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A New Form of the Segal-Bargmann Transform
for Lie Groups of Compact Type
Brian C. Hall

Abstract. I consider a two-parameter family Bs,t of unitary transforms mapping an L2-space over a Lie group
of compact type onto a holomorphic L2-space over the complexified group. These were studied using infinite-
dimensional analysis in joint work with B. Driver, but are treated here by finite-dimensional means. These
transforms interpolate between two previously known transforms, and all should be thought of as generaliza-
tions of the classical Segal-Bargmann transform. I consider also the limiting cases s→∞ and s→ t/2.

In [H1] I introduced an analog on an arbitrary connected compact Lie group K of the
classical Segal-Bargmann transform. In fact [H1] gives two versions of the transform, Bt

and Ct , where t is a positive parameter. Let KC be the complexification of K, a certain
complex Lie group that contains K as a subgroup, let ρt be the heat kernel measure at the
identity on K, and let µt be the heat kernel measure at the identity on KC. The map Bt

is a unitary map of L2(K, ρt ) onto HL2(KC, µt ), where HL2 denotes the space of square-
integrable holomorphic functions. The map Bt is given by applying the time t heat operator
et∆K/2 to a function f on K, and then analytically continuing et∆K/2 f to KC. Meanwhile, Ct

is a unitary map of L2(K, dx) onto HL2(KC, νt ), where dx is Haar measure on K and νt is
obtained from µt by integrating over the action of K. The prescription for Ct is precisely
the same as for Bt : et∆K/2 followed by analytic continuation. B. Driver extended the results
of [H1] to Lie groups of compact type, a class that includes both compact Lie groups and
Rd, thus allowing the classical transform and the compact-group transform to be treated
in a unified way. These results were motivated by work [G1], [G2], [G3] of L. Gross—
see [D], [Hi1], [Hi2] for more information. See also [GM], [H2], [H3], [H4], [HS], [St]
for additional results. See [B] and the lecture notes [H5] for information and motivation
concerning the classical Segal-Bargmann transform (i.e., for Rd).

The purpose of this paper is to study a two-parameter family Bs,t of unitary transforms
on a Lie group K of compact type. Here s and t are positive parameters with s > t/2. These
transforms were introduced in joint work [DH] with Driver, where their isometricity was
proved using techniques of stochastic analysis and their definition was motivated by the
study of quantized Yang-Mills theory on a space-time cylinder. Here I give a self-contained
and purely finite-dimensional account, and I consider the limit s → t/2 in addition to the
limit s→∞ considered in [DH]. I give here a new, simple method of proving isometricity
of the transforms (Theorem 1.2), and a new method of proving surjectivity, based on a
parabolic Harnack inequality (Theorem 2.4).

Section 1 treats the generic case, t/2 < s < ∞. The transform Bs,t is a unitary map
of L2(K, ρs) onto HL2(KC, µs,t ), where µs,t is a certain heat kernel measure on KC. The
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New Segal-Bargmann transform 817

transform in all cases is given by f → analytic continuation of et∆K/2 f . Note that the
transform depends only on t ; the only s-dependence is in the measures. When s = t , Bs,t

coincides with the transform Bt of [H1], [D].
Section 2 treats the limiting cases s → ∞ and s → t/2. The s → ∞ limit yields

the Ct version of the transform, which means that as s varies from t to ∞, Bs,t interpo-
lates between the two previously known versions of the transform. The s → ∞ limit is a
crucial ingredient in the quantization scheme of [DH]. The s→ t/2 limit is more compli-
cated. In case K = Rd this limit yields the finite-dimensional version of the Fourier-Wiener
transform. In this case, the measure µs,t collapses as s → t/2 onto the imaginary axis in
Cd = (Rd)C and the space HL2(Cd, µs,t ) turns into an ordinary (non-holomorphic) L2-
space. At the opposite extreme, in case K is compact and semisimple, the limiting measure
µt/2,t is still absolutely continuous with respect to Haar measure on KC and the transform
is an isometry onto HL2(KC, µt/2,t ). Finally, in case K is compact and abelian, we have in-
termediate behavior. Here the measure collapses onto the imaginary axis as in the Rd case,
and HL2(KC, µt/2,t) is not a closed subspace of L2(KC, µt/2,t ). Nevertheless, the image of
the limiting transform is a nice Hilbert space of holomorphic functions—it simply does
not contain all L2 holomorphic functions.

Sections 3 shows that in the Rd case, all the transforms are in a certain sense equivalent;
in particular, the properties of Bs,t can in this case be deduced from those of the “standard”
transform Bt . No such equivalence holds for more general groups.

I thank Bruce Driver for many useful conversations, especially about the surjectivity
problem in the s = t/2 case.

1 The Generic Case: t/2 < s <∞

Definition 1.1 A Lie group is of compact type if it is locally isomorphic to some compact
group.

Thus Rd is of compact type, since it is locally isomorphic to a d-torus. Of course, com-
pact groups are also of compact type. It can be shown [D, Cor. 2.2] that every connected
Lie group of compact type is the product of a compact group and Rd. See, for example,
[He], [Vara] for standard results about Lie groups of compact type.

Let K be a connected Lie group of compact type, and let k be the Lie algebra of K. Fix
once and for all an inner product on k which is invariant under the adjoint action of K. (A
Lie group admits such an inner product if and only if it is of compact type.) Let X1, . . . ,Xn

be an orthonormal basis for k, and view each Xk as a left-invariant vector field. Let

∆K =

n∑
k=1

X2
k .

This is a bi-invariant differential operator on K and is independent of the choice of or-
thonormal basis.

Let ρs(x) be the solution to the equation

dρ

ds
=

1

2
∆Kρs,
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subject to the initial condition

ρs → δe as s→ 0.

