
JFP 19 (1): 27–45, 2009. c© 2008 Cambridge University Press

doi:10.1017/S0956796808007016 First published online 1 October 2008 Printed in the United Kingdom

27

Commercial uses: Going functional
on exotic trades

S IMON FRANKAU

Barclays Capital, 5 The North Colonnade, London E14 4BB, UK

(e-mail: Simon.Frankau@barclayscapital.com)

D IOMIDIS SP INELLIS

Athens University of Economics and Business, Patision 76, GR 104 34, Athens, Greece

(e-mail: dds@aueb.gr)

N ICK NASSUPHIS and CHRISTOPH BURGARD

Barclays Capital, 5 The North Colonnade, London E14 4BB, UK

(e-mail: {Nick.Nassuphis,Christoph.Burgard}@barclayscapital.com)

Abstract

The Functional Payout Framework (fpf) is a Haskell application that uses an embedded

domain-specific functional language to represent and process exotic financial derivatives.

Whereas scripting languages for pricing exotic derivatives are common in banking, fpf uses

multiple interpretations to not only price such trades, but also to analyse the scripts to

provide lifecycle support and more. This paper discusses fpf in relation to the wider trading

workflow and our experiences in using a functional language in such a system as both an

implementation language and a domain-specific language.

1 Introduction

This application paper is an experience report describing the use of functional

programming technologies in the field of exotic equity trading. Our aim is to present

the challenges, design decisions and benefits of applying functional programming

in a demanding real-world application domain. The main contributions of this

paper are (a) the demonstration of the benefits of functional programming in the

field of financial derivatives trading, and (b) the lessons learned in using functional

constructs as a domain-specific language (dsl) in a production environment. The

paper is not intended to cover in depth the internal implementation details of our

system. Most of the techniques used have already been described in detail in the

existing literature, far better than we could.

In this paper, we present Functional Payout Framework (fpf) through which we

manage various lifecycle elements of exotic equity trades. After explaining what

an exotic equity derivative actually is and reviewing the pre-existing workflow we

describe through examples our language’s goals and design (Section 2). We then

outline fpf’s implementation (Section 3), how our dsl is used in practice (Section 4),

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


28 S. Frankau et al.

and the lessons we learned while working on this project (Section 5). The paper

finishes with a discussion of related work (Section 6) and our concluding remarks.

1.1 What is an exotic option anyway?

Options are financial instruments like stocks and bonds. However, in contrast to,

say, stocks, which represent ownership interest in a corporation, options are more

abstract. An option is a contract whose value is a function of the value of other

instruments. As the prices are derived from those of other instruments, options are

also termed derivatives.

The purpose of options are to hedge (reduce risk) or speculate (take risk in

search of profit). Some options are repackaged for the retail market – to be sold

to individuals as a way of getting a return linked to the performance of the stock

markets without risking the money investors originally put in. Other forms let

speculators express a view by choosing a function that pays out most in scenarios

they believe likely and least in those they believe unlikely.

We will start with the definition of a plain or “vanilla” option. When you buy a

vanilla option (by paying an initial premium) you get the right, but not the obligation,

to buy (or sell) a fixed amount of an asset at a fixed price. You could buy an option

at time t0 that allows you to buy n dollars-worth of asset A at time tT , but at the t0
price. If the price goes up, you earn the difference between the current price and the

price at time tT . If the asset’s price goes down, you get nothing. Mathematically, if

SA(t) is the price of asset A at time t, the amount you receive will be

nmax(SA(tT )/SA(t0) − 1, 0)

Once we move to mathematical notation, we can make the option definition into a

more-or-less arbitrary formula. The value n is called the notional of the trade, and

the right-hand side can be viewed as an expression specifying the fraction of notional

to be paid out. If the payment expression becomes sufficiently complex, the trade is

known as an exotic option. Here are some examples of exotic equity options:

• Best-of. Take the performance (defined as percentage change: SA(tT )/SA(t0)−1)

of several different stocks. Return the best (or worst) performance.

• Cliquet. Observe the performance of an asset every month for a year. Apply a

cap and floor to each performance, sum the results up, and cap and floor that

result.

• Napoleon. Observe the performance of an asset every month for a year, take

the worst performing month and add that performance on to a fixed value.

Floor the payout at zero and pay the result.

By the standards of today’s trading desks, the examples we described are simple

exotic options. Realistic trades may have several “legs” of the above style, plus

extra features. It is important to bear in mind that there’s no real “standard” exotic

trade – there is a wide variety, and clients want variations on existing structures as

economic conditions and investor sentiment change. Flexibility is a key requirement

for product innovation in exotic options trading.

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 29

Exotic equity options (that is, exotic options on stocks) are traded in the over the

counter (otc) market. This means they are custom-built to a client’s request, rather

than made into a standard form and traded through an exchange. To give an idea of

the amount of money involved, as of June 2006, the outstanding notional in the otc

equity-linked options market was 5.4 trillion dollars (The Bank for International

Settlements, 2007). This figure compares with 6.6 trillion dollars outstanding on

exchange-traded (vanilla) equity index options. The notional of a typical exotic

option is generally on the order of 10 million dollars. While there are larger asset

classes, the equity derivatives market is certainly not small.

1.2 Workflow: the lifecycle of exotic trades

The lifecycle of exotic trades involves many different people in different rôles,

including structurers, salespeople, quantitative analysts (“quants”), risk management

teams and traders. Structurers create new ideas for trades and variations on existing

ones. Their aim is to find novel and effective ways to meet the client’s requirements.

The structurers then develop and test a prototype implementation. Salespeople

support interaction with the customer, and write a term sheet that describes

the option using a combination of prose and mathematical notation. The quants

provide mathematical modelling expertise.

The structurers or the quants write the payout function, which defines how much

money the bank will pay out under given market conditions. They will carefully

inspect the implementation to ensure it matches the term sheet. A risk management

team then independently checks the implementation of the payout function against

the term sheet.

