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Abstract

If K is a simplicial complex on m vertices, the flagification of K is the minimal flag
complex Kf on the same vertex set that contains K. Letting L be the set of vertices,
there is a sequence of simplicial inclusions L −→ K −→ Kf . This induces a sequence

of maps of polyhedral products (X,A)L
g−→ (X,A)K

f−→ (X,A)K
f

. We show that Ωf
and Ωf ◦ Ωg have right homotopy inverses and draw consequences. For a flag complex
K the polyhedral product of the form (CY , Y )K is a co-H-space if and only if the
1-skeleton of K is a chordal graph, and we deduce that the maps f and f ◦ g have right
homotopy inverses in this case.

1. Introduction

The purpose of this paper is to investigate the homotopy theory of polyhedral products
associated with flag complexes. Polyhedral products have received considerable attention recently
as they unify diverse constructions from several seemingly separate areas of mathematics:
toric topology (moment-angle complexes), combinatorics (complements of complex coordinate
subspace arrangements), commutative algebra (the Golod property of monomial rings), complex
geometry (intersections of quadrics), and geometric group theory (Bestvina–Brady groups).

To be precise, let K be a simplicial complex on the vertex set [m] = {1, 2, . . . ,m}. For
1 6 i6m, let (Xi, Ai) be a pair of pointed CW -complexes, whereAi is a pointed CW -subcomplex
of Xi. Let (X,A) = {(Xi, Ai)}mi=1 be the sequence of pairs. For each simplex σ ∈ K, let (X,A)σ

be the subspace of
∏m
i=1Xi defined by

(X,A)σ =

m∏
i=1

Yi, where Yi =

{
Xi if i ∈ σ,
Ai if i /∈ σ.

The polyhedral product determined by (X,A) and K is

(X,A)K =
⋃
σ∈K

(X,A)σ ⊆
m∏
i=1

Xi.

For example, suppose each Ai is a point. If K is a disjoint union of m points, then (X, ∗)K is
the wedge X1 ∨ · · · ∨Xm, and if K is the standard (m− 1)-simplex, then (X, ∗)K is the product
X1 × · · · ×Xm.

The combinatorics of K informs greatly on the homotopy theory of (X,A)K . One notable
family of simplicial complexes is the collection of flag complexes. A simplicial complex K is flag
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Polyhedral products associated with flag complexes

if any set of vertices of K which are pairwise connected by edges spans a simplex. Flag complexes
are important in graph theory, where they are referred to as clique complexes, in the study of
metric spaces, where they are referred to as Rips complexes, and in geometric group theory,
where they are referred to as Gromov’s no-4 complexes.

The flagification of K, denoted Kf , is the minimal flag complex on the same set [m] that
contains K. We therefore have a simplicial inclusion K → Kf . For example, the (m−1)-simplex
∆m−1, consisting of all subsets of [m], is flag, while its boundary ∂∆m−1, consisting of all proper
subsets of [m], is flag only for m = 2. The flagification of ∂∆m−1 with m> 2 is ∆m−1. An m-cycle
(the boundary of an m-gon) is flag whenever m > 3.

The main result of the paper is the following.

Theorem 1.1. Let K be a simplicial complex on the vertex set [m], let Kf be the flagification
of K, and let L be the simplicial complex given by m disjoint points. Let (X,A) = {(Xi, Ai)}mi=1

be a sequence of pairs of pointed CW -complexes, where Ai is a pointed CW -subcomplex of Xi.

Let (X,A)L
g−→ (X,A)K

f−→ (X,A)K
f

be the maps of polyhedral products induced by the
maps of simplicial complexes L −→ K −→ Kf . Then the following hold:

(a) the map Ωf has a right homotopy inverse;

(b) the composite Ωf ◦ Ωg has a right homotopy inverse.

In particular, consider the special case when each Ai is a point. Write (X, ∗) for (X,A) and
notice that (X, ∗)L =X1∨· · ·∨Xm. If K is a flag complex on the vertex set [m], then the simplicial
map L −→ K induces a map f : X1∨· · ·∨Xm = (X, ∗)L −→ (X, ∗)K . By Theorem 1.1, Ωf has a
right homotopy inverse. That is, Ω(X, ∗)K is a retract of Ω(X1 ∨ · · · ∨Xm). This informs greatly
on the homotopy theory of Ω(X, ∗)K since the homotopy type of Ω(X1 ∨ · · · ∨ Xm) has been
well studied; in particular, in the special case when each Xi is a suspension the Hilton–Milnor
theorem gives an explicit homotopy decomposition of the loops on the wedge. Theorem 1.1 also
greatly generalizes [GPTW16, Theorem 5.3], which stated that such a retraction exists in the
special case when each Xi = CP∞ provided spaces and maps have been localized at a prime
p 6= 2.

Theorem 1.1 can be improved in certain cases. In § 6 we consider polyhedral products of
the form (CY , Y )K , where CY is the cone on Y , and identify the class of flag complexes K for

which (CY , Y )K is a co-H-space. As a corollary, we obtain conditions that allow for a delooping
of the statement of Theorem 1.1. In § 7 we relate Theorem 1.1 to Whitehead products. First,
we consider polyhedral products of the form (X, ∗)K with flag K whose 1-skeleton is a chordal
graph, and obtain a generalization of Porter’s description of the homotopy fiber of the inclusion
of an m-fold wedge into a product in terms of Whitehead brackets. Second, we consider the loop
space Ω(S, ∗)K on a polyhedral product formed from spheres for an arbitrary flag complex K,
and obtain a generalization of the Hilton–Milnor theorem.

2. Combinatorial preparation

This section records the combinatorial information that will be needed. We begin with some
definitions. Let K be an abstract simplicial complex on the set [m] = {1, 2, . . . ,m}, i.e., K is a
collection of subsets σ ⊆ [m] such that for any σ ∈ K all subsets of σ also belong to K. We refer
to σ ∈K as a simplex (or a face) of K and denote by |σ| the number of elements in σ. We always
assume that the empty set ∅ belongs to K. We do not assume that K contains all one-element
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subsets {i} ⊆ [m]. We refer to {i} ∈ K as a vertex of K, and refer to {i} /∈ K as a ghost vertex.
We say that K is a simplicial complex on the vertex set [m] when there are no ghost vertices.

Let K be a simplicial complex on the set [m]. For a vertex v ∈ K, the star, restriction
(or deletion) and link of v are the subcomplexes:

starK(v) = {τ ∈ K | {v} ∪ τ ∈ K};
K\v = {τ ∈ K | {v} ∩ τ = ∅};

linkK(v) = starK(v) ∩K\v.

Throughout the paper we follow the convention of regarding starK(v) as a simplicial complex
on the same set [m] as K, while regarding K\v and linkK v as simplicial complexes on the set
[m]\v. This implies that starK(v) and linkK v may have ghost vertices even if K does not.

The join of two simplicial complexes K1,K2 on disjoint sets is the simplicial complex

K1 ∗K2 = {σ1 ∪ σ2 | σi ∈ Ki}.

From the definitions, it follows that starK(v) is a join,

starK(v) = {v} ∗ linkK(v),

and there is a pushout

linkK(v) //

��

starK(v)

��
K\v // K

(1)

A non-face of K is a subset ω ⊆ [m] such that ω /∈ K. A missing face (a minimal non-face)
of K is an inclusion-minimal non-face of K, that is, a subset ω ⊆ [m] such that ω is not a simplex
of K, but every proper subset of ω is a simplex of K. A ghost vertex is therefore a missing face
consisting of one element. Denote the set of missing faces of K by MF(K). For a subset ω ⊆ [m],
let ∂ω denote the collection of proper subsets of ω. Observe that ω ∈MF(K) if and only if ω /∈K
but ∂ω ⊆ K.

