ON SELBERG'S LEMMA FOR ALGEBRAIC FIELDS

R. G. AYOUB

1. Introduction. Recently two Japanese authors (1) gave a beautifully simple proof of Selberg's fundamental lemma in the theory of distribution of primes. ${ }^{1}$ The proof is based on a curious twist in the Möbius inversion formula. The object of this note is to show that their proof may be extended to a proof of the result for algebraic fields corresponding to Selberg's lemma. Shapiro (2) has already derived this result using Selberg's methods and deduced as a consequence the prime ideal theorem.

Let K be an algebraic extension of the rationals of degree k, and denote by $N(\mathfrak{a})$ the norm of the ideal \mathfrak{a} and by $\mathfrak{p}, \mathfrak{p}_{i}$ etc., prime ideals of K.

We define $\mu(\mathfrak{a})$ and $\Lambda(\mathfrak{a})$ as in the case of the rational field, viz.,

$$
\begin{aligned}
& \mu(\mathfrak{a})=\left\{\begin{array}{ll}
1 & \text { if } \mathfrak{a}=1 \\
(-1)^{r} & \text { if } \mathfrak{a}=\mathfrak{p}_{1} \ldots \mathfrak{p}_{r}, \\
0 & \text { otherwise } ;
\end{array} \text { the } \mathfrak{p}_{i} \text { all different },\right. \\
& \Lambda(\mathfrak{a})=\left\{\begin{array}{cl}
\log N(\mathfrak{a}) & \text { if } \mathfrak{a} \text { is a power of a prime ideal } \mathfrak{p} . \\
0 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

It is easy to deduce that

$$
\sum_{\mathfrak{D} \mid \mathfrak{a}} \mu(\mathfrak{b})= \begin{cases}0 & \text { if } \mathfrak{a} \neq 1 \tag{1}\\ 1 & \text { if } \mathfrak{a}=1\end{cases}
$$

and

$$
\begin{equation*}
\sum_{\mathfrak{d} \mid \mathfrak{a}} \Lambda(\mathfrak{d})=\log N(\mathfrak{a}) . \tag{2}
\end{equation*}
$$

The Möbius inversion formula is valid, i.e. if

$$
f(\mathfrak{a})=\sum_{\mathfrak{b} \mid \mathfrak{a}} g(\mathfrak{d})
$$

then

$$
g(\mathfrak{a})=\sum_{\mathfrak{d} \mid \mathfrak{a}} \mu(\mathfrak{d}) f\left(\frac{\mathfrak{a}}{\mathfrak{b}}\right) .
$$

It follows that

$$
\begin{align*}
\Lambda(\mathfrak{a}) & =\sum_{\mathfrak{D} \mid \mathfrak{a}} \mu(\mathfrak{b}) \log \left(\frac{N(\mathfrak{a})}{N(\mathfrak{d})}\right) \tag{3}\\
& =-\sum_{\mathfrak{d} \mid \mathfrak{a}} \mu(\mathfrak{b}) \log N(\mathfrak{b}) .
\end{align*}
$$

Define

$$
\psi(x)=\sum_{N(\mathfrak{a}) \leqslant x} \Lambda(\mathfrak{a}) .
$$

Received April 3, 1954.
${ }^{1}$ This proof was brought to my attention by Dr. Leo Moser of the University of Alberta.

It is our object to give a new proof of
Selberg's Lemma:

$$
\psi(x) \log x+\sum_{N(\mathfrak{a}) \leqslant x} \Lambda(\mathfrak{a}) \psi\left(\frac{x}{N(\mathfrak{a})}\right)=2 x \log x+O(x)
$$

The proof is based on the next theorem which is the essence of the Japanese method; a factor $\log x$ is introduced in the Möbius transform with interesting consequences.

