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Existing experimental results show that swirling flames in annular combustors respond
with a different gain to acoustic azimuthal modes rotating in either the clockwise or
anti-clockwise direction. The ratio R of these two gains is introduced, with R = 1 being
the conventional case of flames responding the same to the two forcing directions. To allow
a difference in response to the different directions (R /= 1), a multiple-input single-output
azimuthal flame describing function is successfully implemented in a quaternion valued
low-order model of an annular combustion chamber in the current work. Theoretical
studies have explored this kind of symmetry breaking between the two acoustic wave
directions in the past, but it has not been backed by experimental data. One of the main
features of the new model proposed in this work is the potential difference in mode shapes
between the acoustic and the heat release rate modes, which has recently been observed
experimentally. This results in a gain-dependent equation for the nature of the mode,
which has a significant influence on the fixed points of the system. For example, one
of the spinning solutions and the standing solution can disappear through a saddle node
bifurcation as the parameters are varied. The presence of only a single direction for the
spinning solution matches experimental observations better than the conventional models,
and the proposed model is shown to qualitatively describe experimental measurements
well.

Key words: low-dimensional models

1. Introduction

Thermoacoustic instabilities are a major design challenge when developing new gas
turbine engines, or when operating existing systems in new regimes and using different
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fuel compositions. The presence of such instabilities can severely limit the operating range
and fuel flexibility of combustion systems, and tools to predict potential thermoacoustic
instabilities are essential to obtaining the desired flexibility. A common approach to
predicting the thermoacoustic stability of a combustion system is to use acoustic models
(Dowling 1997; Dowling & Stow 2003; Stow & Dowling 2004; Nicoud et al. 2007; Noiray,
Bothien & Schuermans 2011; Mensah & Moeck 2015; Laera et al. 2017a,b), where the
nonlinear combustion is accounted for using a flame describing function (FDF) (Dowling
1997). The quality of stability predictions depends on the applicability of the FDF, which
is the only link between the combustion process and acoustic mode in such models. There
are several approaches to determining the FDF of a system, including simple analytical
models (Dowling 1997, 1999; Schuller, Durox & Candel 2003; Noiray et al. 2011), high
fidelity simulations (Krediet et al. 2012; Han & Morgans 2015) and experiments (Kunze,
Hirsch & Sattelmayer 2004; Balachandran et al. 2005; Palies et al. 2010; Boudy et al.
2011; De Rosa et al. 2016; Nygård & Worth 2021). A widely used approach in all cases is
to study an isolated flame subjected to longitudinal acoustic perturbations.

Real gas turbines, on the other hand, often feature an array of flames, commonly in
an annular or a can-annular configuration such as in: Seume et al. (1988), Krebs et al.
(2002), Schuermans, Paschereit & Monkewitz (2006) and Ghirardo et al. (2021a). These
configurations can also exhibit azimuthal, or transverse, thermoacoustic instabilities as
well, as the length scales of the azimuthal and longitudinal dimensions are of a similar
order (Poinsot 2017). Including the potential for significant flame–flame interaction in
annular designs, the applicability of a FDF obtained based on a longitudinally excited
isolated flame is not necessarily known. There have been some attempts to consider the
impact of simultaneous transverse and longitudinal forcing of a single flame in the linear
regime (Saurabh, Moeck & Paschereit 2017; Saurabh & Paschereit 2019), and a modified
transfer function accounting for both types of forcing was introduced by O’Connor &
Acharya (2013).

The azimuthal acoustic mode is often a degenerate mode, where the mode can be
spinning in either direction, standing or something in between. The mode can be uniquely
described by the amplitude A, the nature angle χ , the orientation of the anti-nodal
line nθ0 and the temporal phase ϕ when using the recently introduced quaternion
expression from Ghirardo & Bothien (2018). These four parameters fully define the mode
state, and the nature angle describes whether the mode is standing (χ = 0), spinning
in the anti-clockwise (ACW) or clockwise (CW) direction (χ = π/4 and χ = −π/4
respectively) or something in between (|χ | ∈ (0, π/4)). At different locations in the
geometry the relation between the azimuthal velocity and the induced axial velocity can
differ (Saurabh et al. 2017). Due to a lack of experimental evidence, until very recently,
most models assume the heat release rate response of each flame in such a configuration
is dependent only on the local pressure, or velocity, fluctuations (Dowling 1997; Dowling
& Stow 2003; Stow & Dowling 2004; Nicoud et al. 2007; Noiray et al. 2011; Wolf et al.
2012; Silva et al. 2013; Bauerheim et al. 2014; Mensah & Moeck 2015; Laera et al. 2017b,a;
Yang, Laera & Morgans 2019). Early signs that this was not necessarily always the case
were observed by Nygård et al. (2019), and later shown more explicitly in Nygård, Ghirardo
& Worth (2021). In the latter publication, the azimuthal flame describing function (AFDF)
was introduced, which is a multiple-input single-output function where the amplitude of
each of the two spinning components are the inputs. This dependence of the flame on the
two spinning components was conjectured to only be possible due to breaking the mirror
symmetry of the system, which happens with co-swirling flames (Nygård et al. 2021).
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The linear stability of a system can be modelled using a Helmholtz solver for the chosen
geometry (Wolf et al. 2012; Silva et al. 2013; Bauerheim et al. 2014; Mensah & Moeck
2015; Laera et al. 2017a; Yang et al. 2019), focusing on identifying the mode shapes
and frequency of the different modes. One approach to modelling the acoustic modal
dynamics in an annular combustor is the Galerkin-based approach, where the flames can
be considered point sources (Noiray et al. 2011; Ghirardo & Juniper 2013; Ghirardo &
Gant 2019; Faure-Beaulieu & Noiray 2020; Ghirardo & Gant 2021). This approach has
yielded significant results, such as demonstrating for some conditions the preference for
exciting different mode natures, and the observation that noise pushes the mode nature
towards standing (Ghirardo & Gant 2019; Faure-Beaulieu & Noiray 2020; Ghirardo &
Gant 2021). This was all performed assuming the flames only respond to the local pressure.
However, in Ghirardo et al. (2021b), the AFDF was used, resulting in a preference for one
of the spinning directions, in agreement with experimental results. Recently, Humbert
et al. (2022b) studied the effect of varying the response of different ‘flames’ by adjusting
the gain and time delay in a novel annular configuration with electroacoustic feedback.
When the mirror symmetry was preserved, the nature angle distribution was observed
to be symmetric. However, as soon as the mirror symmetry was broken by using three
unique describing functions for the different flames, a preference for one spinning direction
was observed. Humbert et al. (2022a) later broke the mirror symmetry by azimuthally
offsetting the speakers relative the centre of the injector, mimicking asymmetric, but
identical, flames. Again, the mode was observed to prefer one spinning direction, with the
preferred side depending on the side of the offset. This supports the symmetry arguments
made in Nygård et al. (2021), and warrants the inclusion of such effects in modelling
efforts. Using a function with multiple inputs, such as the AFDF, allows asymmetry effects
to be included in the system.