This function is called the heat kernel (at the identity) for K. It is known that ρs exists and
is unique, and is a strictly positive, C∞ function on K. With little danger of confusion, we
will also let ρs denote the associated measure

dρs = ρs(x) dx,

where dx denotes Haar measure on K. (Of course, dx is defined only up to a constant. The
definition of the heat kernel function depends on the normalization of Haar measure, but
the heat kernel measure is always a probability measure.)

Let KC be the complexification of K, which is a certain connected complex Lie group
whose Lie algebra kC is the complexification of k, and which contains K as a subgroup. (See
[H1, Sect. 3] or [Ho] for the definition.) For example, if K = Rd then KC = Cd, and
if K = SU(2), then KC = SL(2; C). The key property of the complexified group KC is
that every finite-dimensional representation of K has a unique analytic continuation to a
holomorphic representation of KC. As a consequence of this property, it may be shown
[H1], [D] that the heat kernel function ρt (x) has a unique analytic continuation to KC.

Consider now the Hilbert space L2(K, ρs). For t < 2s define

Bs,t : L2
(
K, ρs(x) dx

)
→ H(KC)

by

Bs,t f (g) =

∫
K
ρt (gx−1) f (x) dx, g ∈ KC.(1.1)

Here ρt (gx−1) refers to the analytically continued heat kernel and H(KC) to the space of
holomorphic functions on KC. Note that the formula for Bs,t involves the time t heat ker-
nel, whereas the domain Hilbert space involves the time s heat kernel. We will prove that
the integral is convergent and that Bs,t f is in fact holomorphic. Unless K is compact, con-
vergence fails when t ≥ 2s—see Theorem 2.2 in Section 2.

Now consider the operator As,t on KC given by

As,t =
(

s−
t

2

) n∑
k=1

X2
k +

t

2

n∑
k=1

JX2
k .(1.2)

Here J denotes the complex structure on kC, and the Xk’s and JXk’s are viewed as left-
invariant vector fields on KC. For example, if K = Rd and KC = Cd, then Xk = ∂/∂xk

and JXk = ∂/∂yk. For t < 2s (i.e., s > t/2) As,t is a second-order, left-invariant, elliptic
differential operator on KC. Let µs,t be the function on KC given formally by

µs,t = eAs,t/2(δe).
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More precisely, let µs,t,r be the solution to the equation

dµs,t,r

dr
=

1

2
As,tµs,t,r

lim
r→0

µs,t,r = δe.

Then µs,t = µs,t,1. Existence and properties are shown, for example, in [Ro]. In particular
µs,t is a C∞, strictly positive function with rapid decay at infinity.

We will let µs,t also denote the associated probability measure, dµs,t = µs,t (g) dg, where
dg is Haar measure on KC. Finally we will set

HL2(KC, µs,t ) = H(KC) ∩ L2(KC, µs,t ).

We are now ready to state the main result. This was proved previously in [DH, Thm. 5.3]
for the compact case using methods of stochastic analysis.

Theorem 1.2 Let s and t be positive numbers with s > t/2. Then for all f ∈ L2(K, ρs), the
integral

Bs,t f (g) =

∫
K
ρt (gx−1) f (x) dx

is absolutely convergent for all g ∈ KC and depends holomorphically on g. The map Bs,t is an
isometric isomorphism of L2(K, ρs) onto HL2(KC, µs,t ).

Proof We will consider separately the compact and Rd cases. The general case follows by
reduction to those cases.

Case 1: K is compact. Although the method of [H1] can be used with little change, I
wish to give a different argument which at least formally does not involve matrix entries.
(The matrix entries still play an important technical role.) The argument uses a method
proposed, in a more general setting, by T. Thiemann [T, Sect. 2.3].

According to [H1, Prop. 1], the heat kernel ρt admits a unique analytic continuation to
KC. Although it is possible to use the transform itself to deduce this, as in [D], it is not
difficult to obtain the result directly, as in [H1]. In this the compact case there is no trouble
with the convergence of the integral that defines Bs,t or with the holomorphicity of Bs,t f .
So we need only address isometricity and surjectivity.

Let us first give a heuristic argument for the isometricity of Bs,t , and then show that this
can be made rigorous. Since ρs(x−1) = ρs(x) [H1], integrating a function φ with respect to
the measure ρs(x) dx gives the same result as computing es∆K/2(φ) and then evaluating at the
identity. Similarly (see [D, Thm. 2.7]), integrating a function on KC against µs,t (g) dg gives
the same result as applying eAs,t/2 and then evaluating at the identity. Thus the isometricity
of Bs,t amounts to the statement

es∆K/2( f1 f2)(e) = eAs,t/2(et∆K/2 f1et∆K/2 f2)(e).(1.3)
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Let us assume that f1 and f2 themselves admit an analytic continuation to KC. (The space
of such f ’s is dense.) Now, ∆K =

∑
X2

k , regarded as a left-invariant differential operator
on KC, commutes with complex conjugation and with analytic continuation. Thus

et∆K/2 f1 = et∆K/2 f1.

Note that on the left, we are first applying et∆K/2, then analytically continuing, and then
taking the complex conjugate. On the right we are first analytically continuing, then taking
the complex conjugate and then applying et∆K/2.

Next consider the operators

Zk =
1

2
(Xk − i JXk)

Z̄k =
1

2
(Xk + i JXk),

which reduce in the case KC = Cd to ∂/∂zk and ∂/∂z̄k. On the holomorphic function f2

we have Zk f2 = Xk f2 and Z̄k f2 = 0, and on the anti-holomorphic function f1, Zk f1 = 0
and Z̄k f1 = Xk f1. It follows that

et∆K/2 f1et∆K/2 f2 = et
∑

Z2
k/2et

∑
Z̄2

k/2( f1 f2).