Theorem 1.1. If

$$
f(x)=\sum_{N(\mathfrak{a}) \leqslant x} h\left(\frac{x}{N(\mathfrak{a})}\right) \log x
$$

then

$$
\begin{equation*}
\sum_{N(\mathfrak{a}) \leqslant x} \mu(\mathfrak{a}) f\left(\frac{x}{N(\mathfrak{a})}\right)=h(x) \log x+\sum_{N(\mathfrak{a}) \leqslant x} \Lambda(\mathfrak{a}) h\left(\frac{x}{N(\mathfrak{a})}\right) . \tag{4}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{N(\mathfrak{a}) \leqslant x} \mu(\mathfrak{a}) f\left(\frac{x}{N(\mathfrak{a})}\right) & =\sum_{N(\mathfrak{a}) \leqslant x} \mu(\mathfrak{a}) \sum_{N(\mathfrak{b}) \leqslant x / N(\mathfrak{a})} h\left(\frac{x}{N(\mathfrak{a}) N(\mathfrak{b})}\right) \log \frac{x}{N(\mathfrak{b})} \\
& =\sum_{N(\mathfrak{c}) \leqslant x} h\left(\frac{x}{N(\mathfrak{c})}\right) \sum_{\mathfrak{b} \mid \mathfrak{c}} \mu(\mathfrak{b}) \log \left(\frac{x}{N(\mathfrak{b})}\right) \\
& =h(x) \log x+\sum_{N(\mathfrak{c}) \leqslant x} h\left(\frac{x}{N(\mathfrak{c})}\right) \Lambda(\mathfrak{c}),
\end{aligned}
$$

by (1) and (3).
2. Some estimates. We make the following abbreviation: we denote simply by the index a summation over the range 0 to x, for example,

$$
\sum_{\mathfrak{a}} f(\mathfrak{a}) \text { means } \sum_{N(\mathfrak{a}) \leqslant x} f(\mathfrak{a}), \text { while } \sum_{n} f(n) \text { means } \sum_{n \leqslant x} f(n) \text {. }
$$

In other cases the range of summation will be specified. We sometimes use the notation $A \ll B$ to mean $A=O(B)$. We assume known the following classical result of Weber (3):

$$
\begin{equation*}
[x]=\sum_{a} 1=g x+a(x) \tag{5}
\end{equation*}
$$

where $a(x)=O\left(x^{1-m}\right)$ with $m=1 / k, g$ is the residue of $\zeta_{k}(s)$ at $s=1$, i.e.,

$$
g=\frac{2^{\tau_{2}+\tau_{2}} \pi^{r_{s}} R}{w \sqrt{|d|}} h
$$

Here r_{1} and r_{2} are the numbers of real and pairs of complex conjugate fields, w is the order of the group of roots of unity, d is the discriminant, R the regulator and h is the class number.

Theorem 2.1.

$$
\sum_{\mathfrak{a}} N(\mathfrak{a})^{-1}=g \log x+c+O\left(x^{-m}\right)
$$

Proof. Using (5), we get

$$
\begin{aligned}
\sum_{\mathfrak{a}} N(\mathfrak{a})^{-1} & =\sum_{n} \frac{[n]-[n-1]}{n} \\
& =\sum_{n} \frac{g n-g(n-1)}{n}+\sum_{n} \frac{a(n)-a(n-1)}{n} \\
& =g \sum_{n} \frac{1}{n}+\sum_{n} a(n)\left(\frac{1}{n}-\frac{1}{n+1}\right)+O\left(x^{-m}\right) \\
& =g \log x+g \gamma+O\left(x^{-1}\right)+O\left(\sum_{n=1}^{\infty} n^{-1-m}\right)+O\left(x^{-m}\right) \\
& =g \log x+g \gamma+O(1)+O\left(x^{-m}\right) \\
& =g \log x+c+O\left(x^{-m}\right)
\end{aligned}
$$

where γ is Euler's constant.
Theorem 2.2.

$$
\sum_{a} N(\mathfrak{a})^{v-1}=O\left(x^{v}\right) \quad \text { if } 0<v \leqslant 1
$$

Proof. Using (5) again,

$$
\begin{aligned}
\sum_{\mathfrak{a}} N(\mathfrak{a})^{v-1} & =\sum_{n}([n]-[n-1]) n^{v-1} \\
& \ll \sum_{n} n^{v-1}+\sum_{n}\{a(n)-a(n-1)\} n^{v-1} \\
& \ll x^{v}+\sum_{n} n^{v-m}\left\{1-\left(1+\frac{1}{n}\right)^{v-1}\right\} \\
& \ll x^{v}+\sum_{n} n^{v-m-1} \\
& \ll x^{v}+x^{v-m} \log x \\
& \ll x^{v} .
\end{aligned}
$$