In the current paper, the AFDF, which is a multiple-input single-output framework
originally constructed using an orthogonal decomposition, is incorporated into the model
of Ghirardo & Gant (2019, 2021) based on the quaternion description of the acoustics. This
allows for a direct assessment of the symmetry breaking on the equations describing the
evolution of the state space variables, as the degree of asymmetry is shown to be adjustable
by a single parameter. With no asymmetry the response is the same as using a conventional
FDF, which is compared with a case where the asymmetry is similar to the one observed in
Nygård et al. (2021). In this work, the A–2χ plane, where the amplitude A and the nature
angle χ vary, is studied for a range of different gain and noise values, yielding insight into
how the solutions depend on different parameter combinations. The model is also used to
compare time series simulations with experimental observations of the annular combustor
used in Nygård et al. (2021).

2. Model derivation

The model of Ghirardo & Gant (2021) is based on the following ansatz of the acoustic
pressure field (Ghirardo & Bothien 2018):

p(θ, t) = A cos (n(θ − θ0)) cos (χ) cos (ωt + ϕ) + A sin (n(θ − θ0)) sin (χ) sin (ωt + ϕ).

(2.1)

The acoustic mode is determined by four real valued state space variables: the amplitude
A; the orientation angle nθ0; the nature angle χ (χ ∈ [−π/4, π/4]); and the temporal
phase ϕ. The nature angle quantifies whether the mode is standing (χ = 0), or spinning in
either the ACW (χ = π/4) or CW (χ = −π/4) direction. All other nature angle values
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correspond to a mode with both a standing and a spinning component. The expression in
(2.1) is equivalent to (Ghirardo & Bothien 2018)

2p(θ, t) = A exp(−in(θ − θ0)) exp(−kχ) exp(j(ωt + ϕ)) + q.c. = p̂ exp(jωt) + q.c.,
(2.2)

where i, j and k are the three imaginary units of the quaternion numbers, which are not
commutative, and q.c. is the quaternion conjugate of the preceding term. Then, according
to the conventional FDF framework, the heat release rate at position θ is expressed as

2q(θ, t) = A exp(−in(θ − θ0)) exp(−kχ) exp(j(ωt + ϕ))Q̂θ,conv + q.c., (2.3)

where the conventional FDF Q̂θ,conv can have a real and a j-imaginary component in
general. This simply states that the heat release rate is proportional to the local pressure
fluctuations with a potential phase response due to the j-component.

Ghirardo & Gant (2021) showed that the fluctuating mass and momentum conservation
equations yield the following governing equation for the state space variables when
expressing the pressure and heat release rate through the above expressions:

(ln A)′ + (
nθ ′

0 + ϕ′ sin (2χ)
)
i + ϕ′ cos (2χ)j − χ ′k

=
(

−ω

2
+ ω2

0
2ω

)
exp(−kχ)j exp(kχ) + σ√

2A
μz

+ 1
2

1
2π

∫ 2π

0
(exp(2in(θ − θ0)) exp(kχ) + exp(−kχ)) Q̂θ,conv(A, χ, θ, θ0)dθ exp(kχ)

+ σ 2

4A2 (1 + tan (2χ)k), (2.4)

where primes denote time derivatives. Up to this point, the equation holds for arbitrary
describing functions, and Q̂θ,conv will be discussed in the next section. The left-hand
side contains all the time derivatives of the state space variables A, nθ0, ϕ and χ , which
are assumed to change much slower than the fast oscillations at frequency f = ω/2π.
A comprehensive explanation of the terms is presented in Ghirardo & Gant (2021), but
a brief summary is recalled in the following. The first term on the right-hand side is a
frequency shift term between the oscillation frequency ω and the azimuthal frequency ω0
determined by the geometry and operating conditions, which can influence the orientation
nθ0 and the temporal phase ϕ. The integral term describes the effect of the heat release
rate, and contains the describing function Q̂θ,conv . The two remaining terms are related
to the stochastic white background noise of intensity σ . The last term is the deterministic
effect of the noise and the term on the first line of the equation is proportional to the
stochastic variable μz. An important implication of the tan (2χ) term is that the fixed
points of the system are pushed away from the purely spinning solutions in the presence
of noise (σ > 0) (Ghirardo & Gant 2021).

2.1. Flame model
In the original formulation, (2.4), the describing function Q̂θ,conv has a nature angle
dependence in general, but there was not any evidence to suggest the exact form of this
dependence. The first discussion of a nature angle dependence was presented in Ghirardo
et al. (2021b), based on experimental evidence suggesting the heat release rate response to
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the two spinning directions in an annular combustor with co-swirling flames is different.
However, due to the very limited experimental evidence at the time, the functional form
of the nature angle was based on an educated guess. This changed with the introduction
of the AFDF in Nygård et al. (2021), which is based on more experimental evidence. In
the AFDF framework, the heat release rate response is modelled as two components, each
linked to the corresponding spinning component of the acoustic mode through a separate
gain and phase in general, as observed to be the case in Nygård et al. (2021). An important
implication of this is that the nature angles of the acoustic mode and the heat release rate
mode are not necessarily the same, which requires a specialisation of the entire integral
term in (2.4) when replacing the conventional describing function.

Starting with the pressure distribution, the AFDF framework was developed using an
orthogonal description with two counter-propagating wave components

2p(θ, t) = 1√
2

[A− exp(−in(θ − θ0)) + A+ exp(in(θ − θ0))] exp(i(ωt + ϕ)) + c.c.,

(2.5)

where i is the imaginary unit of complex numbers. The amplitudes A±, describing the
magnitude of the ACW (−) and CW (+) spinning components, are chosen to be real
valued, and c.c. is the complex conjugate of the previous term. The normalisation factor
1/

√
2 is chosen such that, in the case of a spinning mode χ = ±π/4, the amplitude A in

(2.1) is A = A∓ with A± = 0. The state space parameters nθ0 and ϕ are shared between
(2.1) and (2.5), and the amplitude A and nature angle χ are related to the amplitudes A±
through (Ghirardo & Bothien 2018)

A− = A√
2
(cos χ + sin χ), (2.6a)

A+= A√
2
(cos χ − sin χ). (2.6b)

Assuming the annular geometry has M acoustically compact flames in the azimuthal
direction θ , which can be treated as point sources, the total heat release rate can be
expressed as

q(θ, t) = 2π

M−1∑
m=0

qm(t)δ(θ − θm), (2.7)

where qm is the heat release rate response of flame m located at θm = 2πm/M and δ is the
Dirac delta distribution. When the response is approximately in the linear regime, qm is
given by a similar expression to (2.5) (Nygård et al. 2021)

2qm(t) = 1√
2

[q̂− exp(−in(θm − θ0)) + q̂+ exp(in(θm − θ0))] exp(i(ωt + ϕ)) + c.c.,

(2.8)

where q̂± = q± exp(iφ±) are the complex valued amplitudes of two counter-spinning
components of heat release rate oscillations at frequency ω and azimuthal order n. The
magnitude q± describes the amplitude and φ± is the phase relative to the corresponding
pressure mode component in (2.5). The AFDF links the spinning heat release rate
component amplitudes q̂± to the corresponding acoustic mode component through
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Figure 1. Azimuthal flame describing function expressed in terms of pressure component amplitudes based on
the data in Nygård et al. (2021). The heat release rate fluctuation amplitude q̂± is normalised by the temporal
mean heat release rate. The ACW

(∣∣q̂−
∣∣) component of the AFDF is observed to have a higher heat release rate

amplitude than the CW
(∣∣q̂+

∣∣) component for a given amplitude A±.