A simplicial complex K on the set [m] is called a flag complex if each of its missing faces
consists of at most two elements. Equivalently, K is flag if any set of vertices of K which
are pairwise connected by edges spans a simplex. Every flag complex K is determined by its
1-skeleton K1, and is obtained from the graph K1 by filling in all cliques (complete subgraphs)
by simplices.

Lemma 2.1. Let K be a flag complex on the set [m] and let v be a vertex of K. If ω ∈
MF(linkK(v)) and |ω| > 2, then ω ∈ MF(K\{v}).

Proof. Suppose not. Then there is a missing face ω of linkK(v) with ω ∈ K\{v} and |ω| > 2.
Therefore, ∂ω ⊆ linkK(v) but ω /∈ linkK(v). Since ω ∈ K\{v}, we also have ω ∈ K. On the other
hand, as starK(v) = linkK(v)∗{v}, we have ∂ω ∗{v} ⊆ starK(v), and so ∂ω ∗{v} ⊆K. Therefore
∂ω ∗ {v} ∪ ω ⊆ K.

Observe that ∂ω∗{v}∪ω = ∂τ where τ = ω∗{v}. Thus ∂τ ⊆K. As K is flag and |ω∗{v}| > 2,
this implies that τ = ω ∗ {v} ∈ K. Hence, ω ∈ linkK v, which contradicts the supposition. 2

Lemma 2.2. Let K be a flag complex on the set [m] and let v be a vertex of K. Then K\{v},
starK(v) and linkK(v) are all flag complexes.
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Proof. Since K\{v} is a full subcomplex of K, any missing face of K\{v} is also a missing face
of K. So as K is flag, any missing face has at most two elements, implying that any missing
face of K\{v} also has at most two elements. Thus K\{v} is flag.

Let ω ∈ MF(starK(v)) and |ω| > 2. We claim that ω ∈ MF(K) as well. As ∂ω ⊆ starK(v),
we also have ∂ω ⊆ K, so if the claim does not hold then it must be the case that ω ∈ K. Then
v /∈ ω, as otherwise ω ∈ starK(v). For τ = ω ∗ v we have ∂τ = ∂ω ∗ v ∪ ω ∈ K. As K is flag and
|ω ∗ {v}| > 2, we obtain τ = ω ∗ {v} ∈ K. This implies that ω ∈ starK(v), which contradicts the
supposition. Hence, ω ∈ MF(K) and so |ω| = 2 since K is flag. Thus starK(v) is flag.

Let ω ∈ MF(linkK(v)) and |ω| > 2. By Lemma 2.1, ω ∈ MF(K\{v}) as well. It has already
been established that K\{v} is flag, so we have |ω| = 2. Thus linkK(v) is also flag. 2

Given a subset ω ⊆ [m], the full subcomplex of K on ω is

Kω = {σ ∈ K | σ ⊆ ω}.

Note that K\{v}= K[m]\{v}. A key property that will be important subsequently is the following.

Lemma 2.3. Let K be a flag complex on the set [m] and let v be a vertex of K. Then linkK(v)
is a full subcomplex of K\{v}.

Proof. Let ω be the vertex set of linkK(v). Suppose that linkK(v) is not a full subcomplex of
K\{v}. Then there is a face σ ∈ K\{v} such that σ ⊆ ω and σ /∈ linkK(v). By selecting a proper
face of σ if necessary, we may assume that σ is a missing face of linkK(v) with |σ| > 2. But then
as K is flag, Lemma 2.1 implies that σ is also a missing face of K\{v}. In particular, σ /∈K\{v},
which contradicts the supposition. 2

3. Homotopy theoretic preparation

3.1 The Cube Lemma
Assume that all spaces are pointed and have nondegenerate basepoints, implying that the
inclusion of the basepoint is a cofibration. This holds, for example, for pointed CW -complexes,
and hence for polyhedral products. One part of Mather’s Cube Lemma [Mat76] states that if
there is a diagram of spaces and maps

E //

  

��

F

  
G //

��

��

H

��

A

  

// B

  
C // D

where the bottom face is a homotopy pushout and the four sides are obtained by pulling back
with H −→ D, then the top face is also a homotopy pushout. In what follows this will be used
to identify the homotopy type of the pushout H in a certain context. However, we need this
identification to have a naturality property, which is not immediate from the statement of the
Cube Lemma. To obtain this, we prove a special case of the Cube Lemma from first principles.

In what follows, we work with strictly commutative pushouts and pullbacks rather than
homotopy commutative ones. For a space Y let 1Y be the identity map on Y . Suppose that there
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is a strictly commutative diagram

B ×A 1B×i //

j×1A
��

B ×X

�� j×1X

��

C ×A //

1C×i **

D
f

%%
C ×X

(2)

where the square is a pushout, and the maps i, j and f are pointed inclusions of subspaces. We
will turn the maps f , 1C × i, j × 1X and j × i from the four corners of the pushout to C ×X
into fibrations, up to homotopy, and examine their fibres.

There is a standard way of turning a pointed, continuous map g : Y −→ Z between locally
compact, Hausdorff spaces into a fibration, up to homotopy. Let I be the unit interval and
let Map(I, Z) be the space of continuous (not necessarily pointed) maps from I to Z. Let
d : Map(I, Z) −→ Z × Z be defined by evaluating a map ω : I −→ Z at the two endpoints,
explicitly, d(ω) = (ω(0), ω(1)). Define the space P̃g by the pullback

P̃g //

��

Map(I, Z)

ev0

��
Y

g // Z

where ev0(ω) = ω(0). As a set,

P̃g = {(y, ω) ∈ Y ×Map(I, Z) | ω(0) = g(y)}. (3)

Then, as in [Sel97, p. 59] for example, there is an inclusion Y −→ P̃g which is a homotopy
equivalence and the composite

q : P̃g −→ Map(I, Z)
ev1−→ Z

is a fibration, where ev1(ω) = ω(1). Moreover, if 1 is the basepoint of I and PZ is the path space
of Z (with paths at time 1 ending at the basepoint of Z), then the fibre of q is homeomorphic
to the mapping path space of g,

Pg = {(y, ω) ∈ Y × PZ | ω(0) = g(y)}, (4)

which is obtained by the pullback
Pg //

��

PZ

ev0
��

Y
g // Z

Consider how these constructions behave with respect to pointed subspace inclusions. Let

S
s−→ Y be the inclusion of a pointed subspace. If Q is the pullback of S

s−→ Y and P̃g −→ Y ,

then the pullback defining P̃g implies that Q is also the pullback of g ◦ s and ev0. But this

pullback is the definition of P̃g◦s, so Q = P̃g◦s. Similarly for Pg◦s, giving pullbacks

P̃g◦s //

��

P̃g

��

Pg◦s //

��

Pg

��
S

s // Y S
s // Y
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Since Pg and Pg◦s are the respective fibres of P̃g and P̃g◦s over Z, we obtain a pullback

Pg◦s //

��

Pg

��

P̃g◦s // P̃g

(5)

Next, suppose that Y is the union of pointed, closed subspaces S and T . Let s : S −→ Y
and t : T −→ Y be the pointed subspace inclusions, and let u and v be the pointed subspace
inclusions u : S ∩ T −→ S and v : S ∩ T −→ T . Since S and T are closed subspaces of Y , the
pushout of u and v is Y . (More generally this is true if (Y ;S, T ) is an excisive triad, but we
do not need this level of generality: in our case each of S, T and Y will be certain polyhedral
products.)

