependent variable.

(8) The surest way to determine a causal effect is by experiment. The best form of
experiment is by random assignment. We then measure the wellbeing of the
treatment and the control group before and after the experiment. This difference-
in-difference measures the average treatment effect on the treated.
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(9) Where random assignment is impossible, naturalistic data can be used and the
outcome for the treatment group compared with a similar untreated group chosen
by Propensity Score Matching.

(10) If the measured effect of a treatment is a (in units of the outcome variableW), the
‘effect size’ is a/σw.

We can now put these tools to work.

Further Reading

Angrist, J. D., and Pischke, J. S. (2008). Mostly Harmless Econometrics. Princeton University
Press.
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