A completely new type of trade triggers a much more rigorous sign-off process

than for a carbon copy of an existing structure. As such, the ability to innovate is

held back by the pressure to standardize.

After the risk management team signs off on an exotic trade, a trader will then

receive the coded payout function and create a final price at which the product

is sold. After the sale, the traders will manage the financial risk for the lifetime

of the trade by pricing the portfolio under various market conditions and hedging

with vanilla instruments to minimize the money made or lost as the markets move.

In addition to these calculations, the traders will perform other analyses on the

structure of the trade itself, to identify, for example, forthcoming events which must

be managed carefully.

Other teams handle the actual payments. Some trades pay money to the client

at the end, while others pay throughout the lifetime of the trade. In either case,

the system must identify when a cash flow occurs and the correct amount to be

paid.

1.3 Downstream operations

A formally described trade can be used in various ways. Each trade defines its

input parameters, so it should be possible to automatically derive an interactive

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


30 S. Frankau et al.

input form for them. To manage the trade, one would want to analyse how the

trade is likely to perform in the future. For this analysis the trade can be compiled

into an efficient representation, suitable for plugging into a Monte Carlo simulation

engine. Alternatively, extracting from the trade the conditions expressed in it (for

instance, the $/e rate climbing above 1.5) allows the centralized monitoring of the

corresponding market conditions. Finally, for those aspects of a trade that require

human analysis, it should be possible to represent the trade in a concise mathematical

form that analysts can study and discuss.

1.4 An existing implementation

The generality of exotic trade payouts and the corresponding downstream operations

lends them to be expressed and manipulated through a dsl (Mernik et al., 2005).

In the past this dsl has often been some form of imperative scripting language,

although there has been a noticeable move towards using functional languages in a

number of banks, which is not surprising given that the domain is readily specified

by functions. Our pre-fpf pricing engine took in a directed acyclic graph (dag)

equivalent to the syntax tree of an expression representing the payout function, with

sharing (a “payout dag”). This legacy representation had no higher-order functions,

so all parts of the trade were fully expanded.

Individual one-off trades were created by hand-writing these payout dags. If a

trade had several legs, these legs were implemented by cutting and pasting the

nodes. As such, rapidly varying the parameters of the trade was difficult. While

hand-crafting the payouts is very flexible, it is manually intensive and error-prone.

To avoid the overheads of manual labour, once a common pattern of trades was

identified, it was converted into a “template”. A template provides a standardized

input form that covers the majority of the variations people will want on that style

of trade. Special cases can still be encoded in a one-off fashion.

The problem with the templates is the effort required to create them. Quants

define a standardized pattern to represent a trade type, and write a validation

library that ensures a payout dag matches this pattern. Risk managers sign off the

library, and then the it department develops a front-end to generate these dags. The

Excel-based front-end will have plenty of trade-type specific code to deal with the

particular trade’s input fields, and will have a case-specific graph-generator to emit

the payout dag, written in Excel’s scripting language, Visual Basic for Applications

(vba). Each trade is saved in an ad hoc serialization format. While it can take just

hours to generate pricing instructions for an individual trade, the corresponding

template may take months to release. Since new templates are so expensive there

can be a tendency to cram a new trade type into an existing structure through

creative misuse of existing features, increasing the risk of mistakes. At the end of

2006 Barclays managed more than 35 templates, representing a total population of

several thousand trades.

A released template in the trade entry system is not the end of the story. The

various downstream systems need to be able to process the new trade type. Each

system has a central “case” statement to control processing on a per-trade basis,

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 31

which must be modified with the release of a new template. Hand-crafted trades

that are not yet templated must be manually managed.

Given the pace of the business, systems must adapt quickly to cope with new

products. The pressure to add new features, rather than maintain existing code

(or step back and look for a different, better approach) can lead to increasingly

unreadable and unmaintainable code, causing growing operational risk.

The problems we outlined in the preceding paragraphs were the core motivation

behind fpf. By spending effort on creating generic analyses that can be applied

to all trade types, fpf aims to consistently minimize the cost of production-quality

infrastructure, independent of whether we are constructing single one-off trades or

wide-ranging templates.

2 FPF overview

We created fpf through an experimental iterative process rather than a formal design

based on concrete absolute goals. Nevertheless fpf is best described by looking at

its design goals, its structure and some representative examples.

2.1 Design goals

The core requirement for fpf was to be able to drive multiple back-ends from a

single trade description. These back-ends provide different interpretations or analyses

of the scripts and trades. The artifacts generated can range from a concrete price

through to a user interface schema or barrier risk report.

We designed the payment description dsl with the following goals in mind.

Declarative, compositional construction of payouts. This goal is the driving force be-

hind using a functional approach. A declarative language simplifies the creation

of multiple interpretations and static analyses. Compositional construction is a

natural mapping of the problem domain and encourages code reuse by composing

new trades from existing trade components.

Minimal coupling. Downstream systems should not be allowed to pollute the lan-

guage with incidental details. While extensions to the scope of the project may

require extensions to the language, our yardstick was that one should not be able

to look at a language feature and identify it with a concrete, implementation-

specific detail of other systems.

Extensible support for the payout DAGs. If we could not support the pre-existing

payout back-end, the project would be dead before its first release. If the language

lacked extensibility we could end up in the worse situation where it failed after

we had gained everyone’s support.

Painless embedding in Haskell. Once we decided to use Haskell (as described in Sec-

tion 3), embedding the language within Haskell using the language specialization

dsl design pattern (Spinellis, 2001) allowed us to reuse much infrastructure (e.g.

parsing and typing) and provided us a flexibility which would not otherwise have

been available.