So the desired norm equality becomes

es∆K/2( f1 f2)(e) = eAs,t/2et
∑

Z2
k /2et

∑
Z̄2

k/2( f1 f2)(e).(1.4)

Now, the holomorphic vector field Zk automatically commutes with the anti-holomor-
phic vector field Z̄l (or calculate this directly). Thus the second and third exponents on the
right of (1.4) may be combined. The exponent that results is

t

2

n∑
k=1

(Z2
k + Z̄2

k ) =
t

4

n∑
k=1

(X2
k − JX2

k ).

This is a constant times the Casimir operator for KC, which is bi-invariant and therefore
commutes with the left-invariant operator As,t . So in the end all three exponents on the
right in (1.4) may be combined. It thus suffices to have the sum of the three exponents on
the right in (1.4) equal to the exponent on the left. Recalling the definition (1.2) of As,t and
multiplying both sides by 2, we need

s
∑

X2
k =
(

s−
t

2

)∑
X2

k +
t

2

∑
JX2

k +
t

2

∑
(X2

k − JX2
k ),(1.5)

which is true!
Let us now make this argument rigorous. Let F denote the space of finite linear com-

binations of matrix entries for finite-dimensional irreducible representations of K. Since
K is compact, ρs(x) is bounded and bounded away from zero. Thus L2(K, ρs) is the same
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space of functions as L2(K, dx), with a different but equivalent norm. So by the Peter-Weyl
theorem, F is dense in L2(K, ρs). On F there is little trouble in justifying the above argu-
ments. Indeed, [H1, Lem. 2, Lem. 8] shows that when integrating matrix entries against
heat kernels, one may expand everything in power series. Thus Bs,t is isometric on F and
so also by a straightforward passage-to-the-limit on L2(K, ρs).

For surjectivity of the transform, we note that the surjectivity proof of [H1] (for the
s = t case) applies with only the most obvious of changes. In particular, the proof of the
“averaging lemma” [H1, Lem. 11], which is the key to the proof of surjectivity, applies with
µt replaced by µs,t . The proof of Theorem 2.4 gives another way to prove surjectivity here.
Although that theorem requires K to be semisimple, in the case s > t/2 the operator As,t

is always elliptic and semisimplicity is not needed. In the case s > t/2, we could use the
Li-Yau parabolic Harnack inequality (e.g., [Da, Thm. 5.3.5]) in place of the “subelliptic”
inequality of [Varo], [S-C].

Case 2: K = Rd. In this case the theorem can be reduced to the standard (s = t) case—see
Section 3. However, it is just as easy to give a direct proof. See [DH, Sect. 3] for more
details.

Since Rd is non-compact, we need to address the convergence of the integral in The-
orem 1.2. That integral will be absolutely convergent for all f provided that (in additive
notation) for all z ∈ Cd,

ρt (z − x)

ρs(x)
∈ L2(Rd, ρs).

Using the explicit formula ρt (x) = (2πt)−d/2e−x2/2t , it is easily verified that this holds
precisely when s > t/2. When s > t/2, Morera’s Theorem will show that the integral is
holomorphic as a function of z ∈ Cd.

The formal argument for isometricity is precisely the same as in the compact case; we
merely need a dense subspace on which it can be made rigorous. Among the possibilities
for such a subspace are the space of polynomials and the space of finite linear combinations
of exponentials.

To prove surjectivity, I claim it suffices to prove that the holomorphic polynomials are
dense in HL2(Cd, µs,t ). After all, the operator et∆/2 is invertible on the space of polynomials
on Rd of degree at most n, with inverse e−t∆/2 given by a terminating power series. So every
polynomial p on Rd is of the form et∆/2q for some polynomial q, and so every holomorphic
polynomial pC on Cd is the analytic continuation of et∆/2q, where the p = e−t∆/2q is the
restriction of pC to Rd.

So it remains only to prove the density of holomorphic polynomials. I repeat here the
argument of [DH, Sect. 3.2]. In the case s = t this is conventionally done using Taylor
series [B, Sect. 1b]. For s 6= t we use instead the holomorphic version of the Hermite
expansion—this coincides with the Taylor expansion when s = t . By a variant of a well
known result, L2(Cd, µs,t ) is the orthogonal direct sum of the subspaces Fn,s,t given by

Fn,s,t = e−As,t/2 (homogeneous polynomials of degree n).

Furthermore, the expansion of any F ∈ L2(Cd, µs,t ) as a (L2-convergent, orthogonal) sum
of elements of Fn,s,t may be accomplished as follows: Apply eAs,t/2 to F, then expand eAs,t/2F
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as a sum of homogeneous polynomials of degree n (the Taylor series of eAs,t/2F), and then
apply e−As,t/2 term-by-term to that series. Here eAs,t/2F is computed as the convolution of F
with µs,t . Note that it is at least formally clear that this prescription gives an expansion of F
in terms of elements of Fn,s,t . This expansion of F is called the Hermite expansion.

The key observation is this: If F ∈ L2(Cd, µs,t ) is holomorphic, then so is eAs,t/2F, and so
also each term, say pn, in the Taylor expansion of eAs,t/2F. Thus the terms e−As,t/2 pn in the
Hermite expansion of F are holomorphic polynomials. (It is straightforward to verify that
if F ∈ HL2(Cd, µs,t ) then the convolution of F with µs,t exists and is holomorphic. Further-
more, As,t commutes with ∂/∂z̄k so if pn is holomorphic then so is e−As,t/2 pn.) All of this
shows that if F ∈ HL2(Cd, µs,t ) then F is the L2-convergent sum of a series of holomorphic
polynomials. Thus holomorphic polynomials are dense.