Lemma 3.1. Suppose that Y
g−→ Z is a pointed subspace inclusion and that Y = S ∪ T where

S and T are closed, pointed subspaces of Y . Then there are pushouts

P̃g◦s◦u //

��

P̃g◦t

��

Pg◦s◦u //

��

Pg◦t

��
P̃g◦s // P̃g Pg◦s // Pg

Proof. By its definition, P̃g is the space of paths on Z that begin in Im(g) and end in Z. As g

is a subspace inclusion, we may regard P̃g as the space of paths on Z that begin in Y and end

in Z. As Y = S ∪ T , any such path begins either in S or in T , that is, the path is either in P̃g◦s
or P̃g◦t. Moreover, the intersection P̃g◦s ∩ P̃g◦t is all paths on Z that begin in S ∩ T and end in

Z, that is, the paths in P̃g◦s◦u = P̃g◦t◦v. Thus P̃g = P̃g◦s ∪ P̃g◦t and P̃g◦s◦u = P̃g◦s ∩ P̃g◦t. Further,

since S and T are closed subspaces of Y , we have P̃g◦s and P̃g◦t closed subspaces of P̃g. Therefore
there is a pushout

P̃g◦s◦u //

��

P̃g◦t

��

P̃g◦s // P̃g

(6)

The same argument shows that Pg is the pushout of Pg◦s and Pg◦t over Pg◦s◦u = Pg◦t◦v. 2

Now apply this construction to the maps f , 1C × i, j × 1X and j × i from the four corners
of the pushout in (2) to C ×X.

Lemma 3.2. There is a commutative cube

Pj×i //

$$

��

Pj×1X

##
P1C×i

//

��

��

Pf

��

P̃j×i

##

// P̃j×1X

""
P̃1C×i

// P̃f
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where the top and bottom faces are pushouts and the four sides are pullbacks. Further, this cube
is natural for maps of diagrams of the form (2).

Proof. Since f , 1C × i, j × 1X and j × i are all subspace inclusions, the four sides of the cube
are pullbacks by (5). Since D is a pushout, it is the union of C ×A and B×X with intersection
B × A. The top and bottom faces of the cube are therefore pushouts by (6). The naturality
statement holds since the constructions of P̃g and Pg are natural. 2

The top face of the cube in Lemma 3.2 will be more precisely identified. This requires two
lemmas.

Lemma 3.3. A map g× h : Y ×M −→ Z ×N has Pg×h = Pg ×Ph. Further, this decomposition
is natural for compositions s× t : Z ×N −→ Z ′ ×N ′.

Proof. First observe that P (Z × N) = PZ × PN since any pointed path ω : I −→ Z × N is
equivalent to the product of the pointed paths ω1 : I −→ Z and ω2 : I −→ N given by projecting
ω to Z and N respectively. Moreover, the evaluation map P (Z×N)

ev0−→ Z×N becomes a product

of evaluation maps PZ ×PN ev0×ev0−−−−→ Z ×N . Thus the pullback Pg×h is identical to the pullback

Q //

��

PZ × PN
ev0×ev0
����

Y ×M s×t // Z ×N

where

Q = {((y,m), (ω1, ω2)) ∈ Y ×M × PZ × PN | s(y) = ω1(0), t(m) = ω2(0)}
= {(y, ω1) ∈ Y × PZ | s(y) = ω1(0)} × {(m,ω2) ∈M × PN | t(m) = ω2(0)}
= Ps × Pt.

The identification of Ps×t as Ps × Pt only used the fact that P (Z ×N) = PZ × PN . As the
latter decomposition is natural, therefore so is the former. 2

Lemma 3.4. There is a natural homeomorphism P1Y
∼= PY .

Proof. Taking g = 1Y in (4) gives

P1Y = {(y, ω) ∈ Y × PY | ω(0) = y}.

Define φ : PY −→ P1Y by φ(ω) = (ω(0), ω) and ψ : P1Y −→ PY by ψ(y, ω) = ω. Both φ and
ψ are continuous, ψ ◦ φ = idPY and, because for any pair (y, ω) ∈ P1Y there is the condition
y = ω(0), we also have φ◦ψ = 1P1Y

. Hence ψ is a homeomorphism. As both φ and ψ are natural,
the homeomorphism is too. 2

Applying Lemmas 3.3 and 3.4 to the top face in Lemma 3.2, the space Pf is homeomorphic
to the space Qf defined by the pushout

Pj × Pi //

��

Pj × PX

��
PC × Pi // Qf

(7)
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Moreover, the naturality statements in Lemmas 3.2–3.4 imply that (7) is natural for maps of
diagrams of the form (2).

One further modification of (7) is needed. If Y is a pointed space, the reduced cone on Y
is the space CY = Y ∧ I (i.e., CY = (Y × I)/(Y ∨ I)). If Y and Z are pointed spaces with
basepoints y0 and z0 respectively, then the reduced join is defined by Y ∗ Z = (Y × I × Z)/ ∼,
where (y, 0, z) = (y, 0, z′), (y, 1, z) ∼ (y′, 1, z) and (y0, t, z0) = (y0, 0, z0) for all y, y′ ∈ Y , z, z′ ∈ Z
and t ∈ I. Observe that there is a pushout

Y × Z //

��

Y × CZ

��
CY × Z // Y ∗ Z

Proposition 3.5. Up to homotopy equivalences, the top face in Lemma 3.2 can be identified
with the pushout

Pj × Pi //

��

Pj × CPi

��
CPj × Pi // Pj ∗ Pi

In particular, Pf is homotopy equivalent to Pj ∗ Pi. Further, this homotopy equivalence may be
chosen to be natural for maps of diagrams of the form (2).

Proof. In general, suppose that Z is contractible. Then there is a pointed homotopy Z×I −→ Z
which at t = 0 is the identity map on Z and at t = 1 is the constant map to the basepoint.
The homotopy sends Z ∨ I to the basepoint, and so factors through a map CZ = Z ∧ I −→ Z.
That is, the contracting homotopy for Z determines a specific map CZ −→ Z. If the contracting
homotopy is natural for maps Z −→ Z ′, then the map CZ −→ Z is also natural. In fact,
it is a natural homotopy equivalence. Refining, if g : Y −→ Z is a pointed map with Z being

contractible, then we obtain a composite CY
Cg−→ CZ −→ Z with the same naturality properties.

In our case, consider (7). Since PC and PX are contractible, we obtain composites Pj −→
CPj −→ PC and Pi −→ CPi −→ PX in which the right-hand maps are homotopy equivalences.
Thus the pushout Qf in (7) is homotopy equivalent to the space Pj ∗ Pi obtained from the
pushout

Pj × Pi //

��

Pj × CPi

��
CPj × Pi // Pj ∗ Pi

Since Pf is homeomorphic to Qf , we obtain Pf ' Pj∗Pi. Further, since the contracting homotopy
for a path space PZ can be chosen to be natural for any map Z −→ Z ′, this homotopy equivalence
for Pf is natural to the same extent as (7) is natural. That is, it is natural for maps of diagrams
of the form (2). 2

3.2 Two general results on fibrations
Now assume that all spaces have the homotopy type of pointed CW -complexes. If X is such a
space, then by [Mil59, Corollary 3] so is ΩX. Also, any weak homotopy equivalence between two
such spaces is a homotopy equivalence (see, for example, [Spa66, ch. 7, § 6, Corollary 24]).
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Lemma 3.6. Suppose that ΩB
∂−→ F

f−→ E
p−→ B is a homotopy fibration sequence and p has

a left homotopy inverse. Then ∂ has a right homotopy inverse.

Proof. Let s : B −→ E be a map such that s ◦ p is homotopic to the identity map on E.

Then f ' s ◦ p ◦ f , implying that f is null homotopic since p ◦ f is. If X is any pointed

space, then the homotopy fibration ΩB
∂−→ F

f−→ E induces an exact sequence of pointed sets

[X,ΩB]
∂∗−→ [X,F ]

f∗−→ [X,B], where [X,Y ] is the set of pointed homotopy classes of maps

from X to Y . Since f is null homotopic, f∗ = 0, so ∂∗ is onto. Taking X = F implies that the

(homotopy class of the) identity map on F lifts through ∂∗ to a map t : F −→ ΩB. That is, ∂ ◦ t
is homotopic to the identity map on F . 2

In general, if F
f−→ E

p−→ B is a homotopy fibration, where E is an H-space and p has a

right homotopy inverse s : B −→ E, then the composite

B × F s×f−→ E × E µ−→ E

is a weak homotopy equivalence, and hence a homotopy equivalence. We wish to give a slight

variation on this in the case when B = B1 × B2 and each factor has a right homotopy inverse.