Small set of core primitives. By minimizing the number of core primitives, multiple

back-ends can be produced with minimal effort. Given a set of primitive functions,

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


32 S. Frankau et al.

+; −; ∗; / :: Double → Double → Double Arithmetic operators

min; max; pow :: Double → Double → Double Arithmetic operators

abs; log; exp :: Double → Double Arithmetic operators

observe :: Asset → Date → Double Asset price observation

cond :: Bool → a → a → a Conditional

map :: (a → b) → List a → List b Map

zipWith :: (a → b → c) → List a → List b → List c Zip

foldl :: (a → b → a) → a → List b → a Left fold

foldl1 :: (a → a → a) → List a → a Left fold variant

foldr :: (a → b → b) → b → List a → b Right fold

mapAccumL :: (a → b → (a, c)) → a → List b → (a, List c) Combined map/fold

name :: String → a → a Annotation

Fig. 1. The core fpf primitives.

user-friendly helper functions can be wrapped around them. We considered

providing a wider set of primitives with default implementations (in the style

of Haskell type classes), but we took the simpler approach to avoid unnecessary

complexity.

Attachment of metadata. One of the important goals of fpf is to provide an end-to-

end solution, including input forms and documentation. One approach would be

to use an external tool, similar to Javadoc (Kramer, 1999) or Haddock (Marlow,

2002). fpf uses this approach to annotate the trade type, but we can also

annotate individual sub-expressions using the “name” primitive and then extract

the metadata by static analysis.

2.2 Language overview

As Haskell embeds fpf, fpf’s syntax is simply a restricted subset of Haskell’s. fpf is

thus defined by the primitive functions made available. Figure 1 shows the core fpf

primitives and their types.

The types Double and Bool are not those provided by the Haskell prelude, but are

types which play the equivalent roles in fpf. List is similarly the fpf representation

of a list. We use our own types since our “Double” may represent, under different

interpretations, everything from an actual floating point number through to a syntax

tree or set of annotations. The exact definitions of the types vary with the embedding

used.

All type variables must be instances of FPFVal, the type class representing all

values that can exist in fpf. All the types above and tuples of those values are

instances of FPFVal. This class allows us to distinguish the values in fpf from those

that are not, preventing us from applying fpf primitives to non-fpf values. The class

also allows us to uniformly traverse fpf programs and is needed to make tuples (and

to a lesser degree, functions) part of the embedded language.

In fpf let bindings cannot be recursive – the language does not support general

recursion. Instead we provide higher-order functions such as map and fold to process

lists of data. The restriction on the use of recursion simplifies both the analysis of

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 33

scripts from within Haskell and encourages programmers with little functional

programming experience to adopt common functional patterns. In other words, we

have created something akin to a combinator library (keeping the constraints, but

without the points-free approach – see Section 5.2 for details). The fact that the

language is not Turing-complete is not an impediment in practice and in many cases

simplifies analysis.

We slowly changed the primitives available, adding new primitives as they were

requested. Occasionally the new features subsumed old features, at which point the

old primitive could be removed, and a helper function added that implemented the

old primitive’s behaviour in terms of the new. Through such evolutionary changes we

were able to modify the language effectively without requiring huge script rewrites.

2.3 Examples

For examples, we shall use those three payouts described in Section 1.1. The code

is shown in Figure 2. As most of the functions are modelled on standard Haskell

functions of the same name, we shall only discuss the fpf-specific functions. The

name primitive attaches an annotation to a value which can be extracted and

displayed on input forms, for example, but has no numeric effect.

The primitive observe is used to get the value of a particular asset on a particular

date. To get the value, it must pull the actual asset prices out of some hidden

environment. As the observe function is deterministic in any particular market state,

this apparently impure behaviour is of no concern to the script writer and is purely

an implementation detail.

In contrast with earlier work (Peyton Jones et al., 2000), we only support observing

asset values at discrete times. This was a conscious decision to simplify the language,

based on known usage patterns. In practice, it has not been a problem; where

necessary, a sequence of discrete observations makes a good approximation to

continuous observation.

Our examples are for some of the simplest trades we do. However, the composi-

tional nature of the problem domain and language means that the script size and

complexity scale up linearly with the complexity of the term sheet.

3 Implementation

Using Haskell to implement the fpf was a non-trivial decision in an environment so

strongly weighted towards C++ and vba. The decision can be split into two parts:

choosing a functional language and choosing Haskell.

Choosing to use a functional language to implement a functional payout language

has had a number of benefits. As functional programming researchers have a

tendency to write their languages using existing functional languages, these languages

generally provide very good support for language engineering in general and dsl

implementation in particular. Pattern matching, for example, vastly simplifies the

writing of a peephole optimizer. Previous experience using functional languages

meant the developers were confident that the desired result could be achieved

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


34 S. Frankau et al.

perf :: Date -> Date -> Asset -> Double

perf t1 t2 asset = observe asset t2 / observe asset t1 - 1

bestOf :: (List Asset, Date, Date) -> Double

bestOf (assets’, startDate’, endDate’) = foldl1 max perfs where

assets = name "Assets" assets’

startDate = name "Starting date" startDate’

endDate = name "End date" endDate’

perfs = map (perf startDate endDate) assets

cliquet :: (Asset, Double, Double, Date, List Date) -> Double

cliquet (asset’, gf’, gc’, initDate’, dates’) = max gf $ min gc val where

asset = name "Asset" asset’

gc = name "Global cap" gc’

gf = name "Global floor" gf’

initDate = name "Initial date" initDate’

dates = name "Observations" dates’

cliquetPerf (prevDate, prevSum) (currDate’, lc’, lf’) =

(currDate, prevSum + currPerf) where

currDate = name "Observation date" currDate’

lc = name "Local cap" lc’

lf = name "Local floor" lf’

currPerf = max lf $ min lc $ perf prevDate currDate asset

(_, val) = foldl cliquetPerf (initDate, 0) dates

napoleon :: (Asset, Double, Date, List Date) -> Double

napoleon (asset’, coupon’, initDate’, dates’) = max 0 $ worst + coupon where

asset = name "Asset" asset’

coupon = name "Fixed coupon" coupon’

initDate = name "Initial date" initDate’

dates = name "Observations" dates’

napCliquet prevDate currDate = (currDate, perf prevDate currDate asset)

(_, perfs) = mapAccumL napCliquet initDate dates

worst = foldl1 min perfs

Fig. 2. Example trades.

more quickly with a functional language, and with a gentle learning curve. As we

performed the work outside of a traditional it team, management was willing to

take a risk on something that promised a good fit and rapid development process.