Note that if s = t then As,t is zero on all holomorphic functions. In that case the above
expansion of F ∈ HL2(Cd, µs,t ) is nothing other than the Taylor expansion of F.

Case 3: K = Rd × G, with G compact and semisimple. Then KC = Cd × GC and the
Lie algebra decomposition k = Rd ⊕ g is automatically orthogonal with respect to any
Ad-invariant inner product. It follows that the heat kernels on both the real side and the
complex side will factor. Now (suppressing the measures) we have the standard result

L2(Rd)⊗ L2(G) ∼= L2(Rd × G),

where the isomorphism takes f1⊗ f2 to the product function f1(x) f2(y). Meanwhile on the
complex side, we have

HL2(Cd)⊗HL2(GC) ∼= HL2(Cd × GC),

with F1⊗F2 mapping to F1(z)F2(g). This result requires a small proof which is given in the
appendix.

Now, since the heat kernel on Rd×G factors, the transform applied to a product function
will be just the product of the separate transforms. That is, the transform for the product
group is (under the above isomorphisms) just the tensor product of the separate trans-
forms. So all the desired properties of the transform for K follow from the corresponding
properties of the transforms for Rd and for G.

Case 4: The General Case Although every connected Lie group of compact type is a prod-
uct of a compact group with Rd [D, Cor. 2.2], the Lie algebras of the two factors need not be
orthogonal, since the compact factor need not be semisimple. Thus the method of Case 3 is
not sufficiently general. But for any K which is connected and of compact type, the univer-
sal cover of K is of the form K̃ = Rd×G, where G is compact and simply connected, hence
semisimple. (See [He, Chap. II, Cor. 6.5 and Thm. 6.9].) Thus by Case 3, the transform for
K̃ is well-defined, isometric, and surjective.

Now, K itself is K̃/N , where N is a discrete central subgroup, and

ρs(x) =
∑
n∈N

ρ̃s(x̃n)(1.6)
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where ρs is the heat kernel for K, ρ̃s is the heat kernel for K̃, and x̃ is any point in K̃ which
projects to x. Note that N is finitely-generated (since it is π1(K)) and abelian, hence a
product of cyclic groups, and each generator of an infinite cyclic factor must have non-zero
Rd-component. So there is no problem with convergence of the sum. It follows that

L2(K, ρs) = L2(K̃, ρ̃s)
N .(1.7)

Here a superscript N indicates the functions which are invariant under the right (or equiv-
alently left) action of N .

The complexification of K is KC = K̃C/N , where K̃C means the complexification of
the universal cover of K, which is the same as the universal cover of the complexification.
(Recall that K̃ ⊂ K̃C.) We have, by analogy to (1.7)

HL2(KC, µs,t ) = HL2(K̃C, µ̃s,t )
N .(1.8)

By construction, the transform for K̃ commutes with the action of N , and so it maps
L2(K̃, ρ̃s)N into HL2(K̃C, µ̃s,t )N . Furthermore, in light of (1.6), the transform for K̃, re-
stricted to the N-invariant subspace, coincides with the transform for K. So convergence
and isometricity of the transform for K follow from the corresponding properties for K̃.

To establish surjectivity for the transform for K, we must prove that the transform for K̃
maps the N-invariant subspace of L2(K̃, ρ̃s) onto the N-invariant subspace of HL2(K̃C, µ̃s,t ).
So suppose F ∈ HL2(K̃C, µ̃s,t )N . Then by the surjectivity of the transform for K̃, there exists
f ∈ L2(K̃, ρ̃s) such that

F(g) =

∫
K̃
ρ̃t (gx−1) f (x) dx.

Since F(g) = F(gn), we have∫
K̃
ρ̃t (gx−1) f (x) dx =

∫
K̃
ρ̃t (gnx−1) f (x) dx

=

∫
K̃
ρ̃(gx−1) f (xn) dx.

(1.9)

Now, if f (x) ∈ L2(K̃, ρ̃s), then both f (x) and f (xn) are in L2(K̃, ρ̃r) for all r < s. (There
is no trouble on the G factor, and on the Rd factor this is an easy calculation.) If we take
t/2 < r < s, then (1.9) says that Br,t applied to f (x) is the same as Br,t applied to f (xn). But
Br,t is isometric and therefore injective, and so we conclude that f (x) = f (xn) for almost
every x. Thus f is in the N-invariant subspace, and Bs,t is surjective. This completes the
proof of Theorem 1.2.

2 The Limiting Cases: s→ t/2 and s→∞

In the case s = t , Theorem 1.2 reduces to the results of [H1], [D]. In particular µt,t = µt ,
where µt is the measure in those papers. This case is special because in this case, and only
in this case, the operator As,t = At,t annihilates holomorphic functions. This property is
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central to the development of the “ J⊥” expansion in [D], [DG]. The case s = t is also
more amenable to passing to the infinite-dimensional limit, because one has in this case
dimension-independent bounds. See [D, Cor. 5.5 and 5.9] and [HS, Thm. 4]. One can still
take the infinite-dimensional limit when s 6= t (see [DH]), but the “restriction map” which
plays a crucial role in [HS] is unavailable in this case, and so different methods are needed.

In this section we will stay within the finite-dimensional realm, but will examine what
happens in the limits s → t/2 and s → ∞. Recall that in every case our transform takes f
to the analytic continuation of et∆K/2 f , but that we are varying the inner product (i.e., the
measure) on the domain and range.