For i = 1, 2 let pi be the composite pi : E
p−→ B1 × B2

πi−→ Bi where πi is the projection. As

maps into a product are determined by their projection onto each factor, we have p = (p1, p2).

Lemma 3.7. Let F
f−→ E

p−→ B1 ×B2 be a homotopy fibration where p is an H-map. Suppose

that for i = 1, 2 there are maps si : Bi −→ E such that pi ◦ si is homotopic to the identity map

on Bi, and pi ◦ sj is null homotopic for i 6= j. Then the composite

B1 ×B2 × F
s1×s2×f−−−−→ E × E × E

µ◦(µ×1)
−−−−→ E

is a homotopy equivalence, where µ is the multiplication on E.

Proof. From the general result stated before the lemma, it suffices to show that s1× s2 is a right

homotopy inverse for p. Consider the diagram

B1 ×B2
s1×s2 //

i1×i2
))

E × E µ //

p×p
��

E

p

��
(B1 ×B2)× (B1 ×B2)

µ′ // B1 ×B2

where i1 and i2 are the inclusions into the first and second factors respectively and µ′ is the

multiplication on B1 × B2. The left triangle homotopy commutes since pi ◦ si is homotopic to

the identity map on Bi and pi ◦ sj ' ∗ if i 6= j. The right square homotopy commutes since p

is an H-map. Observe that the lower direction around the diagram is homotopic to the identity

map on B1 ×B2. Therefore the upper direction around the diagram implies that µ ◦ (s1 × s2) is

a right homotopy inverse for p. 2
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4. Polyhedral products and the proof of Theorem 1.1

Let K be a simplicial complex on the set [m] and let v be a vertex of K. Following Félix and
Tanré [FT09], define a new simplicial complex K on [m] by

K = K\{v} ∗ {v}.

Observe that there is an inclusion of simplicial complexes K\{v} −→ K given by including the
join factor, so as starK(v) = linkK(v) ∗ {v}, there is a pushout map

K −→ K.

Observe also that K\{v} is the full subcomplex of K. That is, K\{v} = K\{v}.
By [GT13], the pushout of simplicial complexes in (1) induces a pushout of polyhedral

products

(X,A)linkK(v) ×Av
1×iv //

j×1
��

(X,A)linkK(v) ×Xv

��
(X,A)K\{v} ×Av // (X,A)K

(8)

where iv is the inclusion. (Here we regard linkK(v) and K\{v} as simplicial complexes on the

set [m]\{v}.) To relate this to (X,A)K , observe that the definition of the join of two simplicial
complexes implies that if K = K1 ∗K2, then there is a homeomorphism

(X,A)K ∼= (X,A)K1 × (X,A)K2 .

In particular, as K = K\{v} ∗ {v} there is a homeomorphism

(X,A)K ∼= (X,A)K\{v} ×Xv

and a strictly commutative diagram

(X,A)linkK(v) ×Av
1×iv //

j×1
��

(X,A)linkK(v) ×Xv

��
j×1

##

(X,A)K\{v} ×Av //

1×iv ,,

(X,A)K

f

))

(X,A)K\{v} ×Xv

(9)

where f is the map induced by the simplicial map K −→ K and all maps are inclusions of
subspaces.

Let BK
v be the fibre Pj obtained by turning the map (X,A)linkK(v) j−→ (X,A)K\{v} into a

fibration and let Yv be the fibre Piv obtained by turning the inclusion Av
iv−→ Xv into a fibration.

Lemma 4.1. If FKv is the fibre Pf obtained by turning the map (X,A)K
f−→ (X,A)K\{v} ×Xv

into a fibration, then there is a homotopy equivalence

FKv ' BK
v ∗ Yv.

Further, this homotopy equivalence is natural for inclusions of simplicial complexes K −→ K ′

on the set [m].
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Proof. Proposition 3.5 immediately implies the asserted homotopy equivalence for FKv and states
that it is natural for maps of diagrams of the form (9). Now observe that any inclusion of simplicial
complexes K −→ K ′ on the vertex set [m] induces such a map of diagrams. 2

To take this further we need a general result about polyhedral products.

Lemma 4.2. Suppose that Kω is a full subcomplex of a simplicial complex K. Then the map of
polyhedral products (X,A)Kω −→ (X,A)K induced by the simplicial inclusion Kω −→ K has
a left inverse, that is, there is a retraction (X,A)K −→ (X,A)Kω . Further, the construction of
the left inverse is natural for simplicial inclusions K −→ K ′.

Proof. We have

(X,A)K =
⋃
σ∈K

(∏
i∈σ

Xi ×
∏

i∈[m]\σ

Ai

)
, (X,A)Kω =

⋃
σ∈K,σ⊆ω

(∏
i∈σ

Xi ×
∏
i∈ω\σ

Ai

)
.

Since each Ai is a pointed space, there is a canonical inclusion (X,A)Kω −→ (X,A)K .
Furthermore, for each σ ∈ K there is a projection

rσ :
∏
i∈σ

Xi ×
∏

i∈[m]\σ

Ai −→
∏
i∈σ∩ω

Xi ×
∏
i∈ω\σ

Ai.

Since Kω is a full subcomplex, the image of rσ belongs to (X,A)Kω . The projections rσ patch
together to give a retraction r =

⋃
σ∈K rσ : (X,A)K −→ (X,A)Kω . The naturality assertion

follows from the naturality of inclusions and projections. 2

Proposition 4.3. Let K be a simplicial complex on the index set [m] and let v be a vertex
of K. Then there is a homotopy equivalence

Ω(X,A)K ' ΩXv × Ω(X,A)K\{v} × Ω(BK
v ∗ Yv)

which is natural for inclusions of simplicial complexes K −→ K ′ on the set [m].

Proof. Consider the homotopy fibration

FKv −→ (X,A)K
f−→ (X,A)K\{v} ×Xv (10)

from Lemma 4.1. Observe that K\{v} and {v} are the full subcomplexes of K on the sets

[m] − {v} and {v} respectively. So by Lemma 4.2, the maps s1 : (X,A)K\{v} −→ (X,A)K

and s2 : Xv −→ (X,A)K have left inverses (X,A)K
f1−→ (X,A)K\{v} and (X,A)K

f2−→ Xv =

(X,A){v} respectively. Since the vertex sets for K\{v} and {v} are disjoint, the left inverses have
the property that f1 ◦ s2 and f2 ◦ s1 are trivial. Lemma 3.7 cannot be applied immediately since
f is usually not an H-map, but after looping the homotopy fibration (10) it can be applied, and
this gives the asserted homotopy equivalence.

The naturality property follows from the naturality properties of the simplicial map K −→
K\{v} ∗ {v}, the polyhedral product and Lemma 4.2, together with the fact that Ω(X,A)K −→
Ω(X,A)K

′
is an H-map. 2
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One more preliminary result is needed before the proof of Theorem 1.1. Let K be a simplicial
complex on the vertex set [m], let Kf be the flagification of K, and let L be the simplicial complex
consisting of the vertices of K. Let M be either L or K. If v is a vertex of K, then the simplicial
map M −→ Kf implies that there is commutative diagram of simplicial complexes

linkM (v) //

��

M\{v}

��
linkKf (v) // Kf\{v}

Taking polyhedral products and then taking homotopy fibres gives a homotopy fibration diagram

Ω(X,A)M\{v} //

��

BM
v

//

bv
��

(X,A)linkM (v) //

��

(X,A)M\{v}

��

Ω(X,A)K
f\{v} // BKf

v
// (X,A)link

Kf (v) // (X,A)K
f\{v}

(11)

for some induced map of fibres bv.