We tossed away an initial prototype in Prolog after we realized that the code did

not use any of the language’s logic programming features. Subsequent prototyping

continued with functional languages. At that point it had become clear that our

main requirements were for strong typing and a large user population. Our previous

experience showed that strong typing reduced the effort required to develop and

maintain high quality software, by both identifying many “typo”-style bugs and forc-

ing the developer to plan their algorithms more carefully, reducing the maintenance

load later. A large user population generally implies better developed, more stable

tools and a bigger pool from which to hire developers, both now and in the future.

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 35

This paper’s second author chose Haskell during the prototype stage due to past

familiarity (Spinellis, 1993) and the existence of a mature open-source implemen-

tation – ghc (Hudak et al., 2007). Technically, caml seemed an equal fit. Erlang

was somewhat alien to us, F# seemed too unproven and we did not see any other

appropriate candidates. Once we wrote the first prototype in Haskell the path was

set. A rewrite in another language would have been far from difficult, but there was

no strong case for it.

While the advantages of using Haskell were fairly obvious, the possible pitfalls

had to be taken into account. These included:

Integration issues. The fpf has to work as part of a large, complicated, distributed

and heterogeneous system. In its way, using Haskell here was an advantage, as it

made it easier to argue for a command-line api and text-file I/O. In a wider system

suffering from tight coupling, having solid control over our api allowed for a clean

design.

Maintenance and support. Maintainability is required on a number of levels. Haskell’s

high level of abstraction made the addition of new features a lot simpler than it

would have been in C++. In the longer term, maintaining the source base requires

a supply of Haskell programmers, but if rumours of other Haskell-based banking

projects are to be believed, the supply of this skill set is likely to increase with

demand. Finally, the Haskell libraries are comprehensive and actively developed, as

are the compilers.

Performance. This was the real unknown. Performance on the prototype looked good,

but we did not know how it would scale. Other systems implemented in Haskell, like

Darcs (Roundy, 2005), have shown that performance can be an issue in real-world

workloads. In addition to the runtime performance, we also needed to take into

account compilation speed and executable size. We found that compilation speed,

while not stellar, was perfectly acceptable. Excellent runtime performance was not

vital, since the fpf is not used in any computationally-expensive inner loops. Its

performance has certainly been adequate, and our experiences are discussed in more

depth in Section 5.5. A surprising weakness was executable size, with our executables

coming in at 5 megabytes each. With several executables per release, and several

prototype releases running simultaneously, fpf turned out to be unexpectedly disk

hungry. Disk space consumption is something of a weakness when one takes into

account the need for worldwide replication of the files, but has not been a major

problem.

A combination of make (Feldman, 1979) and Perl (Wall & Schwartz, 1990) scripts

complete the build system infrastructure, including a program-level regression test

suite. Relatively mainstream tools were selected here to simplify maintenance.

We have not used any tools like QuickCheck (Claessen & Hughes, 2000), but

this is purely a matter of priorities. A requirement was to be able to check that

modifications to the fpf do not result in unexpected price changes to trades booked

on fpf, so we have test coverage at that level. Unit tests would be a useful extension,

but we have continually been working on other features with higher priority. We

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


36 S. Frankau et al.

hope to make increasing use of Haskell Program Coverage (Gill & Runciman, 2007)

to check that our existing tests are providing adequate coverage.

The system has gradually evolved behind the scenes. Over fpf’s lifetime, back-ends

have been implemented as both shallow embeddings, where the primitive operators

actually perform the operations they represent, and a deep embedding, where the

primitives simply generate their own abstract syntax tree (ast), which can then be in-

terpreted. These approaches match “Language embedding” and “Embedding a com-

piler” in (Elliott et al., 2003), a paper which explores many of the issues we also faced.

We started off with a single back-end, a shallow embedding which generated

payout dags. We added further back-ends, also implemented as shallow embeddings.

Each back-end was a separate code base which the scripts needed to be run against.

While this approach was simple, it required us to manually keep the types consistent,

and required a great deal of recompilation when we created a new script.

To relieve these problems, we migrated to a deep embedding. We used a single

set of primitives to convert the scripts to asts, which could then be processed by a

variety of interpreters and static analyses. We now have a two-step process:

1. The script function is run by the Haskell compiler under the deep embedding,

producing an ast which is then serialized. Haskell’s type system guarantees

the ast is correctly typed.

2. The ast can be read in and processed by any of the back-ends, without

recompilation. Code from multiple back-ends can live in the same executable

without type clashes.

The refactoring we described quickly paid for itself in time savings and maintain-

ability improvements.

Our approach still requires us to compile our scripts as Haskell code. An

alternative we have considered, but not yet tried is based on ghc’s “Language”

library. This library allows one to directly parse Haskell source to asts. The downside

is that we would have to provide Haskell’s semantics and typing ourselves. Currently,

using the library seems a complex approach with few benefits, but it does provide

us with an “escape hatch” should the requirements of the project change.

4 Usage at Barclays

The fpf (excluding trade scripts) is two to three effort-years of work, with one

full-time and one part-time developer. It consists of 20,000 lines of Haskell.

The trade scripts contribute a further 30,000 lines, distributed over more than

400 trade types (including variants), and were written by half a dozen individuals.