Theorem 2.1 Let K be compact and normalize Haar measure on K to have mass one. Then
f ∈ L2(K, ρs) if and only if f ∈ L2(K, dx), and

‖ f ‖L2(K,dx) = lim
s→∞
‖ f ‖L2(K,ρs).

The function

νs,t (g) =

∫
K
µs,t (xg) dx, g ∈ KC

is independent of s and will be denoted νt (g). For all F ∈ H(KC), F ∈ L2(KC, µs,t ) if and only
if F ∈ L2(KC, νt ), and

‖F‖L2(KC,νt ) = lim
s→∞
‖F‖L2(KC,µs,t ).

Thus the map

f → analytic continuation (et∆K/2 f )

is an isometric isomorphism of L2(K, dx) onto HL2(KC, νt ).

This last isometric isomorphism was verified in [H1, Thm. 2] and was denoted Ct . Note
that I am using here a different normalization of Haar measure on K, and therefore a dif-
ferent normalization of νt , than in [H3]. In that paper I normalize Haar measure on K to
coincide with the Riemannian volume measure, so that K need not have volume one.

Proof Since we are assuming that K is compact, ρs(x) will be bounded and bounded away
from zero. Thus the L2 norm with respect to ρs(x) dx is finite if and only if the L2 norm
with respect to Haar measure is finite. It is an easy and standard result that ρs(x) converges
uniformly to the constant function 1, which establishes the first limit in the theorem.

Now, let δK denote Haar measure on K, viewed as a measure on KC. Then since As,t is a
left-invariant operator, we have formally

νs,t = eAs,t (δK).

But the two terms in the definition of As,t commute, so

νs,t = et/2
∑

JX2
k e(s−t/2)

∑
X2

k (δK ).
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Since δK is K-invariant, the exponential involving
∑

X2
k has no effect, and the s-dependence

vanishes.
The equivalence of square-integrability with respect to µs,t and νt is implied by the “av-

eraging lemma” [H1, Lem. 11]. This is stated in [H1] for the case s = t , but the same proof
applies in general. Using commutativity again we have for s > t

µs,t = e(s−t)
∑

X2
k et/2

∑
JX2

k et/2
∑

X2
k (δe).

Thus

µs,t (g) =

∫
K
µt,t (gx−1)ρs−t (x) dx,

from which it follows that lims→∞ µs,t (g) = νt (g) for all g. Furthermore, applying the aver-
aging lemma to µt,t we see that for all s > t , µs,t (g) is dominated by a constant (independent
of s) times νt (g). So Dominated Convergence gives the second limit in the theorem. The
methods of [H1] are sufficient to make all of this rigorous.

Thus we obtain the unitary transform Ct as the s→∞ limit of Bs,t , in the compact case.
In the general case there is undoubtedly a unitary map similar to Ct —certainly this is so if
K = Rd. However, it is not as easy to obtain it as a limit of the Bs,t ’s. First, to get convergence
of the measures ρs and µs,t as s→∞, we need to multiply them by an appropriate function
of s, (2πs)d/2 in the Rd case. Second, if K is not compact, then L2(K, ρs) and HL2(KC, µs,t )
are different spaces of functions for different values of s, so one would have to be careful
about how a limiting theorem is stated. I will not pursue this matter here.

We now turn to the opposite extreme, the limit s → t/2. In the case K = Rd the
measure µs,t collapses as s → t/2 onto the imaginary axis, and our transform becomes a
finite-dimensional version of the Fourier-Wiener transform. In the case K compact, we still
have when s = t/2 an isometric map into an L2-space of holomorphic functions, and it is
onto the holomorphic L2-space if K is semisimple.

Theorem 2.2 Let K = Rd so that KC = Cd. As s tends to t/2, the measures µs,t on Cd

converge in the weak-∗ topology to the Gaussian measure

(πt)−n/2 exp(−y2/t) dy = ρt/2(y) dy

on the “imaginary axis” iRd. The transform Bt/2,t makes sense, say, on polynomials and is
given by

Bt/2,t f (i y) =

∫
Rd

ρt (i y − x) f (x) dx

= (2πt)−n/2ey2/2t

∫
Rd

ei yx/t e−x2/2t f (x) dx.

This transform maps the space of polynomials isometrically into L2(iRd, ρt/2). Extending con-
tinuously we obtain an isometric isomorphism of L2(Rd, ρt/2) onto L2(iRd, ρt/2).
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Note that Bt/2,t is essentially the Fourier transform, unitary from L2(Rd, dx) to itself,
disguised by conversion to Gaussian measure on both sides—that is, the Fourier-Wiener
transform (e.g. [BSZ, Chap. 1.7]).

Note also that in the limit s → t/2, the analyticity on the range is lost. That is, the
range of Bt/2,t is not an L2-space of holomorphic functions, but an ordinary L2-space, the
elements of which need not even be continuous. This loss of analyticity coincides with a
loss of convergence in the integral that defines Bt/2,t .

Proof Convergence of the measure follows from the explicit formula

µs,t (x + i y) =
(
2π(s− t/2)

)n/2
e−x2/2(s−t/2)(πt)−n/2e−y2/t .

If f is a polynomial, then F = et∆/2 f is also a polynomial. So there is no difficulty in letting
s→ t/2 to obtain

‖ f ‖L2(Rd ,ρt/2) = lim
s→t/2

‖ f ‖L2(Rd ,ρs) = lim
s→t/2

‖F‖L2(Cd ,µs,t ) = ‖F‖L2(iRd ,ρt/2).

So Bt/2,t is isometric on polynomials. But et∆/2 is invertible on the space of polynomials of
degree at most k, and so every polynomial is in the image of Bt/2,t . Since polynomials are
dense in L2(Rd, ρt/2), Bt/2,t is densely defined and has dense image.