Lemma 4.4. Let M be either L or K. Suppose that in (11) the map Ω(X,A)M\{v} −→
Ω(X,A)K

f\{v} has a right homotopy inverse. Then bv has a right homotopy inverse sv : BKf

v −→
BM
v . Moreover, sv can be chosen so that it factors through the map Ω(X,A)M\{v} −→ BM

v .

Proof. Consider the homotopy fibration along the bottom row of (11). Since Kf is flag, by

Lemma 2.3, linkKf (v) is a full subcomplex of Kf\{v}. Thus (X,A)link
Kf (v) is a retract of

(X,A)K
f\{v}. Therefore, by Lemma 3.6, the map Ω(X,A)K

f\{v} −→ BKf

v has a right homotopy

inverse t : BKf

v −→ Ω(X,A)K
f\{v}. By hypothesis, the map Ω(X,A)M\{v} −→ Ω(X,A)K

f\{v}

has a right homotopy inverse s : Ω(X,A)K
f\{v} −→ Ω(X,A)M\{v}. Thus there is a homotopy

commutative diagram

BKf

v
t // Ω(X,A)K

f\{v} s // Ω(X,A)M\{v} //

��

BM
v

bv
��

Ω(X,A)K
f\{v} // BKf

v

As the lower direction around the diagram is homotopic to the identity map on BKf

v , the upper
direction around the diagram implies that bv has a right homotopy inverse. 2

Proof of Theorem 1.1. Let K be a simplicial complex on the vertex set [m], let Kf be its
flagification, and let L be m disjoint points. Then there is a sequence of inclusions of simplicial
complexes L −→K −→Kf . Taking polyhedral products with respect to (X,A) gives a sequence

of maps h : (X,A)L
g−→ (X,A)K

f−→ (X,A)K
f

We will show that Ωh has a right homotopy

inverse, implying that the map Ωf : Ω(X,A)K −→ Ω(X,A)K
f

also has a right homotopy inverse.
This would prove both parts of the statement of the theorem.

The proof is by induction on the number of vertices. If m = 1, then L, K and Kf all equal the
single vertex {1}, implying that h is the identity map, and so Ωh has a right homotopy inverse.
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Assume that the statement of the theorem holds for all simplicial complexes with strictly less
than m vertices. The decomposition and naturality statements in Proposition 4.3 imply that
there is a homotopy commutative diagram of homotopy equivalences

(Ω(X,A)L\{v} × ΩXv)× Ω(BL
v ∗ Yv)

' //

(Ωa×1)×Ω(bv∗1)
��

Ω(X,A)L

��

(Ω(X,A)K
f\{v} × ΩXv)× Ω(BKf

v ∗ Yv) ' // Ω(X,A)K
f

(12)

Observe that Kf\{v} has m−1 vertices and L\{v} −→Kf\{v} is the inclusion of these vertices.
Since L and Kf are flag complexes, by Lemma 2.2 so are L\{v} and Kf\{v}. Therefore,

by inductive hypothesis, the map Ωa has a right homotopy inverse s : Ω(X,A)K
f\{v} −→

Ω(X,A)L\{v}. As L and Kf are flag complexes and Ωa has a right homotopy inverse, by

Lemma 4.4 the map bv also has a right homotopy inverse t : BKf

v −→ BL
v . Therefore t′ = Ω(t∗1)

is a right homotopy inverse for Ω(bv ∗ 1). Putting s and t′ together we obtain a map

Ω(X,A)K
f\{v} × ΩXv × Ω(BKf

v ∗ Yv)
s×1×t′−−−−→ Ω(X,A)L\{v} × ΩXv × Ω(BL

v ∗ Yv)

which is a right homotopy inverse of (Ωa × 1) × Ω(bv ∗ 1). The homotopy equivalences in (12)

therefore imply that the map h : Ω(X,A)L −→ Ω(X,A)K
f

has a right homotopy inverse. This
completes the induction. 2

5. Refinements

This section gives two refinements describing the homotopy type of the space BK
v under certain

conditions. First consider the homotopy fibration diagram (11) in the case when M = K. Define
the space DK

v and the map dv by the homotopy fibration

DK
v

dv−→ BK
v

bv−→ BKf

v . (13)

Lemma 5.1. Given the hypotheses of Lemma 4.4, there is a homotopy equivalence

BK
v ' BKf

v ×DK
v .

Proof. By Lemma 4.4, bv has a right homotopy inverse BKf

v
sv−→ BK

v . As BK
v need not be

an H-space this does not immediately imply that it is homotopy equivalent to BKf

v × DK
v .

However, Lemma 4.4 also says that sv can be chosen to factor through the homotopy fibration

connecting map Ω(X,A)K\{v} −→ BK
v . That is, sv can be chosen to be a composite BKf

v

s′v−→
Ω(X,A)K\{v} −→ BK

v for some map s′v. For any homotopy fibration sequence ΩB
δ−→ F −→

E −→ B the connecting map δ satisfies a homotopy action θ : ΩB × F −→ F which restricts to
the identity map on F and δ on ΩB. In our case, we obtain a composite

ψ : BKf

v ×DK
v

s′v×dv−−−−→ Ω(X,A)K\{v} ×BK
v

θ−−−−→ BK
v .

Observe that the restriction of ψ to BKf

v is sv and the restriction to DK
v is dv. Thus ψ is a

trivialization of the homotopy fibration (13), implying that it is a homotopy equivalence. 2
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Second, suppose that K is a flag complex. By Lemma 2.3, linkK(v) is a full subcomplex of

K\{v}. So by Lemma 4.2, the inclusion (X,A)linkK(v) −→ (X,A)K\{v} has a left inverse. Define
CKv by the homotopy fibration

CKv −→ (X,A)K\{v} −→ (X,A)linkK(v). (14)

From the retraction of (X,A)linkK(v) off (X,A)K\{v} and the definitions of BK
v and CKv we obtain

a homotopy pullback diagram

BK
v

��

BK
v

��

∗ //

��

(X,A)linkK(v)

��

(X,A)linkK(v)

CKv // (X,A)K\{v} // (X,A)linkK(v)

Thus BK
v ' ΩCKv .

Lemma 5.2. Let K be a flag complex on the vertex set [m] and let v be a vertex of K. Then
there are homotopy equivalences

Ω(X,A)K ' ΩXv × Ω(X,A)K\{v} × Ω(ΩCKv ∗ Yv),
Ω(X,A)K\{v} ' Ω(X,A)linkK(v) × ΩCKv .

Proof. The first homotopy equivalence follows immediately from Proposition 4.3, while the
second is an immediate consequence of the homotopy fibration (14) and the retraction of

(X,A)linkK(v) off (X,A)K\{v}. 2

6. Co-H-space properties

In this section we consider polyhedral products of the form (CY , Y )K and identify the class of
flag complexes K for which (CY , Y )K is a co-H-space. As a corollary, we obtain conditions that
allow for a delooping of the statement of Theorem 1.1. This begins with an abstract lemma.

Lemma 6.1. Let A and B be pointed spaces with the homotopy types of CW -complexes. Suppose
that there is a pointed map f : A −→ B and B is a co-H-space. If Ωf has a right homotopy
inverse, then f has a right homotopy inverse.