(Nygård et al. 2021)

FDF±(û±
) = q̂±

(∣∣û±
∣∣)/Q̄

û±/Ubulk
, (2.9)

where Q̄ is the mean heat release rate and Ubulk is the axial bulk velocity. There is no
explicit frequency dependence in the above expression as the annular geometry determines
the acoustic wavelength of the azimuthal pressure mode, which fixes the frequency for
a given operating condition. The acoustic mode components are quantified through the
azimuthal axial velocity components û±, which are the axial velocities in the burners
induced by the azimuthal acoustic field in the combustion chamber. However, it can be
shown that the AFDF in (2.9) can be described in terms of the acoustic pressure amplitudes
A± instead, with a constant complex valued scaling factor Ĉ, which is system specific (the
axial velocities in the injectors can be calculated by multiplying the local acoustic pressure
value by the admittance of the whole upstream system for azimuthal forcing separately for
each spinning component and then summed), separating the two definitions

FDF±(A±) = ĈQ±(A±) exp(iφ±(A±)) = Ĉ
q̂±(A±)

A±
. (2.10)

Here, Q± is a real valued gain, and φ± is the real valued phase between the azimuthal
heat release rate component with complex valued amplitude q̂± and the corresponding
azimuthal pressure component. Figure 1 presents the data obtained in Nygård et al. (2021)
using the alternative description in (2.10).

Using (2.10) to insert for q̂± in (2.8) yields the following expression for qm:

2qm(t) = 1√
2

[A+Q+(A+) exp(in(θm − θ0,q)) + A−Q−(A−) exp(−in(θm − θ0,q))]

× exp(i(ωt + ϕq)) + c.c., (2.11)
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where all the variables are real valued and the following definitions have been introduced:

nθ0,q = nθ0,q(A+, A−) = nθ0 + 	φq(A+, A−), (2.12a)

ϕq = ϕq(A+, A−) = ϕ + φ̄q(A+, A−), (2.12b)

2	φq = 2	φq(A+, A−) = φ+(A+) − φ−(A−), (2.12c)

2φ̄q = 2φ̄q(A+, A−) = φ+(A+) + φ−(A−). (2.12d)

Since (2.11) is of the same form as the pressure distribution in (2.5), the heat release rate
mode can also be expressed as

qm(t) = AQ(A, χ)[cos (n(θm − θ0,q)) cos (χq) cos (ωt + ϕq)

+ sin (n(θm − θ0,q)) sin (χq) sin (ωt + ϕq)], (2.13)

where Q is the describing function of flame m in the quaternion framework. Relating
the orthogonal (2.11) and the quaternion ansatz (2.13), similar to (2.6), the following
expressions for Q and χq are obtained:

Q(A, χ) = Qst

√
1 + R2 − 1

R2 + 1
sin (2χ), (2.14a)

χq(A, χ) = arctan
(

(R − 1) cos χ + (R + 1) sin χ

(R + 1) cos χ + (R − 1) sin χ

)
, (2.14b)

where the following shorthand notations were introduced:

Qst(A, χ) =
√

1
2([Q−left(A, χ)]2 + [Q+(A, χ)]2), (2.15a)

R(A, χ) = Q−(A, χ)

Q+(A, χ)
. (2.15b)

It is observed that, for a standing mode χ = 0, (2.14a) yields Q = Qst. Hence, Qst is
the heat release rate gain to a standing acoustic pressure mode. The parameter R is the
ratio between the slopes in figure 1, which corresponds to the gain ratio between the
ACW component and the CW component of the AFDF. For non-swirling flames, the
flames are expected to have the same response to the ACW and CW components (R = 1)
due to the mirror symmetry (Nygård et al. 2021), simplifying the equations back to
the conventional case where Q(A, χ) = Qst and χq = χ . The expressions in (2.14) are
equivalent to corresponding conventional FDF expressions when R = 1, as the describing
function amplitude becomes independent of the nature angle and the heat release rate
nature angle is equal to the acoustic nature angle.

2.1.1. Nonlinear flame saturation with two inputs
Thermoacoustic instabilities are bounded in amplitude, most often because the heat release
rate response diminishes at large amplitudes (Dowling 1997). Usually, this is accounted
for by introducing a saturation on the gain Q̂θ,conv in (2.3) as a function of amplitude A.
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Figure 2. (a) The normalised heat release rate mode envelope for an approximately standing mode shows
the local heat release rate amplitudes are non-zero at pressure nodes. The resulting heat release rate envelope
after applying a conventional saturation model, which is based on the local pressure or local acoustic velocity
amplitude, for increasing acoustic amplitudes A is shown in (b). As A increases, the output keeps increasing at
the nodes because the acoustic pressure is identically zero at that location. The grey shaded area represents the
shape of the acoustic pressure mode envelope.

Expressing the heat release rate of a single flame in the linear regime as

q̂
Q̄

= FTF
p̂
p̄
, (2.16)

the nonlinear equivalent is often expressed as

q̂
Q̄

= F
(∣∣∣∣ p̂p̄

∣∣∣∣) exp
(

i	ϕ

(∣∣∣∣ p̂p̄
∣∣∣∣))FTF

p̂
p̄
, (2.17)

where Q̄ is the mean heat release rate and p̄ is the mean pressure. In (2.17), the nonlinear
saturation depends on the local amplitude of acoustic pressure. The gain of the transfer
function is modified by the inclusion of F, and an amplitude-dependent phase is introduced
through the 	ϕ term. The following constraints ensure (2.17) is equivalent to (2.16) in the
low amplitude limit:

lim|p̂/p̄|→0
F
(∣∣∣∣ p̂p̄

∣∣∣∣) = 1, lim|p̂/p̄|→0
	ϕ

(∣∣∣∣ p̂p̄
∣∣∣∣) = 0. (2.18a,b)

Applying the same principle to the AFDF, which has two inputs, will not work as the
heat release rate fluctuations at the pressure node are not necessarily zero, as illustrated
by data obtained from Nygård et al. (2021) in figure 2(a). Therefore, the heat release rate
response would never saturate at the pressure node, it would instead scale linearly with the
amplitude A of the acoustic mode, as shown in figure 2(b).