Theorem 2.3 Let K be compact. Then as s → t/2 the measures µs,t on KC converge in the
weak-∗ topology to a probability measure, denoted µt/2,t . If K is semisimple, µt/2,t is absolutely
continuous with respect to Haar measure on KC. For any compact K, the transform Bs,t makes
sense with s = t/2, and Bt/2,t is an isometry of L2(K, ρt/2) into HL2(KC, µt/2,t ).

Proof Every connected compact Lie group is of the form K = (G × T)/N , where G is
compact and semisimple, T is a torus, and N is a finite central subgroup [BtD, Thm. 8.1].
In the semisimple case, the function µs,t on GC exists and is strictly positive [Ro, IV.4] even
when s = t/2, because in that case the operator

∑
JX2

k is subelliptic and therefore hypo-
elliptic. Furthermore, as in the proof of Theorem 2.2, we have for s > t/2

µs,t (g) =

∫
G
µt/2,t (gx−1)ρs−t/2(x) dx.

It follows that the weak-∗ limit of µs,t as s approaches t/2 is µt/2,t . Furthermore,∫
G
µt/2,t (gx) dx = νt (g) =

∫
G
µs,t (gx) dx(2.1)

where νt (g) is as in Theorem 2.2 and decays rapidly at infinity. If f is in the space F (as
in proof of Theorem 1.2), then the function F = analytic continuation of et∆K/2 f grows
only exponentially at infinity. Using (2.1) we may control the integral of F near infinity
uniformly in s, giving

lim
s→t/2

‖F‖L2(KC,µs,t ) = ‖F‖L2(KC,µt/2,t ).
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Thus, Bt/2,t is isometric on F and so also on L2(G, ρt/2).

In the torus case T, we have TC = T×Rd, and the measure µs,t is the product of the heat
kernel measure ρ(s−t/2)/2 on T and the Gaussian measure ρt/2 on Rd. So again there is no
trouble in letting s tend to t/2. Taking products and periodizing over N pose no problem.

Theorem 2.4 Let K be compact and semisimple. Then the transform Bt/2,t of Theorem 2.3
maps onto HL2(KC, µt/2,t ).

Proof We will use a parabolic Harnack inequality to derive a weak form of the averaging
lemma. The weak averaging lemma will show that if F ∈ HL2(KC, µt/2,t ) then for all r < t

there exists fr such that F is the analytic continuation of er∆K/2 f . The isometricity of the
transform Br/2,r together with another application of the parabolic Harnack inequality will
show that the norm of fr remains bounded as r → t−, from which it follows that limr→t− fr

exists. This limiting function ft is the pre-image of F under Bt/2,t .
Since K is semisimple, the elements of the form JX, X ∈ k, together with their commu-

tators, span the whole Lie algebra kC ([ Jk, Jk] = [k, k] = k). It follows that the operator At/2,t

is subelliptic and thus that the definition of µs,t makes sense even when s = t/2. The func-
tion µt/2,t is a strictly positive C∞ function. We will use the following lemmas concerning
µt/2,t . (Compare Lemma 2.5 to [H1, Lem. 11].)

Lemma 2.5 (Weak Averaging Lemma) Assume K is compact and semisimple and let
νt (g) =

∫
K µt/2,t (gx) dx. Then for all r and t with 0 < r < t there exists a constant C1

such that

µt/2,t (g) ≥ C1νr(g)

for all g in KC.

Lemma 2.6 Assume K is compact and semisimple. Then for all t > 0 there exists a constant
C2 such that for all r ∈ (3t/4, t)

µr/2,r(g) ≤ C2µt/2,t (g)

for all g in KC.

Proof of Lemma 2.5 There is a natural left-invariant metric on KC associated to the op-
erator Σ JX2

k , namely, d(x, y) = infγ
∫
|γ̇(t)| dt , where the infimum is over all piecewise

smooth curves for which γ̇(t) is in the span of the vector fields JXk for all t , and where if
γ̇ = Σak JXk, then |γ̇|2 = Σa2

k. If K is semisimple, then such a curve exists for any x and
y, and d is a continuous metric on KC (e.g. [VSC, Chap. III.4]). This metric is described
in a different but equivalent way in [S-C, Sect. 2]. A parabolic Harnack inequality in this
setting seems to have first been proved by Varopoulos [Varo]; I will refer to the form given
on the bottom of p. 439 of [S-C] (using Thm. 2.1 and Sect. 8.3). Since K is compact and
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d is continuous, d(e, x) is bounded for x ∈ K. The left-invariance of the metric then im-
plies that d(g, gx) is bounded for g ∈ KC, x ∈ K. So as a consequence of [S-C] we have a
constant C such that

µr/2,r(gx) ≤ Cµt/2,t (g)

for all g ∈ KC and x ∈ K. Thus

µt/2,t (g) ≥
1

C
sup
x∈K

µr/2,r(gx)

≥
1

C

∫
K
µr/2,r(gx) dx =

1

C
νr(g).

Proof of Lemma 2.6 This follows from the same inequality in [S-C], choosing the r there
so that the lower time interval in the inequality contains our r and the upper time interval
contains our t .

As in Theorem 2.2 and noting that µt/2,t is Ad-K-invariant, νr is the same as the K-
averaged heat kernel in [H1]. According to the Weak Averaging Lemma, if F is square-
integrable with respect to µt/2,t , then it is square-integrable with respect to νr for all r < t .
Thus by [H1, Thm. 2] or Theorem 2.2, there exists for each r < t a function fr ∈ L2(K, dx)
such that F is the analytic continuation of er∆K/2 fr . But then applying the isometry Br/2,r to
the function fr and applying Lemma 2.6

‖ fr‖L2(K,ρr/2) = ‖F‖L2(KC,µr/2,r) ≤ C2‖F‖L2(KC,µt/2,t ).