Proof. Since B is a co-H-space, by [Gan70] there is a map s : B −→ ΣΩB which is a right
homotopy inverse to the canonical evaluation map ev : ΣΩB −→ B. Let t : ΩB −→ ΩA be a
right homotopy inverse of Ωf . Consider the diagram

B
s // ΣΩB

Σt
��

ΣΩA
ΣΩf //

ev
��

ΣΩB

ev
��

A
f // B
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The upper triangle homotopy commutes since t is a right homotopy inverse of Ωf . The lower

square homotopy commutes by the naturality of the evaluation map. The upper direction around

the diagram is homotopic to ev◦s, which is the identity map on B. The lower direction around the

diagram therefore implies that ev ◦ Σt ◦ s is a right homotopy inverse of f . 2

Proposition 6.2. Let K be a simplicial complex on the vertex set [m], let Kf be the flagification

of K, and let Y1, . . . , Ym be pointed CW -complexes. If (CY , Y )K
f

is homotopy equivalent to a

co-H-space, then the map f : (CY , Y )K −→ (CY , Y )K
f

induced by the simplicial inclusion

K −→ Kf has a right homotopy inverse.

Proof. Taking (X,A) = (CY , Y ), by Theorem 1.1, Ωf : Ω(CY , Y )K −→ Ω(CY , Y )K
f

has a

right homotopy inverse. Since (CY , Y )K
f

is a co-H-space, Lemma 6.1 implies that f has a right

homotopy inverse. 2

Remark 6.3. Note that in Proposition 6.2 we do not need to assume that Y1, . . . , Ym are

path-connected. Since we assume that every singleton of [m] is a vertex (K is on the vertex

set [m]),(CY , Y )K is path-connected even if Y is not.

Next we obtain a characterization of those flag complexes K for which (CY , Y )K is a

co-H-space. In terms of notation, when all pairs in the sequence {(Xi, Ai)}mi=1 are the same,

(Xi, Ai) = (X,A), we use the notation (X,A)K for (X,A)K . Special cases are the Davis–

Januskiewicz space DJ(K) = (CP∞, ∗)K and the moment-angle complex ZK = (D2, S1)K .

A graph Γ is called chordal if each of its cycles with at least four vertices has a chord (an edge

joining two vertices that are not adjacent in the cycle). Equivalently, a chordal graph is a graph

with no induced cycles of length more than three. By the result of Fulkerson and Gross [FG65]

a graph is chordal if and only if its vertices can be ordered in such a way that, for each vertex i,

the lesser neighbours of i form a clique. Such an order of vertices is called a perfect elimination

ordering.

By [GPTW16], ZKf = (D2, S1)K
f

is homotopy equivalent to a wedge of spheres if and only

if the 1-skeleton of Kf is a chordal graph. In particular, if the 1-skeleton of Kf is a chordal

graph, then ZKf is a co-H-space. This result is readily extended to general polyhedral products

of the form (CY , Y )K , where CY denotes the cone over Y . Let X∨k be the k-fold wedge of X.

Theorem 6.4. Assume that K is a flag complex on the vertex set [m] and H̃∗(Yi;Z) 6= 0 for

1 6 i 6 m. The following conditions are equivalent:

(a) the 1-skeleton K1 is a chordal graph;

(b) (CY , Y )K is a co-H-space.

Furthermore, if K1 is chordal, there is a homotopy equivalence

(CY , Y )K '
m∨
k=2

∨
16i1<···<ik6m

(ΣYi1 ∧ · · · ∧ Yik)∨ c(i1,...,ik), (15)

where c(i1, . . . , ik) = rank H̃0(K{i1,...,ik}) is one less than the number of connected components

of the full subcomplex K{i1,...,ik}.

220

https://doi.org/10.1112/S0010437X18007613 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007613


Polyhedral products associated with flag complexes

Proof. The argument is similar to [GPTW16, Theorem 4.6] or [PV16, Theorem 4.3], but this
time we keep track of the wedge summands. Assume that K1 is chordal. Choose a perfect
elimination ordering of vertices, and for each vertex i = 1, . . . ,m denote by σi the face of K
corresponding to the clique of K1 consisting of i and its lesser neighbours. All maximal faces
of K are among σ1, . . . , σm, so we have

⋃m
i=1 σi = K. Furthermore, for each k = 1, . . . ,m the

perfect elimination ordering on K induces such an ordering on the full subcomplex K{1,...,k−1},

so we have
⋃k−1
i=1 σi = K{1,...,k−1}. In particular, the simplicial complex

⋃k−1
i=1 σi is flag as a full

subcomplex in a flag complex. The intersection σk ∩
⋃k−1
i=1 σi is a clique σk\{k}, so it is a face

of
⋃k−1
i=1 σi. Therefore, K is obtained by iteratively attaching σk to

⋃k−1
i=1 σi along the common

face σk\{k}.
We use induction on m to prove the decomposition (15). When m = 1, both sides of (15)

are trivial. Now assume that (15) holds for K with < m vertices. The pushout square (1) for
v = {m} becomes

σm\{m} //

��

σm

��
K\{m} // K

According to our convention, σm\{m} and K\{m} are regarded as simplicial complexes
on [m]\{m} = [m − 1], while σm is regarded as a complex on [m]. The corresponding pushout
square (8) of the polyhedral products becomes

(CY , Y )σm\{m} × Ym //

j×1

��

(CY , Y )σm

��
(CY , Y )K\{m} × Ym // (CY , Y )K

(16)

As σm\{m} is a face of K\{m} and σm is a face of K, we have

(CY , Y )σm\{m} =
∏

i∈σm\{m}

CYi ×
∏
i/∈σm

Yi, (CY , Y )σm =
∏
i∈σm

CYi ×
∏
i/∈σm

Yi.

Since each {i} is a vertex of K, the inclusion
∏
i∈ω Yi → (CY , Y )K is null-homotopic for any

subset ω ⊆ [m], and the same holds with K replaced by K\{m}. Hence, the map j × 1 in (16)
decomposes into the composition i2◦π2 of the projection onto the second factor and the inclusion.
It follows that the pushout square (16) decomposes as∏

i/∈σm Yi × Ym
π1 //

π2

��

∏
i/∈σm Yi

��
Ym

ε //

i2
��

(∏
i/∈σm Yi

)
∗ Ym

��
(CY , Y )K\{m} × Ym // (CY , Y )K

where the map ε is null-homotopic. From the bottom pushout square we obtain

(CY , Y )K ' ((CY , Y )K\{m} o Ym) ∨
((∏

i/∈σm

Yi

)
∗ Ym

)
,
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where X oY = X ×Y/(∗×Y ) is the right half-smash product, which is homotopy equivalent to

X∨(X∧Y ) when X is a suspension. By the inductive hypothesis, (CY , Y )K\{m} is a suspension,
so we can rewrite the identity above as

(CY , Y )K ' (CY , Y )K\{m} ∨ ((CY , Y )K\{m} ∧ Ym) ∨
( ∨

16i1<···<ik6m−1
{ij ,m}/∈K

ΣYi1 ∧ · · · ∧ Yik ∧ Ym
)
.

Now a simple counting argument together with the inductive hypothesis gives (15). This also
proves the implication (a)⇒(b).

To prove the implication (b)⇒(a), assume that K1 is not chordal. Choose an induced
chordless cycle Kω with |ω| > 4 (i.e., a full subcomplex isomorphic to the boundary of an
|ω|-gon). Then there is a nontrivial product in the cohomology ring H∗((CY , Y )Kω ;Z). (When
(CY , Y ) = (D1, S0), the polyhedral product (D1, S0)Kω is an orientable surface of positive
genus [BP02, Example 6.40]; the general case then follows from [BBCG12, Theorem 1.9].) By
Lemma 4.2, the same nontrivial product appears in H∗((CY , Y )K ;Z). Thus, (CY , Y )K is not a
co-H-space. 2

Remark 6.5. Theorem 6.4 implies that the wedge decomposition of Σ(CY , Y )K of [BBCG10]
desuspends when K is flag and K1 is chordal; this also follows from the results of Iriye and
Kishimoto [IK18, Theorem 1.2, Proposition 3.2]. Other classes of simplicial complexes K with
this property are described in [IK18] and [GT16]. The novelty of Theorem 6.4 compared to [IK18]
is the description of the wedge decomposition of (CY , Y )K in terms of the degree-zero cohomology
of full subcomplexes of K, which does not follow readily from desuspending the decomposition
in [BBCG10].