There are around 20 direct users (traders and structurers), with further users hidden

behind the scenes outside of the front-office area.

Currently we use each fpf script in a number of downstream operations.

Generation of pricing instructions. Our original target was the generation of instruc-

tions in the legacy “payout dag” format. Since then we have started to extend

the range of target languages. Currently, we can write out instructions in another

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 37

max

(
0,

len(tO )

min
i=1

(
STOP

(
tO i

)
STOP (ai−1)

− 1

)
+ FC

)

where

a0 = tID

ai = tO i

The parameters to the preceding trade type are as follows:

Variable Description Type

TOP Top-level input Tuple of (STOP ,FC , tID , tO )

STOP Asset Asset

FC Fixed coupon Double

tID Initial date Date

tO Observations List of Date

Fig. 3. Recursive equations automatically generated from the “Napoleon” trade.

proprietary functional format, and in C, which we plan to compile and link into our

Monte Carlo engine on the fly. fpf can also emit parameters for pde-solving.

Generating recursive equations in TEX. An alternative fpf target was to create human-

readable instructions. Most people involved in finance, while not used to functional

programming, are conversant with common mathematical notation. As such, we

can present the scripts by transforming them into sets of recursive equations.

This transformation is useful as it allows us to extend our target audience of

people who can read an fpf script without providing any further training. The

transformation can be applied to both the abstract trade script without input

data, in order to generate a general description of the trade type, and to a script

specialized with concrete assets and dates to produce a term sheet for a particular

trade.

The TEX back-end is perhaps best explained with demonstration output. The

term sheet equations generated for the “Napoleon” trade described in Section 2.3

are shown in Figure 3.

One could argue that generating a set of human-readable equations is simply

another form of pricing instruction generation, albeit one with a very different

optimization target: of readability rather than efficiency (and where executability

is a distinctly secondary target). In fpf this multitude of back-ends is actually the

case, since the very last step of generating LATEX can be replaced with emitting

Mathematica (Wolfram, 2003) instructions, which can be both visually compared to

the LATEX output, and executed in a Monte Carlo engine, with the price checked

against our other Monte Carlo systems as part of our validation process.

Input form generation. The parameters to the scripts must be somehow specified by

the user. We have created gui tools to allow us to enter parameter values which

match a given type. To generate an input form for a particular trade script, we just

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


38 S. Frankau et al.

need to extract the type of the function’s parameters, and any associated annotations,

which are used to create labels on the input form.

Other analyses. We are working on tools that allow us to perform generic analyses

across the fpf trades in order to simplify trade management. For example, it is

simple to pull out the set of dates upon which observations and payments take

place, with some context information, or to generate a list of payments that should

have taken place.

We are extending these analyses with tools to help monitor “barriers” or disconti-

nuities in the payouts, giving us, for example, the expected size of the discontinuity,

and when and under which market conditions the barrier levels are breached.

5 Lessons learned

From the fpf project we learned a lot regarding the application of functional lan-

guages to concrete production systems with all the deadlines and hard requirements

that this entails. As always, a number of the lessons came from failed approaches.

An interesting lesson we learned from these failures is that the expressiveness of

Haskell allowed us to rapidly and efficiently make these mistakes, leaving us plenty

of time to develop a useful system.

In the following sections we endeavour to highlight some of the most notable

issues.

5.1 Efficient processing of embedded languages

We were initially unaware of the efficiency issues which could occur when we

evaluated complex payouts. Consider the following script:

f x = let x2 = x + x

x3 = x2 + x2

x4 = x3 + x3

...

in x20

A straightforward numerical evaluation would calculate the result in 20 steps. An

alternative interpretation generating an ast would also take 20 steps, and internally

it would create a dag with much sharing. The problem comes when one wants to

evaluate it. Näıve evaluation processes the tree fully, in exponential time. One can

try to improve the result with caching, so that if a sub-expression has already been

evaluated we can use the pre-existing result. Unfortunately, the built-in comparison

operators are purely structural. In other words, in order to avoid fully traversing a

data structure, we must perform a full traversal to compare it to cached items!

We eventually discovered this optimization is a well-known problem. Using cse,

as suggested in (Elliott et al., 2003) would not work for us, as we would have to

fully traverse the tree, taking exponential time. Solutions based around memoization

with stable names (Peyton Jones et al., 1999) and observable sharing (Claessen &

Sands, 1999) are discussed in the literature, but not knowing what to look for,

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 39

we reinvented the wheel with our own form of “hash consing”. After the fact we

refactored the code to be closer to the academic ideal.

5.2 Combinators versus functions

Many domain-specific embedded functional languages seem to get implemented as

combinator libraries (Cardelli & Davies, 1997). The points-free approach, while

elegant, can make code unreadable, especially if it is written by quantitative analysts

moonlighting as functional programmers. Therefore, while we could have defined a

polymorphic higher-order combinator library, in fpf we encourage the user to write

in a more basic functional style. Examples of this style are shown in Figure 2, and

seem far clearer to us than the same code written in a points-free style.

5.3 Scrap-Your-Boilerplate and caching

Scrap-Your-Boilerplate (syb) (Lämmel & Peyton Jones, 2003) has provided a very

convenient mechanism to accelerate the writing of transformations. Using it has

encouraged us to embrace the common functional pattern of splitting out the

recursive traversal and per-node operations. Sadly, the support for monadic generic

transformations is not as strong as for non-monadic transformations (lacking, for

example, generic monadic queries), leading to some fairly ugly code as we fake up

the query with a WriterT monad transformer (Grabmüller, 2006).

We mostly use syb in combination with caches held inside a StateT monad

transformer. As with the original syb implementation, we split our code into the

function that recurses over the tree (with caching and short-circuiting) and the

function that transforms individual nodes.