To ensure that all the flames saturate, the nonlinear saturation is proposed to depend on
the local heat release rate amplitude Aq. The saturation of (2.14a) becomes

Q
(
Aq
) =

⎛⎝Qst

√
1 + R2 − 1

R2 + 1
sin (2χ)

⎞⎠F
(
Aq
)
, (2.19)
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Figure 3. Normalised heat release rate for a single flame (a) and for all flames subjected to a standing acoustic
mode (grey shaded area) according to (2.19) and (b) using the saturation function F in (2.21). The heat release
rates saturate smoothly, approaching the same finite limit. Using the local heat release rate amplitude Aq is
shown to saturate the response for all flames, even when located at a pressure node.

and the phase difference 	ϕ from (2.17) is included by allowing a mode dependence for
φ̄q and 	φq in (2.12). The local linear heat release rate amplitude is defined as

Aq(θ)

A
=
√

1 + R2 − 1
R2 + 1

sin (2χ)

×
√

cos2 [n(θ − θ0,q)] cos2 (χq) + sin2 [n(θ − θ0,q)] sin2 (χq), (2.20)

which is the fluctuation amplitude of the heat release rate expression in (2.13) normalised
by Qst. This choice ensures that even the flames in the pressure node saturate to a finite
level, as illustrated in figure 3(b). The structure of (2.19) limits the applicability to flames
whose gain does not increase as a function of the forcing amplitude, which is the most
typical case. The functional form of the saturation function F is chosen to be (Ghirardo
et al. 2021a)

F
(
Aq
) = 2

1 +
√

1 + [κAq(A, χ, θ, θ0)]2
, (2.21)

where κ is a nonlinear saturation constant. The form in (2.21) will only be used in the
numerical results, and the theoretical results in § 2.2 are independent of the functional
form of F. The monotonically non-decreasing function in (2.21) is chosen as it yields a
smooth saturation of the heat release rate approaching a constant level at high amplitudes,
as illustrated in figure 3(a). Other functions, such as the one used by Dowling (1997) or
the cubic polynomial used by Noiray et al. (2011), can also be considered, but they do not
have a smooth saturation or a finite heat release rate amplitude as the pressure amplitude
approaches infinity, respectively.

The actual experimental quantitative validation of a specific saturation function among
the ones discussed above would require experimental data from a forced experiment in a
higher amplitude range than the current experimental set-up allows. However, this does
not diminish the conclusions in this section. A sensitivity analysis of the exact expression
used in (2.21) was performed (Appendix C in supplementary material available at https://
doi.org/10.1017/jfm.2023.921), comparing it with saturation functions used by Dowling
(1997), Noiray et al. (2011) and Ghirardo et al. (2021b). The other saturation functions
were found to yield qualitatively the same results as discussed later in this work.
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2.1.2. Alternative nonlinear saturation with two inputs
The AFDF also allows Q± to depend on the corresponding spinning acoustic mode
amplitudes A±. It could therefore be reasonable to assume, instead of (2.19), that Q+ and
Q− would approach zero as A+ and A− grow sufficiently large, respectively. For example,
it could be assumed that each component is inversely proportional to the corresponding
acoustic amplitude in the high amplitude limit

Q±(A±) ∝ 1
A±

. (2.22)

However, assuming this is the only saturation mechanism leads to several unphysical
effects. For example, the heat release rate of all the burners would saturate by the same
percentage independent of being located at a node or an anti-node, which is not physical.
Another unphysical feature of the assumption in (2.22) is that the heat release rate nature
angle χq becomes independent of the acoustic nature angle χ , except for perfectly spinning
modes |χ | = π/4. The expression for χq in this limit in the open interval (−π/4, π/4) is

lim
A→∞|χ |<π/4

χq = arctan
(

R0 − 1
R0 + 1

)
, (2.23)

where R0 is the value of R in the low amplitude limit. Combined with the apparent linearity
of the heat release rate components in figure 1, the ratio R = Q−/Q+ of AFDF components
is assumed to be independent of the individual acoustic amplitudes A± in this work.

2.2. The effect of the AFDF on the governing equation
To implement the AFDF in the model of Ghirardo & Gant (2021), the first step is to replace
(2.3) by

2q(θ, t) = A exp(−in(θ − θ0,q)) exp(−kχq) exp(j(ωt + ϕq))Qθ + q.c., (2.24)

where the following shorthand notation is introduced:

Qθ = 2π

M−1∑
m=0

Qδ(θ − θm). (2.25)

This is equivalent to (2.7) after inserting the expression for qm in (2.13). Additionally, the
lump parameter Mα describing the acoustic damping of the system included in Q̂θ,conv in
(2.4) (Ghirardo & Gant 2021) is extracted from the describing function. It is then possible
to show (Appendix A) that the governing equation from (2.4) becomes

(ln A)′ + (nθ ′
0 + ϕ′ sin (2χ))i + ϕ′ cos (2χ)j − χ ′k

=
(

−ω

2
+ ω2

0
2ω

)
exp(−kχ)j exp(kχ)

+ 1
2

1
2π

∫ 2π

0
exp(i	φq(A, χ))(exp(2in(θ − θ0,q)) exp(kχq(A, χ))
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+ exp(−kχq(A, χ)))Qθ (A, χ, θ, θ0) exp(jφ̄q(A, χ)) dθ exp(kχ)

− 1
2

1
2π

∫ 2π

0
(exp(2in(θ − θ0)) exp(kχ) + exp(−kχ))Mα dθ exp(kχ)

+ σ 2

4A2 (1 + tan (2χ)k) + σ√
2A

μz, (2.26)

independent of the functional form of the saturation function F in (2.19). The main
modifications to (2.4) are the use of the AFDF for the describing function expression
Qθ , and the state space parameters nθ0 and χ have become nθ0,q and χq inside the
integral term (highlighted in blue). Additionally, there are two extra terms due to the phase
difference and mean phase of the two components of the AFDF (highlighted in red) that
were introduced in (2.12c) and (2.12d).

2.2.1. Fourier series representation of heat release rate source term
To get a better understanding of the effect of the new terms in (2.26), it is convenient to
express the heat release rate of each flame in terms of a Fourier series (Ghirardo et al.
2021a)

Q =
M/2∑
r=0

N(r) cos (r[θm − θ(r) − θ0,q]), (2.27)

where the Fourier series coefficients N(r) are defined as

N(r) = (2 − δr,0 − δr,M/2)
1
M

M−1∑
m=0

cos (r[θm − θ(r) − θ0,q])Q, (2.28a)

0 = (2 − δr,0 − δr,M/2)
1
M

M−1∑
m=0

sin (r[θm − θ(r) − θ0,q])Q. (2.28b)

Note the use of θ0,q = θ0 + 	φq in this definition, compared with the θ0 used in the
definition by Ghirardo et al. (2021a). Following the derivation of Ghirardo et al. (2021a),
it can be shown that twice the heat release rate integral can be expressed as

1
2π

∫ 2π

0
exp(i	φq(A, χ))(exp(2in(θ − θ0,q)) exp(kχq(A, χ))

+ exp(−kχq(A, χ)))Qθ (A, χ, θ, θ0) exp(jφ̄q(A, χ)) dθ exp(kχ)

= M[exp(i	φq)N(0) exp(−kχq) + 1
2 N(2n) exp(i(2nθ(2n) + 	φq)) exp(kχq)]

× exp(jφ̄q) exp(kχ), (2.29)

where we observe that not all N(r) r = 0, 1, . . . , M/2 play a role, but just N(0) and N(2n).
As expected, this is the same expression as the one in Ghirardo et al. (2021a, (A11)) when
χ = χq and φ̄q = 	φq = 0 except for the Mα term, which is included separately in (2.26)
here.