When K is not flag, the implication (b)⇒(a) of Theorem 6.4 still holds, but (a)⇒(b) fails.
Indeed one can take K to be the boundary of a cyclic polytope [BP15, Example 1.1.17] of
dimension n > 4 with m > n + 1 vertices. Then K1 is a complete graph on m vertices, so it is
chordal. On the other hand, ZK = (D2, S1)K is an (m+n)-manifold with nontrivial cohomology
product, so it cannot be a co-H-space.

Finally, we give conditions that allow for a delooping of the maps in Theorem 1.1.

Corollary 6.6. Let K be a simplicial complex on the vertex set [m] whose 1-skeleton is a

chordal graph. If Kf is the flagification of K, then the map f : (CY , Y )K −→ (CY , Y )K
f

has a
right homotopy inverse.

Proof. As K and Kf have the same 1-skeleton, Theorem 6.4 implies that (CY , Y )K
f

is a co-H-
space (and even a suspension). The result follows from Proposition 6.2. 2

Corollary 6.7. Let K be a flag simplicial complex on the vertex set [m], and let L be the
simplicial complex given by m disjoint points. The map h : (CY , Y )L −→ (CY , Y )K has a right
homotopy inverse if and only if the 1-skeleton of K is a chordal graph.

Proof. Assume that K1 is a chordal graph. As K is flag, Theorem 1.1 implies that Ωh has a
right homotopy inverse, and Theorem 6.4 implies that (CY , Y )K is a co-H-space. Then h has a
right homotopy inverse by Lemma 6.1.

Now assume that h has a right homotopy inverse. Then (CY , Y )K is a co-H-space, being a
retract of the co-H-space (CY , Y )L. Theorem 6.4 implies that K1 is a chordal graph. 2
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Remark 6.8. Given (CY , Y )L
g−→ (CY , Y )K

f−→ (CY , Y )K
f

, Theorem 1.1 states that each
of the two maps Ωf and Ωh = Ωf ◦ Ωg has a right homotopy inverse. Corollary 6.6 gives
a sufficient condition for a delooping of the first map, and Corollary 6.7 gives a necessary and
sufficient condition for a delooping of the second map. In both cases the condition is that K1 is a
chordal graph. However, this condition is obviously not necessary for a delooping of Ωf . Indeed,
f has a right inverse for any flag K, not only for those with chordal K1, because in this case
Kf = K and f is the identity map.

7. Whitehead products

In this section we describe two ways of relating the results of Theorems 1.1 and 6.4 to the classical
iterated Whitehead products. First, we consider polyhedral products of the form (X, ∗)K with
flag K whose 1-skeleton is a chordal graph, and obtain a generalization (Proposition 7.1) of
Porter’s description of the homotopy fiber of the inclusion of an m-fold wedge into a product
in terms of Whitehead brackets. Second, we consider the loop space Ω(S, ∗)K on a polyhedral
product of spheres for an arbitrary flag complex K, and obtain a generalization (Proposition 7.2)
of the Hilton–Milnor theorem.

First, specialize to the case when each pair (Xi, Ai) is of the form (Xi, ∗) and write (X, ∗)
for (X,A). By [GT07], for example, there is a homotopy fibration

(CΩX,ΩX)K
γK−→ (X, ∗)K −→

m∏
i=1

Xi

for any simplicial complex K. This is natural for simplicial inclusions, so if K is a flag complex
on the vertex set [m] and L −→ K is the inclusion of the vertex set, then there is a homotopy
fibration diagram

(CΩX,ΩX)L
γL //

h′

��

(X, ∗)L //

h
��

∏m
i=1Xi

(CΩX,ΩX)K
γK // (X, ∗)K //

∏m
i=1Xi

(17)

where both h and h′ are induced maps of polyhedral products. By Theorem 1.1, Ωh′ has a right
homotopy inverse. Further, if K1 is a chordal graph then Proposition 6.2 and Theorem 6.4 imply
that h′ has a right homotopy inverse.

Observe that as L is m disjoint points we have (X, ∗)L = X1 ∨ · · · ∨ Xm, implying that
(CΩX,ΩX)L is the homotopy fibre of the inclusion of the wedge into the product. Porter [Por66]
identified the homotopy type of this fibre, from which we obtain a homotopy equivalence

(CΩX,ΩX)L '
m∨
k=2

∨
16i1<···<ik6m

(ΣΩXi1 ∧ · · · ∧ ΩXik)∨(k−1). (18)

Notice that L1 is a chordal graph and the decomposition in (18) exactly matches that of
(CΩX,ΩX)L in (15). Moreover, by [The18, Theorem 6.2], Porter’s homotopy type identification
can be chosen so that the composite

ϕL :

m∨
k=2

∨
16i1<···<ik6m

(ΣΩXi1 ∧ · · · ∧ ΩXik)∨(k−1) '−→ (CΩX,ΩX)L
γL−→ (X, ∗)L
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is a wedge sum of iterated Whitehead products of the maps

evi : ΣΩXi
ev−→ Xi ↪→ X1 ∨ · · · ∨Xm = (X, ∗)L.

Returning to (17), the naturality of the Whitehead product implies that h ◦ ϕL is a wedge sum
of Whitehead products mapping into (X, ∗)K . The right homotopy inverse for h′ when K1 is a
chordal graph therefore implies the following.

Proposition 7.1. Let K be a flag complex such that K1 is a chordal graph. Then the map

(CΩX,ΩX)K
γK−→ (X, ∗)K factors through a wedge sum of Whitehead products.

In the case when (X, ∗)K = (CP∞, ∗)K = DJ(K) and (CΩX,ΩX)K ' (D2, S1)K = ZK
the result above follows from [GPTW16, Theorem 4.3], where the Whitehead products were
explicitly specified as iterated brackets of the canonical generators.

Theorem 1.1 also leads to a generalization of the Hilton–Milnor theorem. In this case we
specialize to pairs (ΣXi, ∗), giving (ΣX, ∗)L = ΣX1 ∨ · · · ∨ ΣXm. The Hilton–Milnor theorem
states that there is a homotopy equivalence

Ω(ΣX1 ∨ · · · ∨ ΣXm) '
∏

α∈L〈V 〉

Ω(ΣX∧α1
1 ∧ · · · ∧X∧αm

m ), (19)

where: V is a free Z-module on m elements x1, . . . , xm; L〈V 〉 is the free Lie algebra on V ; α runs
over a Z-module basis of L〈V 〉; and αi is the number of occurrences of xi in the bracket α. Here, if
αi = 0, we interpret Xi as being omitted from the smash product rather than as being trivial. For
example, X∧2

1 ∧X0
2 = X∧2

1 . The Hilton–Milnor theorem also describes the maps from the factors
on the right side of (19) into Ω(ΣX1∨· · ·∨ΣXm). If the length of α is 1, then the relevant factor
is ΩΣXi for some i and the map ΩΣXi −→ Ω(ΣX1 ∨ · · · ∨ ΣXm) is the loops on the inclusion
into the wedge. If the length of α is larger than 1, then the map Ω(ΣX∧α1

1 ∧ · · · ∧ X∧αm
m ) −→

Ω(ΣX1 ∨ · · · ∨ ΣXm) is the loops on the Whitehead product corresponding to the bracket α.

By Theorem 1.1, if K is a flag complex on the vertex set [m], then the map Ω(ΣX, ∗)L h−→
Ω(ΣX, ∗)K has a right homotopy inverse. In particular, Ω(ΣX, ∗)K is a retract of the product
on the right side of (19). It is probably the case that the retraction consists of selecting an
appropriate subproduct, but this is not immediately clear. That is, simply knowing that Ωh has a
right homotopy inverse leaves open the possibility that some of the factors Ω(ΣX∧α1

1 ∧· · ·∧X∧αm
m )

split as A×B where A retracts off Ω(ΣX, ∗)K while B does not. However, if we specialize a bit
more, then this possibility is essentially eliminated.