Thus the norm of fr in L2(K, ρr/2), and so also in L2(K, dx), remains bounded as r increases
to t . But now the restriction of F to K has an expansion in terms of an orthonormal basis
for L2(K, dx) of eigenvectors ψn for−∆K with eigenvalues λn ≥ 0:

F =
∑

anψn.

So

fr =
∑
π

erλn/2anψn,

with
∑

erλn |an|2 bounded as r increases to t . By Monotone Convergence,
∑

etλn |an|2 <∞
and so the sum ft :=

∑
etλn/2anψn converges in L2. Then F is the analytic continuation of

et∆K/2 ft . This proves Theorem 2.4.

Theorem 2.7 Let K = S1 = R/2πZ, so that KC = C/2πZ. Then the image of the map Bt/2,t

is precisely the space of functions F satisfying:

1. F is holomorphic on C and satisfies F(z + 2π) = F(z) for all z ∈ C.
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2. F is square-integrable with respect to µt/2,t ; that is,

(πt)−1/2

∫
R
|F(i y)|2e−y2/t dy <∞.

3. There exists constants a, b, and c, with c < 1/2 such that

|F(x + i y)| ≤ a exp(bec|y|)

for all x, y.

If F is in the image of Bt/2,t , then for some constant d

|F(x + i y)| ≤ dey2/2t

for all x, y.

We may not take c = 1/2 in Condition 3, as the function

F(z) = cos(eiz/2)

demonstrates. (Observe that F is 2π-periodic, even though eiz/2 is 2π-anti-periodic.) After
all, |F(i y)| ≤ 1, which means that F is square-integrable, but F(π + i y) = cosh(e−y/2),
which grows too rapidly as y → −∞ for F to be in the image of Bt/2,t . Note that in the
presence of Conditions 1 and 2 of the theorem, the very weak bounds of Condition 3 imply
the stronger bounds given in the last part of the theorem. This is a consequence of the
Phragmen-Lindelöf method (e.g., [Ru, Chap. 12]), which allows the values of a holomor-
phic function in the strip 0 < Re z < 2π to be controlled by its values on the boundary,
given Condition 3.

Proof If F is Bt/2, t f for some f , then clearly F will satisfy Condition 1, and by Theo-
rem 2.3, F will satisfy Condition 2. Meanwhile,

Bt/2,t f (x + i y) =

∫ 2π

0
ρt (x + i y − x ′) f (x ′) dx ′

where

ρt (x + i y − x ′) =
1
√

2πt

∞∑
n=−∞

exp{−(x − x ′ − 2πn + i y)2/2t}

=
1
√

2πt
ey2/2t

∞∑
n=−∞

e−i(x−x ′−2πn)y/t e−(x−x ′−2πn)2/2t .

(2.2)

But the second sum in (2.2) is easily seen to be bounded uniformly in x, x ′, and y which
gives the estimate in the last part of the theorem, and so certainly Condition 3.
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Conversely, suppose we have a function F which satisfies Conditions 1, 2, and 3. Then
choose α with c < α < 1/2, and let

hε(z) = exp{−ε cosα(z − π)}.

For x ∈ [0, 2π], hε(x + i y) tends to zero very rapidly as y tends to infinity. Let us apply

Cauchy’s Formula to the function F(z)ez2/2t hε(z), over the rectangle 0 < Re z < 2π,−A <
Im z < A. The presence of hε together with Condition 3 allow us to let A→∞, giving

F(z)ez2/2t hε(z) =
1

2πi

∫ ∞
−∞

F(2π + i y)e2π2/t e2πi y/t e−y2/2t hε(2π + i y)

2π + i y − z
idy

−
1

2πi

∫ ∞
−∞

F(i y)e−y2/2t hε(i y)

i y − z
idy.

Now, F(2π + i y) = F(i y) is square-integrable with respect to e−y2/t dy, which implies

that F(i y)e−y2/2t is square-integrable dy. For 0 < Re z < 2π, 1/(2π+ i y−z) is also square-
integrable dy, which means the product of the two is integrable dy. Moreover, |hε(i y)| ≤ 1
and |hε(2π + i y)| ≤ 1 for all y, so by dominated convergence we may interchange the limit
ε→ 0 with the integrals. So

F(z)ez2/2t =
1

2πi

∫ ∞
−∞

F(i y)e2π2/t e2πi y/t e−y2/2t

2π + i y − z
idy

−
1

2πi

∫ ∞
−∞

F(i y)e−y2/2t

i y − z
idy.

(2.3)

Putting the ez2/2t onto the other side and estimating the integrals using the square-
integrability of F gives

|F(x + i y)| ≤ cey2/2t

(
1
√

x
+

1
√

2π − x

)
for 0 < x < 2π. These estimates would apply to any holomorphic function on this strip
that satisfied Condition 3 and was square-integrable over the two boundary lines. Given
these estimates and the periodicity of F, we may run a similar argument on the strip 0 <
Re z < 4π. The square-root singularity in our estimates for F causes no problem and we
obtain a formula similar to (2.3) but with 4π + i y − z in the denominator of the first term.
This gives good estimates on F(z) for Re z near 2π, hence also near Re z = 0. So finally

|F(x + i y)| ≤ cey2/2t .(2.4)

The estimate (2.4) implies that F is square-integrable with respect to the measure νr for
any r < t . Since the transform Cr = lims→∞ Bs,r is surjective, there exists fr such that F
is the analytic continuation of er∆/2 fr . We now wish to allow r to increase to t as in the
proof of Theorem 2.4. We may directly verify that square-integrability with respect to µt/2,t

implies square-integrability with respect to µr/2,r, with uniform bounds as r increases to t .
The rest of the argument is as in Theorem 2.4.