5.4 Scope creep and incremental change

Haskell is a remarkably refactorable language. For the current application inter-

mediate asts provide a perfect interface between sub-systems, so that processing

stages are minimally coupled. Where modifications to data types are necessary, type

inference minimizes the textual changes and the tools ensure no cases are missed.

The pure functional nature of the language means incremental changes tend to have

localized effect. Incremental changes, in tandem with a home-grown regression test

system, reduce the risk of behaviour changing unexpectedly while modifying the

code base. In this way major changes (almost complete rewrites) have been achieved

without major problems.

On the other hand, our system’s flexibility can lead to unnecessary playing.

Perfectionists can have a field day quietly rearranging the internals when they

should be adding new features. Not that rearranging Haskell code is painless;

for example, converting code to a monadic form in order to add caching to our

transformations was a mind-numbing operation.

One of our initial unconscious decisions was to blur the lines between the

embedding and embedded language. In the prototype, the embedded language was

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


40 S. Frankau et al.

a mechanism for generating a payout dag using whatever Haskell functions seemed

useful. In later versions, while the embedded language became better defined, we

found the ability to break out into the embedding language in an emergency useful

for prototyping and even limited production use. We used calls into non-fpf Haskell

as our training wheels for developing the embedded language; we finally removed

these calls with the switch to a deep embedding.

As experienced practitioners would expect, fpf has been subject to distinct scope

creep.1 The original plan was to handle all trades that were either generated with

existing templates or by hand. These trade types tended to have their complexity

limited by what was maintainable. As fpf has allowed scripts to be written with no

regard to how complex the underlying payout dags got, the complexity of trades

attempted has grown markedly.

As an example, we previously had problems maintaining hand-structured trades

with a few hundred nodes in the payout dag. fpf makes it much easier to handle

such trades. However, fpf also makes it just as easy to construct trades with 30,000

node payout dags (to the extent that the output of fpf is now stressing downstream

systems!). Some such trades are simply scaled up versions of existing trades, but for

the most part these represent trades we had no way of expressing before. Early fpf

scripts were generally around 30 lines in length, while our larger scripts now have

about 200 lines.

The original architecture was not designed with this level of scalability in mind,

and it is to the system’s credit that changes to cope with this level of scaling can be

incorporated without major risk.

5.5 Complexity and performance issues

Moving to Haskell allowed complex algorithms to be written in a fraction of the

time required for implementation in an equivalent first-order imperative production

language. However, the ease with which complex algorithms can be written can lead

to severe performance problems; an algorithm that would otherwise take days to

write can be implemented with little thought, including perhaps little thought for

the algorithm’s complexity. We found ghc’s profiler (Sansom & Peyton Jones, 1995)

a real boon for fixing such problems.

While the exponential blow-up described in Section 5.1 was the worst example seen

by our rather näıve functional programmers, even the polynomial time optimization

steps start to become very expensive on graphs containing tens of thousands of

nodes after cse.

The most complex performance problems came from the TEX-generation sub-

system, which relied heavily on substitution. Straightforward substitution into

sub-expressions led to an exponential blow-up as the amount of sharing was

reduced. The solution was not to perform the substitution itself, but instead

1 In fact, fpf was always expected to have some scope creep beyond its initial requirements – indeed, the
need for flexibility was one of the main reasons for choosing Haskell. What was surprising, however,
was how much scope creep we have seen (and have been able to accommodate) in practice.

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 41

insert a node representing the substitution and track that information during later

passes.

Haskell is perhaps infamous for its space leaks. However the only time we have

seen space leaks is when they have accompanied algorithms with poor complexity

characteristics. Perhaps this is the result of always compiling with optimizations

(including strictness analysis) and using machines with plenty of memory. While we

have seen very few pure space leaks, our use of caching and hash-consing means

that our programs are quite allocator-heavy and started to spend most of their time

in garbage collection. Simply increasing the default heap size in the runtime system

was a quick way of remedying the corresponding overhead.

The lesson here, perhaps, is that there is no silver bullet. While a functional

approach greatly simplified our task, commonplace issues such as algorithmic

complexity cannot be set aside. Furthermore, these issues may crop up in forms

one does not recognise, so that the developer must relearn previous experiences.

5.6 Haskell for non-developers

While the programmers who worked on the core of the fpf framework had previous

exposure to functional languages, those implementing the trade scripts generally did

not. The scripters are mostly mathematicians with expertise in continuous maths

(specifically stochastic calculus). They have been trained in C++, although by no

means are they all expert developers. Their previous experience of writing trade

scripts was hand-generating the payout dags in Excel.

An initial worry was that they would at best write imperative code in a functional

language and at worst flounder completely. The first few scripts were distinctly

imperative, but with a bit of practice the payouts were being written in a clean

functional style. This transformation is perhaps not surprising to those who teach

functional programming, but it was a pleasant surprise to see people quickly picking

up the ideas in a production environment.

5.7 Re-inventing the wheel

While the developers were experienced with functional languages, this was the first

time they had used such a wide set of Haskell libraries in a commercial setting under

commercial pressures. When we needed a complex feature, it was generally a case

of reinventing the wheel, badly, followed by a refactoring process where we replaced

the implementation by a call to a more-general library function (once we identified

the appropriate papers). As simple concrete examples, early on we reinvented some

state monad machinery, and we are currently looking at moving to a more structured

memoisation framework based on earlier work (Peyton Jones et al., 1999; Claessen

& Sands, 1999).

The development pattern we described is difficult to fix, since although the

papers are there, it is somewhat difficult to identify a priori what is relevant,

especially under time constraints, and the low-risk approach of rolling-your-own

(hacky and restricted) code takes over. The preferred solution would be developers

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


42 S. Frankau et al.

more experienced in Haskell, but the combined Haskell and financial knowledge is

rather rare, and it seems that even a relatively inexperienced Haskell programmer

can be more productive than an experienced C++ programmer in domains such as

ours.