To highlight the effect of the above modification to the heat release rate integral, the
quaternion valued equation in (2.26) can be expressed as four real valued equations.
Figure 1 suggests that the phase difference 	φq between the two components is relatively
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low at realistic amplitudes for self-excited thermoacoustic instabilities. The same applies
for the mean phase φ̄q, and therefore 	φq and φ̄q are set to zero to simplify the
discussion of the main effect of the nature angle difference 	χ = χq − χ . Inserting for
the assumptions yields the following four real valued equations:

A′

A
= M

2
(N(0) cos (	χ) − α) + M

4
N(2n) cos (2nθ(2n)) cos (2χ + 	χ)

+ σ 2

4A2 + σ√
2A

μ0, (2.30a)

nθ ′ + ϕ′ sin (2χ) = M
4

N(2n) sin (2nθ(2n)) cos (2χ + 	χ) + σ√
2A

μ1, (2.30b)

ϕ′ cos (2χ) = −M
4

N(2n) sin (2nθ(2n)) sin (2χ + 	χ) + σ√
2A

μ2, (2.30c)

χ ′ = M
2

N(0) sin (	χ) − M
4

N(2n) cos (2nθ(2n)) sin (2χ + 	χ) − σ 2

4A2 tan (2χ)

− σ√
2A

μ3, (2.30d)

with the assumption of ω = ω0 for simplicity and μ0,1,2,3 are the individual stochastic
components of μz in (2.26). The black terms are the same as the ones originally derived
by Ghirardo & Gant (2021) and Ghirardo et al. (2021a), and the coloured terms are the
new additions and modifications. In the original equation given by (2.4), the zeroth Fourier
component N(0) was only present in the time derivative of the amplitude. However, in
(2.30) the term has been redistributed to also be a source term for the nature angle of
the acoustic mode in (2.30d). This redistribution is achieved through the introduction of
cos (	χ) in (2.30a) and the sin (	χ) term in (2.30d), making the degree of redistribution
dependent on the acoustic mode through (2.14b). Additionally, the nature angle difference
	χ slightly modifies how the 2n Fourier coefficient is distributed as a source term through
the addition of 	χ in sin (2χ + 	χ) and cos (2χ + 	χ). As expected, the original
equations, as presented in Ghirardo et al. (2021a), are retrieved for 	χ = 0.

While the mean phase φ̄q and phase difference 	φq were assumed to be zero for
simplicity, the main effect of including a non-zero value is a further redistribution of
the Fourier components to all the equations, as shown in Appendix B for completeness.
While this is interesting in itself, the small phase differences in figure 1 suggests that
the redistribution would be relatively small. To simplify the discussion, the assumption
of 	φq = φ̄q = 0 is kept for the rest of this work to highlight the direct influence of the
nature angle difference between the heat release rate mode and the acoustic mode, also
based on the experimental evidence that this is the case. Additionally, in the following, the
numerical values are given for the non-dimensional variables as defined in table 1.

The baseline gain value Q̃
st = 0.16/π is the same as the one used in Ghirardo et al.

(2021b), which was chosen by selecting a growth rate on the high end of common values
discussed in Ghirardo, Juniper & Bothien (2018) in the absence of growth rate data.
A κ̃ value of κ̃ = 6 was chosen to yield a similar fixed point amplitude to Ghirardo
et al. (2021b) when using a conventional FDF (R = 1). The baseline noise level σ̃ = 0.06
was chosen based on the width of the nature angle distribution, and how close the
predominantly spinning modes are to perfect spinning χ = ±π/4. The effect of different
noise levels is explored in § 3.3. Similarly, § 3.1 explores the effect of different damping
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Parameter Definition Description

Ã A/A0 Non-dimensional amplitude
κ̃ κA0 Non-dimensional saturation constant
α̃ Mα/2ω0 Non-dimensional damping factor
Q̃

st
MQst/2ω0 Non-dimensional gain

σ̃ σ/A0
√

ω0 Non-dimensional noise intensity
R R Azimuthal FDF gain ratio

Table 1. Definition of the non-dimensional parameters used in § 3, where A0 is an arbitrary amplitude
reference and ω0 is the peak angular frequency of oscillation of the instability. The effects of changing the
damping factor α̃, the gain Q̃

st
and the noise σ̃ are explored in §§ 3.1, 3.2 and 3.3, respectively. In each section,

a comparison is made between the new model (R = 1.6) and the conventional model (R = 1).

(a) (b) (c) (d )
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Figure 4. Vector field in the vertical direction (nθ = 0) for both the conventional FDF (R = 1) and the AFDF
(R = 1.6) with (σ̃ = 0.06) and without (σ̃ = 0) noise: (a) R = 1, σ̃ = 0; (b) R = 1.6, σ̃ = 0; (c) R = 1, σ̃ =
0.06; (d) R = 1.6, σ̃ = 0.06. The gain is Q̃

st = 0.16/π and the damping parameter is α̃ = 0.05Q̃
st

. The solid
lines mark A′ = 0 (continuous line from 2χ = −π/2 to 2χ = π/2) and χ ′ = 0, making the intersections the
fixed point locations. Attractors are marked by filled circles and repellors are marked by open circles.

values α̃, and these findings were used to determine the baseline damping value of
α̃ = 0.2Q̃

st
. This was assigned based on the lack of an observation of a predominantly

CW spinning mode in the experimental data presented in § 3.2.

3. Features of the simplified model

The two equations most affected by the nature angle difference 	χ are (2.30a) and
(2.30d), which describe the time derivative of the amplitude A and of the nature angle χ ,
respectively. The quaternion state space parameters A, nθ0 and χ can be used to describe
a given mode as a point on a Poincaré sphere where A is the radius, nθ0 is the longitude
and 2χ is the latitude (Ghirardo & Bothien 2018). The time derivatives of A and χ can
therefore be conveniently illustrated as a vector field for a given cut nθ of the sphere, as
shown in figure 4. Each point in the half-plane represents a unique acoustic mode, and
the vector field shows which path the system state will follow as a function of time in the
absence of the stochastic contribution of the noise σ . The solid black lines signify where
either of the derivatives are zero, with the zero amplitude derivative A′ = 0 always forming
a closed path from χ = −π/4 to χ = π/4.