Suppose that eachXi is a connected sphere Sni−1 and write (S, ∗) for (ΣX, ∗). Since eachXi is
a sphere, the space ΣX∧α1

1 ∧· · ·∧X∧αm
m is homotopy equivalent to a sphere, so the right side of (19)

becomes a product of looped spheres. The space ΩSn is indecomposable unless n ∈ {2, 4, 8}. In

the latter case, we have a homotopy equivalence ΩH × E : ΩS2n−1 × Sn−1 '−→ ΩSn, which is a
product of the looped Hopf map H and the suspension map E. The retraction of Ω(S, ∗)K off
Ω(S, ∗)L implies the following.

Proposition 7.2. Let K be a flag complex. Then

Ω(S, ∗)K '
( m∏
i=1

ΩSni

)
×M,

where M is homotopy equivalent to a product of spheres and loops on spheres. Further,
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(a) a factor ΩSn of M with n /∈ {3, 7, 15} maps to Ω(S, ∗)K by a looped Whitehead product

ΩSn
Ωw−→ Ω(S, ∗)K ;

(b) a factor ΩS2n−1 of M with n ∈ {2, 4, 8} maps to Ω(S, ∗)K by a looped Whitehead product

ΩS2n−1 Ωw−→ Ω(S, ∗)K or by a composite ΩS2n−1 ΩH−→ ΩSn
Ωw−→ Ω(S, ∗)K , where H is the

Hopf map;

(c) a factor Sn−1 of M has n ∈ {2, 4, 8} and maps to Ω(S, ∗)K by a composite Sn−1 E−→
ΩSn

Ωw−→ Ω(S, ∗)K , where E is the suspension map and w is a Whitehead product.

Refining a bit, by [GT07] the homotopy fibration (CΩS,ΩS)K
γK−→ (S, ∗)K −→

∏m
i=1 S

ni

splits after looping to give a homotopy equivalence

Ω(S, ∗)K '
( m∏
i=1

ΩSni

)
× Ω(CΩS,ΩS)K .

Therefore, Proposition 7.2 implies that if K is a flag complex then Ω(CΩS,ΩS)K is homotopy
equivalent to a product of spheres and loops on spheres, and under this homotopy equivalence
ΩγK becomes a product of maps of the from Ωw, Ωw ◦ ΩH or Ωw ◦ E.

This has implications for moment-angle complexes and Davis–Januszkiewicz spaces. Recall
that DJ(K) ' (CP∞, ∗)K and ZK ' (D2, S1)K . There is a homotopy fibration

ZK
ψK−→ DJ(K) −→

m∏
i=1

CP∞

which splits after looping to give a homotopy equivalence

ΩDJ(K) '
( m∏
i=1

S1

)
× ΩZK .

The inclusion S2 −→ CP∞ induces maps of pairs (S2, ∗) −→ (CP∞, ∗) and (CΩS2,ΩS2) −→
(CΩCP∞,ΩCP∞)

'−→ (D2, S1). These then induce a commutative diagram of polyhedral
products

(CΩS2,ΩS2)K
γK //

G

��

(S2, ∗)K

F
��

ZK
ψK // DJ(K)

(20)

Observe that the suspension map S1 E−→ ΩS2 induces a map of pairs (CS1, S1) −→ (CΩS2,
ΩS2) with the property that the composite (CS1, S1) −→ (CΩS2,ΩS2) −→ (D2, S1) is a
homotopy equivalence. This implies that the map G in (20) has a right homotopy inverse. If
K is a flag complex, then Proposition 7.2 says that Ω(CΩS2,ΩS2)K is homotopy equivalent to a
product of spheres and loops on spheres, and the factors map to Ω(S2, ∗)K by maps of the form
Ωw, Ωw ◦ΩH or Ωw ◦E. Thus from the map G in (20) having a right homotopy inverse, and F
being natural with respect to Whitehead products, we obtain the following.

Corollary 7.3. Let K be a flag complex. Then ΩZK is homotopy equivalent to a product of

spheres and loops on spheres, and under this equivalence the map ΩZK
ΩψK−→ ΩDJ(K) becomes

a product of maps of the form Ωw, Ωw ◦ ΩH or Ωw ◦ E where w is a Whitehead product.
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Notice that ZK itself is often not a product or a wedge of spheres. For example, if K is the
boundary of an n-gon for n > 5, then K is flag and ZK is diffeomorphic to a connected sum of
products of two spheres. Nevertheless, ΩZK is homotopy equivalent to a product of spheres and
loops on spheres.

8. Homotopy theoretic consequences

We restrict attention to Davis–Januszkiewicz spaces DJ(K) = (CP∞, ∗)K and moment-angle
complexes ZK = (D2, S1)K . Let S2 −→ CP∞ be the inclusion of S2 ∼= CP 1 into CP∞. Then
there is an induced map of polyhedral products

iK : (S2, ∗)K −→ (CP∞, ∗)K .

Building on the fact that the map G in (20) has a right homotopy inverse, in [GT16] the following
was proved.

Lemma 8.1. The map ΩiK has a right homotopy inverse.

Lemma 8.2. Let K be a flag complex. Suppose that there is a map h : (CP∞, ∗)K −→ Y where Y
is 2-connected. Then Ωh is null homotopic. Consequently, h induces the zero map on homotopy
groups.

Proof. Let L be the simplicial complex on m disjoint points. The simplicial map L −→K induces
a map of polyhedral products g : (S2, ∗)L −→ (S2, ∗)K . Consider the composite

(S2, ∗)L g−→ (S2, ∗)K iK−→ (CP∞, ∗)K h−→ Y.

Observe that by the definition of the polyhedral product, (S2, ∗)L '
∨m
i=1 S

2. Since Y is 2-
connected, the composite h ◦ iK ◦ g is therefore null homotopic. Since K is a flag complex,
by Theorem 1.1, Ωg has a right homotopy inverse. Therefore Ωh ◦ ΩiK is null homotopic. By
Lemma 8.1, ΩiK also has a right homotopy inverse. Therefore Ωh is null homotopic. 2

For example, let C be the homotopy cofibre of the composite

ψ :
m∨
i=1

S2 −→
m∨
i=1

CP∞ −→ DJ(K),

where the left map is the wedge of inclusions of the bottom cells and the right map is the map of
polyhedral products induced by including the vertices into K. The description of H∗(DJ(K);Z)
(see, for example, [BP02]) implies that C is 3-connected. Therefore Lemma 8.2 implies that if K
is a flag complex, then the quotient map

f : DJ(K) −→ C = DJ(K)

/( m∨
i=1

S2

)
induces the trivial map on homotopy groups.

Lemma 8.2 says that if K is a flag complex, then the bottom 2-spheres in DJ(K) have a
great impact on its homotopy theory. The next lemma says this much more dramatically in the
case of ZK when K1 is a chordal graph.
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Lemma 8.3. Let K be a flag complex such that K1 is a chordal graph. Then there is a homotopy
commutative diagram ∨m

i=1 S
2

ψ

��
ZK //

λ
;;

DJ(K)

for some map λ.

Proof. As usual, let L be the vertex set of K. Consider the diagram

(CΩS2,ΩS2)L
γL //

h
��

(S2, ∗)L

��
(CΩS2,ΩS2)K

γK //

G

��

(S2, ∗)K

F
��

ZK
ψK // DJ(K)

The upper square is induced by the simplicial inclusion of L into K. The lower square homotopy
commutes by (20). Notice that the right column is equal to ψ. As mentioned in the previous
section, the map G has a right homotopy inverse. Since K is a flag complex and K1 is a chordal
graph, by Corollary 6.7, the map h has a right homotopy inverse. Thus G◦h has a right homotopy
inverse and the lemma follows. 2
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