However, reimplementing the wheel is an excellent way of understanding the tricks

involved, and a well-designed framework should not make it difficult to replace the

offending code with a well-constructed library, so the overall cost is not great.

5.8 Interfacing with other systems

One of the worries typically raised about adopting a new technology in a large

and complex system concerns the interfacing of its components. As we described

in Section 3, the adoption of Haskell has allowed us to refrain from tight coupling

with existing systems. We also found the same approach effective for encapsulating

our serialized data structures. Using a Haskell-like text data structure rather than,

say, xml we were able to control the representation fully, considerably reducing the

risk that third parties will attempt to process these structures themselves. Instead,

we provide the translation tools to present the data in the format they need, and we

can continue to write fully generic tools.

The command-line interface we adopted made testing and fault identification into

a far more productive process. Should in-process operation be required in the future,

a com interface can be integrated (Finne et al., 1999).

Of course, there are issues remaining to do with versioning and configuration

management within a production system. While these issues can be tackled using

the standard software engineering approaches, we have yet to consider whether

Haskell will provide us with any good tricks to ease these problems.

6 Related work

The interested reader may consult Hull (2005) for a general background on

derivatives. Vanilla and exchange-traded derivatives are standardized, and describing

the trades becomes an exercise in naming conventions. For exotic trades, however,

trade representation is a real issue. Little published work addresses the problem,

perhaps because the solutions involved are either kludges the authors do not wish

to show off, or thought to be proprietary, cutting-edge software best kept secret.

The published approaches in the field of trade representation include the use of

frameworks (Eggenschwiler & Gamma, 1992) and the adoption of dsl (van Deursen,

1997).

In the past decade, considerable work has been published on the use and

implementation of dsl (Spinellis, 2001; Mernik et al., 2005) and in particular the

use of Haskell as a vehicle for creating embedded dsls (Hudak, 1996; Anand et al.,

2001). An early attack on our specific problem involved the development of the dsl

risla, whose code was subsequently compiled into cobol (Arnold et al., 1995; van

Deursen & Klint, 1998). Later work (Peyton Jones et al., 2000; Peyton Jones & Eber,

2003) used Haskell to allow payouts to be defined in an abstract functional language

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 43

and to provide multiple interpretations of the products. This work was apparently

commercially adopted and marketed (MLFi, 2004; LexiFi, 2007). We considered

that product as a cots alternative to fpf, but in the end the risks in integrating

the product and loss of control in development meant that we instead opted for an

in-house product designed from the start to integrate with existing systems.

Various methods for addressing the trade representation problem have spread

through word-of-mouth. Given the lack of formal literature, it seems preferable

to report what we have heard of than to say nothing. As such, the rest of this

section is necessarily light on references. It seems that each bank has at least one

(often more!) proprietary payout language. These languages are commonly custom

imperative scripting languages. In such a language, the price-calculation stages

can be tied to the underlying time-steps of the trade. This evaluation approach

allows the past (with its fixed values) to be calculated once, the state to be cached

and then the future dates to be calculated repeatedly under different scenarios,

saving much execution time. However, this approach ties the language tightly to the

evaluation mechanism and is not convenient for all trade structures. The alternative

of binding trade descriptions to an existing general-purpose language (such as vba

or Python (van Rossum & Drake, 2006)) for the payout evaluation not only allows

incredible flexibility in the pricing strategy, but also makes it very difficult to perform

any interpretation beyond a simple pricing.

Expressing the payout in a dsl (often a subset of an existing language) allows

various analyses to be performed, and lets the end-users work with tools they feel

comfortable with. However, this approach involves a delicate trade-off between

expressivity and the complexity of the translation to specify the subset that is

deemed convertible. A common line of attack here involves writing simple payouts

as a set of Excel formulae, checking that they work inside the spreadsheet, and then

“shredding” the cells into a document suitable for external evaluation.

Other institutions also use a functional payout language, but the dsl itself is

typically implemented in C++ or Java, rather than in a functional language. Even

then, they generally perform only a single interpretation; that is used for pricing.

There may also be other systems in use with particularly novel and interesting

approaches but, alas, they apparently have not been published in the open literature.

7 Conclusion

fpf is now integral to our equity exotics business, both tactically and strategically.

Not having a system like fpf would give us unacceptable operational risk in a few

years time, but in the shorter term it is already making a big impact. We now write

all new trades using fpf. In addition, we have migrated all our one-off trades to fpf,

freeing up reserve cash devoted for operational risk. Currently we are also starting

to migrate templated trades to fpf.

The project is almost a victim of its own success. While we reduced the develop-

ment cycle, the opportunities this shortened cycle presents mean that we still have a

backlog of new ideas to implement that is far greater than our available developer

bandwidth!

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


44 S. Frankau et al.

It will be interesting to see what the future holds for payout description technology.

Generating a trade’s contract and having each party in the transaction reconcile

it with their internal descriptions is currently a manual and error-prone business.

Once financial institutions have automated all processing associated with their

internal representation of a trade, it makes sense to standardize on external trade

descriptions, to eliminate the risk of ambiguous term sheets or human error during

translation. What should such a representation look like? Would the constraints of

standardization stifle novelty, or would it reduce risks and provide the framework

for increased innovation?

References

Anand, S., Chin, W.-N. & Khoo, S.-C. (2001) Charting patterns on price history. In

ICFP ’01: Proceedings of the Sixth ACM SIGPLAN International Conference on Functional

Programming. New York: ACM, pp. 134–145.

Arnold, B. R. T., van Deursen, A. & Res, M. (1995) An algebraic specification of a language

for describing financial products. In ICSE-17 Workshop on Formal Methods Application in

Software Engineering, Seattle, WA, Wirsing, M. (ed.), IEEE, New York, pp. 6–13.

Cardelli, L. & Davies, R. (1997) Service combinators for web computing. In USENIX

Conference on Domain-Specific Languages. Berkeley, CA: USENIX Association, pp. 1–9 .