The case in figure 4(a), using the conventional FDF (R = 1) and in the absence of noise
(σ̃ = 0), has three fixed points where both derivatives are zero, one at the standing mode
(χ = 0) and one at each of the spinning modes (χ = ±π/4). The standing solution is an

977 A6-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

92
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.921


H.T. Nygård, G. Ghirardo and N.A. Worth

00

5

10

15

00

5

10

15

00

5

10

15
0

0.1

00

5

10

15

(a) (b) (c) (d )
π/2 π/2 π/2 π/2

π/4 π/4 π/4 π/4

–π/4 –π/4 –π/4 –π/4
2χ2χ2χ2χ

–π/2 –π/2 –π/2 –π/2

L2
 n

o
rm

Ã

Figure 5. Vector field in the vertical direction (nθ = 0) for an azimuthal flame describing function with R =
1.6 for different damping values: (a) α̃ = 0.04Q̃

st
; (b) α̃ = 0.07Q̃

st
; (c) α̃ = 0.10Q̃

st
; and (d) α̃ = 0.20Q̃

st
. The

gain and the noise level are Q̃
st = 0.16/π and σ̃ = 0.06, respectively. Attractors are marked by filled circles and

repellors are marked by open circles. The standing mode and CW spinning solutions are observed to disappear
through a saddle node bifurcation as the damping factor α̃ is increased.

unstable fixed point (open circle marker), while the spinning solutions are stable (filled
circle markers), as expected (Schuermans et al. 2006; Noiray et al. 2011; Ghirardo &
Juniper 2013). In figure 4(b), the same case is shown for R = 1.6, which is similar to the
value observed in the data in figure 1, illustrating that the change from R = 1 to R = 1.6
has a distinct effect on the vector field. While the spinning solutions are retained, the
unstable fixed point has moved from a purely standing mode to a mixed mode with a CW
spinning component (χ < 0). This increases the basin of attraction of the ACW mode at
the expense of the basin of attraction of the CW mode.

Adding noise σ̃ /= 0 to the conventional FDF case of R = 1, the stable spinning solutions
χ = ±π/4 have been shown to be pushed symmetrically towards standing solutions
χ = 0 (Ghirardo & Gant 2019; Faure-Beaulieu & Noiray 2020; Ghirardo & Gant 2021),
as illustrated in figure 4. Figure 4(d) shows that introducing the same noise intensity to the
R = 1.6 case also results in the spinning solutions being pushed away from the vertical
axis, but it is not symmetric in this case.

3.1. The effect of damping
The location and number of fixed points are dependent on the parameters of the system,
such as the gain Q̃

st
, the damping factor α̃ and the noise intensity σ̃ . This is illustrated in

figure 5 by varying α̃ while keeping Q̃st and σ̃ constant. The size of the loop created by
Ã

′ = 0 is reduced with an increasing damping factor α̃, as the effective gain is reduced.
Eventually the curve describing Ã

′ = 0 only intersects the χ ′ = 0 curve once. When this
occurs, the initially CW spinning and standing solutions are no longer solutions of the
deterministic part of (2.30). This is consistent with the lack of experimental observations
of the CW mode at certain operating conditions, including the conditions and set-up where
the R = 1.6 value was obtained (Nygård et al. 2021).

How the fixed points of the system move, and disappear, as a function of the damping
is shown in figure 6 for both R = 1 (conventional FDF) and R = 1.6. Starting with
R = 1 in figure 6(a), the fixed points are observed to move along the lines of χ ′ = 0 in
figure 4. For sufficiently high damping α̃, the three fixed points undergo a supercritical
pitchfork bifurcation, and a stable standing mode is the only remaining solution. The
AFDF with R = 1.6 in figure 6(b) has three initial fixed points, a highly spinning stable
fixed point for both the ACW and CW direction and an unstable fixed point for mixed
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Figure 6. Fixed point locations in the vertical plane nθ0 = 0 for a range of different damping values α for
(a) the conventional FDF (R = 1) and (b) the AFDF (R = 1.6). The gain and noise intensity for both cases are
Q̃

st = 0.16/π and σ̃ = 0.06, respectively. The conventional FDF results in a supercritical pitchfork bifurcation
at sufficiently high damping values α̃, while the AFDF case undergoes a saddle node bifurcation for the two
fixed points in the southern half.

modes with a CW component (χ < 0). As the damping factor α̃ is increased, the two
fixed points in the southern half-plane meet and annihilate, which is known as a saddle
node bifurcation. The initially ACW solution survives, and approaches the standing
mode solution for sufficiently high damping α̃. In summary, replacing the single-input
single-output conventional FDF with the multiple-input single-output AFDF results in
different bifurcation behaviour for the system.

3.2. Comparison with experiments
A reference case was obtained by operating the atmospheric annular combustor used
in Nygård et al. (2021) at an equivalence ratio of 0.85 to promote a self-excited
thermoacoustic instability. The same 12 injector configuration with swirling flames was
used, with the exception of replacing the forcing array with a stainless steel tube to
form the outer wall and the new operating condition. Figure 7(a) shows the amplitude
A of the acoustic mode for ten repeat cases. Before each run, the combustion chamber is
allowed to cool down to approximately 310 K at a reference position on the outer wall,
ensuring consistent initial thermal conditions. As the combustion chamber heats up, the
mean amplitude is observed to decrease. This coincides with an increasing frequency of
the self-excited oscillations, as shown in figure 7(b). The increase in frequency leads to a
decrease in the gain Q̃

st
, as illustrated for a similar flame in a single injector configuration

(Nygård & Worth 2021), which is consistent with a decrease in amplitude. In combination
with the constant fuel and air mixture, the choice is made to simulate the system by
decreasing gain values Q̃

st
while keeping the combustion noise σ̃ and acoustic damping

factor α̃ constant. In the case where all the flames have the same response, this change of
the effective gain

(
Q̃

st − α̃
)

has a similar effect on the amplitude (2.30a) as increasing the
damping α̃.

The time series in figure 7(a) are split into four non-overlapping segments of 10 s each to
obtain sections of different mean amplitude. Figure 8(a) shows the joint probability density
function of the acoustic amplitude A and the acoustic nature angle χ for each segment.
Initially, the mode is spinning in the ACW direction and has a relatively large amplitude.
Later, as the amplitude decreases, the mode is approximately a standing mode solution.
This will be shown to agree with theory for increasing non-dimensional noise in § 3.3, with
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Figure 7. Pressure fluctuation amplitude A (a) and time-dependent frequency spectrum (b) over the whole time
series based on the upper measurement location. The instantaneous pressure amplitude is in the background
of (a), with the moving mean over 10 s shown as solid lines. Similarly, the moving mean of the mean frequency
is shown as the solid line in (b). The amplitude is observed to steadily decrease in a repeatable manner as the
combustor heats up. At the same time, the excitation frequency increases with the increasing temperature.

fixed point paths presented in figure 10. Figure 8(b) shows a simulation using the proposed
model with decreasing values of Q̃

st
with the previously used baseline parameter values

σ̃ = 0.06, α̃ = 0.032/π and R = 1.6. The simulation is run for 170 000 oscillation cycles
for each gain value Qst to approximately match the number of oscillation cycles observed
in the experimental data. All of the simulations are initialised with a standing mode of
unit amplitude Ã. The simulated mode is observed to be a predominantly ACW mode at
relatively high amplitudes for the highest gain value Qst = 5α, with a similar distribution
to the experiment. This can be reproduced by the model in this paper, taking into account
the fact that the flames respond more strongly to ACW modes with R = 1.6. Existing
models in the literature (R = 1) predict ACW and CW states to be equally dominant,
in contrast with the experimental results. This is illustrated in figure 8(c), where all the
simulations were started as a standing mode. Likewise, as the gain is reduced, the mode
moves closer to the standing mode solution. In both the experiment and the simulation it
should be noted that the distribution becomes slightly wider in the angular direction due to
the increased non-dimensional noise σ̃ /Ã. This suggests the model is able to capture the
general features of the experiment well, even after just manually testing a limited number
of parameter combinations.