https://doi.org/10.4153/CJM-1999-035-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-035-3


New Segal-Bargmann transform 831

3 Reduction of the Rd Case to Standard Form

In this section we will see how to deduce the properties of Bs,t in the Rd case from the
properties of the “classical” Segal-Bargmann transform Bt (= Bt,t ), thus showing that Bs,t

is, in the Rd case, just a disguised form of Bt . To understand why this is so, imagine making
a change of measure on Rd from ρs to Lebesgue measure. Our transform will then be an
integral operator with some kernel ks,t (x, z). The functions ks,t (·, z), with z fixed, are the
“coherent states”. No matter the values of s and t , these coherent states will be the usual
Gaussian wave packets, that is, functions of the form a exp[−(x − b)2/2σ] exp ic · x. Here
the width σ depends on s and t but not z, and as z varies over Cd with s and t fixed, all
possible values of (b, c) are achieved. All that changes with s and t is the distance scale σ,
the normalization constants a, and the labeling of the coherent states. Of course, nothing
so simple occurs on groups other than Rd. In the Rd case, the Ct version of the transform
can also be reduced to the Bt version by a similar method—see [H1, Eq. (A.18)].

So now let r = 2(s− t/2), so that r > 0. Recalling the definition of As,t we may compute
µs,t explicitly:

µs,t (x + i y) = (πr)−d/2(πt)−d/2e−x2/re−y2/t .

Now consider the map U defined on HL2(Cd, µs,t ) given by

U F(z) = eaz2

F(z).

Since exp az2 is holomorphic and nowhere zero, U is a unitary map of HL2(Cd, µs,t ) onto
the Hilbert space

HL2(Cd, |eaz2

|−2µs,t ).

Choosing a = (r − t)/4rt gives

|eaz2

|−2µs,t = c1e−|z|
2/τ

where τ = 2rt/(r + t) and the value of c1 is immaterial.
The composite transform U Bs,t is

U Bs,t f (z) = c

∫
Rd

eaz2

e−(z−x)2/2t f (x) dx.

By combining the exponents and completing the square we obtain

U Bs,t f (z) = c

∫
Rd

exp

{
−

1

2τ

(
z −

2r

r + t
x

)2
}

× f (x) exp

{
r − t

2t(r + t)
x2

}
dx.

(3.1)
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This is just the time-τ heat operator, combined with a dilation and applied to the function

g(x) = f (x) exp

{
r − t

2t(r + t)
x2

}
.

Now let g̃(y) = g
(
(r + t)y/2r

)
. Making the change-of-variable y = 2rx/(r + t) in (3.1)

gives

U Bs,t f (z) = c2

∫
Rd

exp

{
−

1

2τ
(z − y)2

}
g̃(y) dy.(3.2)

Furthermore, a tedious but straightforward calculation shows that the norm of f in
L2(Rd, ρs) is the same (up to a constant) as the norm of g̃ in L2(Rd, ρτ ). Note that the right
side of (3.2) is just the standard Segal-Bargmann transform Bτ , isometric from L2(Rd, ρτ )
onto HL2(Cd, µτ ), applied to g̃. Undoing all of these steps shows that Bs,t is, up to a con-
stant, an isometric isomorphism of L2(Rd, ρs) onto HL2(Cd, µs,t ). By considering the case
f = 1 we see that the constant is one.

4 Appendix

Let X and Y be two complex manifolds with measures that are given in local coordinates
by smooth strictly positive densities with respect to Lebesgue measure. I wish to show that
HL2(X)⊗HL2(Y ) is isomorphic to HL2(X ×Y ), with the isomorphism taking F1 ⊗ F2 to
the product function F1(x)F2(y). Now, the conditions on the measures guarantee that in all
three cases, the holomorphic subspace is closed in L2 [D, Lem. 3.2]. Since also F1(x)F2(y) is
holomorphic if F1 and F2 are, it follows that under the usual isomorphism of L2(X)⊗L2(Y )
with L2(X × Y ), HL2(X)⊗HL2(Y ) maps into HL2(X × Y ).

We may show that the image is all of HL2(X × Y ) as follows. We know [D] that the
pointwise evaluation map F → F(g) is bounded on each of the HL2-spaces. Thus for each
x ∈ X there exists kx ∈ HL2(X) such that

∫
kx(x ′)F(x ′) dx ′ = F(x) for all F ∈ HL2(X), and

similarly for Y . So now suppose F(z, g) is holomorphic and square-integrable on X × Y ,
and that F is orthogonal to the image of HL2(X)⊗HL2(Y ). Then for all x ∈ X, y ∈ Y

0 =

∫
X×Y

F(x ′, y ′)kx(x ′)ky(y ′) dx ′ dy ′

=

∫
Y

[∫
X

F(x ′, y ′)kx(x ′) dx ′
]

ky(y ′) dy ′

=

∫
Y

F(x, y ′)ky(y ′) dy ′.

Here we have used that F(x ′, y ′) is holomorphic and square-integrable in x ′ for almost
every y ′. But now F(x, y ′) is holomorphic and square-integrable in y ′ for almost every x,
so for almost every x

F(x, y) = 0
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for every y. Since F is continuous and the measure on X × Y is “nice”, this implies that
F ≡ 0.
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[BtD] T. Bröcker and T. Tom Dieck, Representations of compact Lie groups. Springer-Verlag, New York-Berlin,

1985.
[Da] E. Davies, Heat kernels and spectral theory. Cambridge University Press, Cambridge, 1989.
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