Claessen, K. & Hughes, J. (2000) QuickCheck: A lightweight tool for random testing of

Haskell programs. ACM SIGPLAN Not. 35(9), 268–279.

Claessen, K. & Sands, D. (1999) Observable sharing for functional circuit description. In

Proceedings of Asian Computer Science Conference, Phuket Thailand. Lecture Notes in

Computer Science. Springer Verlag, Berlin, Germany.

van Deursen, A. (1997) Domain-specific languages versus object-oriented frameworks: A

financial engineering case study. In STJA’97: Smalltalk and Java in Industry and Academia,

Erfurt, Germany, Ilmenau Technical University, pp. 35–39.

Eggenschwiler, T. & Gamma, E. (1992) ET++SwapsManager: Using object technology in the

financial engineering domain. In OOPSLA ’92: Conference Proceedings on Object-Oriented

Programming Systems, Languages, and Applications. ACM, New York, pp. 166–177.

Elliott, C., Finne, S. & de Moor, O. (2003) Compiling embedded languages. J. Funct. Prog.

13(2). Updated version of paper by the same name that appeared in SAIG ’00 proceedings.

Feldman, S. I. (1979) Make—a program for maintaining computer programs. Softw. Pract.

Exp. 9(4), 255–265.

Finne, S., Leijen, D., Meijer, E. & Peyton Jones, S. (1999) Calling Hell from Heaven and

Heaven from Hell. In ICFP ’99: Proceedings of the Fourth ACM SIGPLAN International

Conference on Functional Programming. Paris, France, ACM Press, New York, pp. 114–125.

Gill, A. & Runciman, C. (2007) Haskell program coverage. In Haskell ’07: Proceedings of the

ACM SIGPLAN Workshop on Haskell Workshop. New York: ACM, pp. 1–12.

Grabmüller, M. (2006) Monad Transformers Step by Step. Draft paper. Available online

http://uebb.cs.tu-berlin.de/~magr/pub/Transformers.pdf.

Hudak, P. (1996) Building domain-specific embedded languages. ACM Comput. Surv. 28(4es),

196.

Hudak, P., Hughes, J., Peyton Jones, S. & Wadler, P. (2007) A history of Haskell: Being lazy

with class. In HOPL III: Proceedings of the Third ACM SIGPLAN Conference on History

of Programming Languages. San Diago, CA, ACM, 12-1–12-55 ACM Press: New York,

NY, USA, pp. 12-1–12-55.

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016


Commercial uses: Going functional on exotic trades 45

Hull, J. C. (2005) Options, Futures and Other Derivatives. 6th ed. Upper Saddle River, NJ:

Prentice Hall.

Kramer, D. (1999) API documentation from source code comments: A case study of Javadoc.

In SIGDOC ’99: Proceedings of the 17th Annual International Conference on Computer

Documentation. New York: ACM, pp. 147–153.

Lämmel, R. & Peyton Jones, S. (2003) Scrap your boilerplate: A practical approach to generic

programming. In TLDI 2003: Proceedings of the ACM SIGPLAN Workshop on Types in

Language Design and Implementation. ACM Press, New York.

LexiFi. LexiFi Platform. http://www.lexifi.com/. Last accessed September 2007.

Marlow, S. (2002) Haddock, a Haskell documentation tool. In Proceedings of the ACM

SIGPLAN Workshop on Haskell. ACM Press, New York.

Mernik, M., Heering, J. & Sloane, A. M. (2005) When and how to develop domain-specific

languages. ACM Comput. Surv. 37(4), 316–344.

MLFi. (2004) Structuring, Pricing, and Processing Complex Financial Products with

MLFi. Available online http://industries.bnet.com/whitepaper.aspx?&tags=

window&docid=103795. Last accessed January 2007.

Peyton Jones, S. & Eber, J.-M. (2003) How to write a financial contract. In The Fun of

Programming, Gibbons, J. & de Moor, O. (eds.), Palgrave Macmillan.

Peyton Jones, S., Eber, J.-M. & Seward, J. (2000) Composing contracts: An adventure

in financial engineering (functional pearl). In ICFP ’00: Proceedings of the Fifth

ACM SIGPLAN International Conference on Functional Programming. New York: ACM,

pp. 280–292.

Peyton Jones, S., Marlow, S. & Elliott, C. (1999) Stretching the storage manager: Weak

pointers and stable names in Haskell. In Implementation of Functional Languages. Springer

Verleg, Berlin, pp. 37–58.

Roundy, D. (2005) Darcs: Distributed version management in Haskell. In Haskell ’05:

Proceedings of the 2005 ACM SIGPLAN Workshop on Haskell. ACM Press, New York,

pp. 1–4.

Sansom, P. M. & Peyton Jones, S. (1995) Time and space profiling for non-strict, higher-order

functional languages. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. New York: ACM, pp. 355–366.

Spinellis, D. (1993) Implementing Haskell: Language implementation as a tool building

exercise. Struct. Prog. 14, 37–48.

Spinellis, D. (2001) Notable design patterns for domain specific languages. J. Syst. Softw.

56(1), 91–99.

The Bank for International Settlements. (2007) BIS Quarterly Review. Available online http:

//www.bis.org/publ/qtrpdf/r_qa0703.pdf. Last accessed September 2007.

van Deursen, A. & Klint, P. (1998) Little languages: Little maintenance. J. Softw. Maintenance

10(2), 75–92.

van Rossum, G. & Drake, Jr., F. L. (eds). (2006) An Introduction to Python. Network Theory,

Bristol, UK.

Wall, L. & Schwartz, R. L. (1990) Programming Perl. Sebastopol, CA: O’Reilly and Associates.

Wolfram, S. (2003) The Mathematica Book. 5th ed. Wolfram Media. Champaign, IL.

https://doi.org/10.1017/S0956796808007016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808007016