3.3. The effect of noise
When studying the effect of damping or a reduction in gain, in the two previous sections,
the non-dimensional noise level σ̃ /Ã did increase due to the decrease in the amplitude Ã.
However, it is also of interest to study the effect of noise for a fixed effective gain, where
the noise can grow infinitely large. This effect on the vector field in the vertical direction is
shown for a few values of σ̃ in figure 9. The lowest noise intensity in figure 9(a) yields three
solutions, one ACW mode and two closely spaced modes in the southern half-plane. As
the noise intensity is increased, the two latter modes are no longer solutions of the system.
However, the ACW solution moves to lower nature angles, approaching the standing mode
(χ = 0).

Figure 10(a) shows that the spinning solutions are pushed symmetrically towards
the standing solution along the horizontal axis, as expected (Ghirardo & Gant 2019;
Faure-Beaulieu & Noiray 2020; Ghirardo & Gant 2021). The same illustration is presented
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Ã

Figure 8. Joint probability density function for different levels of acoustic perturbations at a fixed operating
condition (a) and corresponding simulations using the proposed model (b) and a conventional model (c). The
experiment is divided into four non-overlapping time intervals of 10 s, shown from left to right. The simulations
use α̃ = 0.032/π, σ̃ = 0.06, κ̃ = 6 and Q̃

st = [
5α̃, 3.75α̃, 2.5α̃, 1.25α̃

]
. Each plot in (b,c) is based on 170 000

oscillation cycles. The proposed model is observed to move towards the standing mode solution (χ = 0) from
the ACW solution, matching the experiments, while both the ACW and CW spinning solutions are observed
using a conventional model. There is some slight asymmetry in the results of (c) with respect to the axis at χ =
0 because the underlying distribution is bimodal and the simulation is finite. (a) Experiment, (b) Simulation
using the proposed model, R = 1.6 and (c) Simulation with conventional models, R = 1.

for the case of an AFDF with R = 1.6 in figure 10(b). Similarly to the effect in figure 6(b),
the two solutions in the southern half meet and annihilate through a saddle node
bifurcation, highlighted by the circular marker. The solution starting as a purely ACW
spinning mode in the low intensity limit approaches the approximately standing solution,
albeit at a much slower rate than in the conventional case due to the N(0) term in (2.30d).
For both R = 1 and for R = 1.6 in figure 10 the amplitude Ã becomes proportional to the
noise intensity σ̃ at sufficiently high noise intensities. This can also be inferred directly
from the equations in (2.30) by letting σ̃ approach infinity.
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Figure 9. Vector field in the vertical direction (nθ = 0) for an azimuthal flame describing function with R =
1.6 at different noise levels: (a) σ̃ = 0.01; (b) σ̃ = 0.06; (c) σ̃ = 0.36; and (d) σ̃ = 2.16. The gain and damping
factors are Q̃

st = 0.16/π and α̃ = 0.2Q̃
st

, respectively. Except for the lowest noise level σ̃ = 0.01 in (a), the
only fixed point is an attractor in the northern half-plane highlighted by the filled circle.
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Figure 10. Fixed point locations in the vertical plane nθ0 = 0 for a range of different noise intensities σ̃ for
(a) the conventional FDF (R = 1) and (b) the AFDF (R = 1.6). The gain and damping are Q̃

st = 0.16/π and
α̃ = 0.2Q̃

st
, respectively, for both cases. At sufficiently high noise intensities, the solution approaches the

standing mode for both cases, albeit at a slower rate for the R = 1.6 case in (b). In both cases the fixed points
initially closest to the spinning solutions are attractors (solid line) while the third fixed point is a repellor
(dashed line).

4. Conclusion

The current study successfully implemented the multiple-input single-output AFDF in a
quaternion valued low-order model of an annular combustion chamber. To achieve this,
the AFDF was reformulated from the orthogonal spinning mode decomposition to a
quaternion-based expression with amplitude, orientation angle, nature angle and temporal
phase as state space parameters. The heat release rate mode and of the acoustic mode
parameters are linked through explicit expressions, meaning only one set of parameters
needs to be solved for. The different response of the flames to acoustic waves of opposite
spinning directions is described by the gain ratio R between the two components of the
AFDF. The conventional model using the single-input single-output FDF is recovered in
the special case R = 1.

Conventional FDF models often saturate the response as a function of the local acoustic
field amplitude. Since the AFDF does not assume the heat release rate and acoustic modes
have the same nature angle, a new amplitude reference for saturation was required to avoid
unconstrained growth of the heat release rate at pressure node locations at large acoustic
amplitudes. The new amplitude reference was proposed to be the linear heat release rate
amplitude Aq. One specific nonlinear saturation function is applied to it, without full
experimental validation because of the absence of experimental data at sufficiently high
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amplitudes to evaluate this. However, a sensitivity analysis demonstrated that the results
are qualitatively transferable to other choices of the saturation functions, especially if they
are monotonic.

One of the main features of the AFDF is the difference in nature angle 	χ between
the heat release rate mode and the acoustic mode. For the conventional FDF case, the
mean heat release rate term only affects the equation for the amplitude A, but 	χ /= 0 for
the AFDF case results in a contribution from the mean heat release rate to the equation
for the nature angle χ as well. This redistribution has a significant effect on the vector
fields in the A–2χ -plane. For certain parameter combinations there are three solutions, two
strongly spinning stable solutions in opposite directions and a third unstable solution in
between, similar to the case for the conventional FDF. However, the initially CW spinning
(for R > 1) solution and the unstable solution can meet and disappear through a saddle
node bifurcation. This can for example happen when the acoustic damping of the system
is increased, or when the noise level is increased, matching experimental evidence that a
CW mode is never observed at certain operating conditions. The standing mode is retained
as the only solution in the infinite noise limit for both the FDF and the AFDF case.

Experiments at a fixed fuel and air flow showed that, as the linear gain decreases as
a function of increasing frequency, the mode is pushed away from the purely spinning
state and the amplitude decreases, as expected from the model. It is shown to qualitatively
model the experimental results well, showing the same main features.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.921. The
numerical implementation of the model is available under MIT license at https://doi.org/10.5281/zenodo.
10071467 (Nygård 2023).
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Appendix A. Heat release rate integral

The model presented in Ghirardo & Gant (2021) without the effect of the stochastic noise
can be expressed as

r′ + rjϕ′ =
(

−ω

2
+ ω2

0
2ω

)
rj + 1

2
1

2π/ω

∫ 2π/ω

0
F exp(−j(ωt + ϕ)) dt, (A1)

where the following notational shorthands have been introduced:

r = A exp(inθ0) exp(−kχ), (A2a)

r′ = A′ exp(inθ0) exp(kχ) + Ainθ ′
0 exp(inθ0) exp(kχ) − A exp(inθ0) exp(kχ)kχ ′, (A2b)

F = 2
π

∫ 2π

0
exp(inθ)q dθ. (A2c)

Since the equation is quaternion valued, the terms do not commute in general, and care has
to be taken when rearranging terms. Following the derivation of Ghirardo & Gant (2021),
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(A1) is multiplied by exp(−inθ0) on the left and by exp(kχ) on the right to obtain

exp(−inθ0)(r′ + exp(−inθ0)rjϕ′) exp(kχ)

= exp(−inθ0)

(
−ω

2
+ ω2

0
2ω

)
rj exp(kχ)

+ exp(−inθ0)
1
2

1
2π/ω

∫ 2π/ω

0
F exp(−j(ωt + ϕ)) dt exp(kχ). (A3)

The only term of interest for the implementation of the AFDF into the model is the last
term on the right-hand side:

I = exp(−inθ0)
1
2

1
2π/ω

∫ 2π/ω

0

1
π

∫ 2π

0
exp(inθ)2q dθ exp(−j(ωt + ϕ)) dt exp(kχ).