Theorem 2.3.

$$
\sum_{\mathfrak{a}} \log N(\mathfrak{a})=g x \log x-g x+O\left(x^{1-m} \log x\right)
$$

Proof. By (5),

$$
\begin{aligned}
\sum_{a} \log N(\mathfrak{a}) & =\sum_{n}([n]-[n-1]) \log n \\
& =g \sum_{n} \log n+\sum_{n}\{a(n)-a(n-1)\} \log n .
\end{aligned}
$$

The second sum, however, is

$$
\begin{aligned}
& \ll \sum_{n} a(n) \log \left(1+\frac{1}{n}\right)+x^{1-m} \log x \\
& \ll \sum_{n} n^{-m}+x^{1-m} \log x \\
& \ll x^{1-m} \log x
\end{aligned}
$$

Consequently,

$$
\sum_{\mathfrak{a}} \log N(\mathfrak{a})=g x \log x-g x+O\left(x^{1-m} \log x\right)
$$

The object of the next paragraph is to prove
Theorem 2.4.

$$
\sum_{\mathfrak{a}} \frac{\Lambda(\mathfrak{a})}{N(\mathfrak{a})}=\log x+O(1)
$$

Shapiro's proof is based on several auxiliary results which are needed for the proof of Selberg's lemma. We prove the theorem here directly, using Chebychev's ideas. We first notice that

$$
\begin{aligned}
\sum_{\mathfrak{a}} \frac{\Lambda(\mathfrak{a})}{N(\mathfrak{a})} & =\sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})}+\sum_{\mathfrak{p}^{2}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})^{2}}+\ldots \\
& =\sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})}+O(1)
\end{aligned}
$$

It is therefore enough to show that the sum on the right is $\log x+O(1)$. The number of ideals \mathfrak{a} with $N(\mathfrak{a}) \leqslant x$ and divisible by a prime ideal \mathfrak{p} is $[x / N(\mathfrak{p})]$ and so on for \mathfrak{p}^{2} etc. Hence

$$
\prod_{\mathfrak{a}} N(\mathfrak{a})=\prod_{\mathfrak{p}} N(\mathfrak{p})\left[\frac{x}{N(\mathfrak{p})}\right]+\left[\frac{x}{N(\mathfrak{p})^{2}}\right]+\ldots
$$

and

$$
\begin{align*}
\sum_{\mathfrak{a}} \log N(\mathfrak{a})= & \sum_{\mathfrak{p}} \log N(\mathfrak{p})\left\{\left[\frac{x}{N(\mathfrak{p})}\right]+\left[\frac{x}{N(\mathfrak{p})^{2}}\right]+\ldots\right\} \tag{6}\\
= & \sum_{\mathfrak{p}} \log N(\mathfrak{p})\left[\frac{x}{N(\mathfrak{p})}\right] \\
& +O(x) \sum_{\mathfrak{p}} \log N(\mathfrak{p})\left\{N(\mathfrak{p})^{-2}+N(\mathfrak{p})^{-3}+\ldots\right\} \\
= & g x \sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})}+O\left(x^{1-m}\right) \sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})^{1-m}} \\
& +O(x) \sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})^{2}}
\end{align*}
$$

The third sum on the right is $O(1)$; we now evaluate the second one. For this purpose we introduce the function $\theta(x)=\sum_{\mathfrak{p}} \log N(\mathfrak{p})$. Since $N(p)$ is at most p^{k} for some rational prime p, we conclude that $\theta(x)$ is $O\left(\sum_{p} \log p\right)=O(x)$. Hence

$$
\begin{aligned}
\sum_{\mathfrak{p}} \frac{\log N(\mathfrak{p})}{N(\mathfrak{p})^{1-m}} & =\sum \frac{\theta(n)-\theta(n-1)}{n^{1-m}} \\
& \ll \sum_{n} \theta(n)\left\{n^{m-1}-(n+1)^{m-1}\right\}+x^{m} \\
& \ll \sum_{n} n^{m-1}+x^{m} \\
& \ll x^{m} .
\end{aligned}
$$