(A4)
The order of integration can be switched for this expression, yielding

I = 1
2π

∫ 2π

0
exp(in(θ − θ0))

1
2π/ω

∫ 2π/ω

0
2q exp(−j(ωt + ϕ)) dt dθ exp(kχ). (A5)

The inner integral

I = 1
2π/ω

∫ 2π/ω

0
2q exp(−j(ωt + ϕ)) dt, (A6)

can be computed analytically, as the slowly varying state space variables are assumed to
be constant in time over the acoustic period 2π/ω. The real valued heat release rate q is
given by (2.24), which can be written as

2q = Q̂ejωt + q.c. = Q̂ejωt + e−jωtQ̂∗, (A7)

where Q̂ is a shorthand for the slowly varying terms in the original expression. Inserting
into the inner integral yields

I = 1
2π/ω

∫ 2π/ω

0
[Q̂ exp(jωt) + exp(−jωt)Q̂∗] exp(−j(ωt + ϕ)) dt,

= 1
2π/ω

∫ 2π/ω

0
[Q̂ exp(−jϕ) + exp(−j(ωt + ϕ)) exp(jϕ)Q̂∗ exp(−j(ωt + ϕ))]dt,

= 1
2π/ω

∫ 2π/ω

0
[Q̂ exp(−jϕ) + exp(−j(ωt + ϕ))(Q̂ exp(−jϕ))

∗
exp(−j(ωt + ϕ))]dt,

= (Q̂ exp(−jϕ)) − j(Q̂ exp(−jϕ))j
2

, (A8)

where the last step used an integral relation shown by Ghirardo & Gant (2021) to hold for
any function, such as Q̂e−jϕ , which is independent of the integration variable.

Finally, inserting for Q̂θ into the expression for I yields

I = A
2

[exp(in(θ − θ0,q)) exp(kχq(A, χ)) + exp(−in(θ − θ0,q)) exp(−kχq(A, χ))]

× Qθ (A, χ, θ, θ0) exp(jφ̄q(A, χ)), (A9)

where the explicit mode dependence of θ0,q has been temporarily dropped for notational
convenience. This expression can then be used to obtain the source term I from the heat
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release rate fluctuations

I = A
2

1
2π

∫ 2π

0
(exp(2in(θ − θ0)) exp(−i	φq(A, χ)) exp(kχq(A, χ))

+ exp(i	φq(A, χ)) exp(−kχq(A, χ)))Qθ (A, χ, θ, θ0) exp(jφ̄q(A, χ)) dθ exp(kχ).

(A10)

The above expression is the same as the one obtained by Ghirardo & Gant (2021) for the
conventional FDF except for the introduction of the heat release rate mode nature angle
χq instead of the nature angle χ of the acoustic pressure mode and the introduction of the
phase difference 	φq. Additionally, the functional form of the describing function Qθ has
an explicit nature angle dependence (which was also possible to account for in the original
derivation Ghirardo & Gant 2021).

Appendix B. Full governing equation

The main governing equation in (2.30) without the simplifying assumption φ̄q = 	φq = 0
can be obtained from (2.26) and (2.29)

A′

A
= M

2
N(0)[cos (	φq)cos (χq)cos (φ̄q) − sin (	φq)sin (χq)sin (φ̄q)]cos (χ)

+ M
2

N(0)[cos (	φq)sin (χq)cos (φ̄q) − sin (	φq)cos (χq)sin (φ̄q)]sin (χ)

+ M
4

N(2n)[cos (2nθ(2n) + 	φq)cos (χq)cos (φ̄q)

+ sin (2nθ(2n) + 	φq)sin (χq)sin (φ̄q)]cos (χ)

− M
4

N(2n)[cos (2nθ(2n) + 	φq)sin (χq)cos (φ̄q)

+ sin (2nθ(2n) + 	φq)cos (χq)sin (φ̄q)]sin (χ)

− M
2

α + σ 2

4A2 + σ√
2A

μ0 (B1)

nθ ′ + ϕ′ sin (2χ)

= σ√
2A

μ1 + M
2

N(0)[sin (	φq)sin (χq)cos (φ̄q) + cos (	φq)cos (χq)sin (φ̄q)]sin (χ)

+ M
2

N(0)[sin (	φq)cos (χq)cos (φ̄q) + sin (	φq)cos (χq)sin (φ̄q)]cos (χ)

− M
4

N(2n)[sin (2nθ(2n) + 	φq)sin (χq)cos (φ̄q)

− cos (2nθ(2n) + 	φq)cos (χq)sin (φ̄q)]sin (χ)

+ M
4

N(2n)[sin (2nθ(2n) + 	φq)cos (χq)cos (φ̄q)

− sin (2nθ(2n) + 	φq)cos (χq)sin (φ̄q)]cos (χ) (B2)
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ϕ′ cos (2χ)

= σ√
2A

μ2 + M
2

N(0)[sin (	φq)sin (χq)cos (φ̄q) + cos (	φq)cos (χq)sin (φ̄q)]cos (χ)

− M
2

N(0)[sin (	φq)cos (χq)cos (φ̄q) + sin (	φq)cos (χq)sin (φ̄q)]sin (χ)

− M
4

N(2n)[sin (2nθ(2n) + 	φq)sin (χq)cos (φ̄q)

− cos (2nθ(2n) + 	φq)cos (χq)sin (φ̄q)]cos (χ)

− M
4

N(2n)[sin (2nθ(2n) + 	φq)cos (χq)cos (φ̄q)

− sin (2nθ(2n) + 	φq)cos (χq)sin (φ̄q)]sin (χ) (B3)

−χ ′ = σ 2

4A2 tan (2χ) + σ√
2A

μ3

+ M
2

N(0)[cos (	φq)cos (χq)cos (φ̄q) − sin (	φq)sin (χq)sin (φ̄q)]sin (χ)

+ M
2

N(0)[sin (	φq)cos (χq)sin (φ̄q) − sin (	φq)cos (χq)cos (φ̄q)]cos (χ)

+ M
4

N(2n)[cos (2nθ(2n) + 	φq)cos (χq)cos (φ̄q)

+ sin (2nθ(2n) + 	φq)sin (χq)sin (φ̄q)]sin (χ)

+ M
4

N(2n)[sin (2nθ(2n) + 	φq)cos (χq)sin (φ̄q)

+ sin (2nθ(2n) + 	φq)cos (χq)cos (φ̄q)]cos (χ). (B4)
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