Using Theorem 2.3 and (6), we deduce Theorem 2.4.
Theorem 2.5.

$$
\sum_{a} \psi\left(\frac{x}{N(\mathfrak{a})}\right)=g x \log x-g x+O\left(x^{1-m} \log x\right)
$$

Proof.

$$
\begin{aligned}
\sum_{\mathfrak{a}} \psi\left(\frac{x}{N(\mathfrak{a})}\right) & =\sum_{\mathfrak{a}} \sum_{\mathfrak{a} \mathfrak{b}} \Lambda(\mathfrak{b}) \\
& =\sum_{\mathfrak{c}} \sum_{\mathfrak{b} \mid \mathfrak{c}} \Lambda(\mathfrak{b}) \\
& =\sum_{\mathfrak{c}} \log N(\mathfrak{c}) \\
& =g x \log x-g x+O\left(x^{1-m} \log x\right)
\end{aligned}
$$

using (2) and Theorem 2.3.
3. Proof of Selberg's Lemma. In (4), we put $h(x)=\psi(x)-x+c / g+1$, where c is the constant of Theorem 2.1. Then

$$
\begin{aligned}
h(x) \log x+ & \sum_{\mathfrak{a}} \Lambda(\mathfrak{a}) h\left(\frac{x}{N(\mathfrak{a})}\right) \\
= & \log x\left\{\psi(x)-x+\frac{c}{g}+1\right\}+\sum_{\mathfrak{a}} \Lambda(\mathfrak{a}) \psi\left(\frac{x}{N(\mathfrak{a})}\right) \\
& -x \sum_{\mathfrak{a}} \frac{\Lambda(\mathfrak{a})}{N(\mathfrak{a})}+O(\psi(x)) \\
= & \log x \psi(x)+\sum_{\mathfrak{a}} \Lambda(\mathfrak{a}) \psi\left(\frac{x}{N(\mathfrak{a})}\right)-2 x \log x+O(x)+O(\psi(x)),
\end{aligned}
$$

by Theorem 2.4. On the other hand,

$$
\begin{aligned}
f(x)= & \log x\left[\sum_{a} \psi\left(\frac{x}{N(\mathfrak{a})}\right)-x \sum_{\mathfrak{a}} N(\mathfrak{a})^{-1}+\left(\frac{c}{g}+1\right) \sum_{\mathfrak{a}} 1\right] \\
= & \log x\left\{g x \log x-g x+O\left(x^{1-m} \log x\right)-g x \log x\right. \\
& \left.\quad-c x-O\left(x^{-m+1}\right)+\left(\frac{c}{g}+1\right)\left(g x-O\left(x^{1-m}\right)\right)\right\} \\
= & O\left(x^{1-m} \log ^{2} x\right)=O\left(x^{1-\frac{1}{2} m}\right)
\end{aligned}
$$

by (5) and Theorems 2.1 and 2.5. Consequently

$$
\begin{aligned}
\sum_{\mathfrak{a}} \mu(\mathfrak{a}) f\left(\frac{x}{N(\mathfrak{a})}\right) & =O\left(x^{1-\frac{1}{2} m}\right) \sum_{\mathfrak{a}} N(\mathfrak{a})^{-1+\frac{1}{2} m} \\
& =O(x)
\end{aligned}
$$

by Theorem 2.2.
Combining these results, we conclude that

$$
\psi(x) \log x+\sum_{\mathfrak{a}} \Lambda(\mathfrak{a}) \psi\left(\frac{x}{N(\mathfrak{a})}\right)=2 x \log x+O(x)+O(\psi(x))
$$

Since $\theta(x)=O(x)$, then $\psi(x)=O(x)$, but it will be noticed that this fact is a consequence of the above inequality. The proof of the theorem is therefore complete.

REFERENCES

1. T. Tatuzawa and K. Iseki, On Selberg's elementary proof of the prime number theorem, Proc. Jap. Acad., 27 (1951), 340-342.
2. H. Shapiro, An elementary proof of the prime ideal theorem, Communications on Pure and Applied Mathematics, 2 (1949), 309-323.
3. E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen (New York, 1949), 124 ff.

Pennsylvania State College

