ALGEBRAS WITH VANISHING 2-COHOMOLOGY GROUPS

MASATOSHI IKEDA, HIROSHI NAGAO
and TADASHI NAKAYAMA

Cohomology theory for (associative) algebras was first established in
general higher dimensionalities by G. Hochschild [3], [4], [5]. Algebras with
vanishing 1-cohomology groups are separable semisimple algebras ([3], Theorem
4.1). On extending and refining our recent results [6], [8], [12], we establish
in the present paper the following:

Let n =2. Let A be an (associative) algebra (of finite rank) possessing
a unit element 1 over a field 2, and N be its radical. If the n-cohomology
groups of A all vanish, then

«) the semisimple residue-algebra A/N is separable, and

B) for every left-ideal [ of A the A-left-submodule
1A% ... XAxI (with n—2 A’s)

of the Kronecker product (over £) AXAX...xA (with n—1 A’s) is an
(M,)-module (see below), where the operation of A on AXAX...XA is
defined by a(xi XX ... X%no1) = GX1XX2X oo o X Xpo1 — AX X1 X2 X o o o X Xy
Fo L F (=D @X X X .o X Xne2Xne1), (@ X1, oo, XZniEA). (On the
submodule 1(AxAx...xA)=A(AxAx...xA) (whence on 1(AxX A
X ...XAxI)) this operation coincides, however, with the ordinary operation
which simply operates, from the left, on the first component.) (In proving )
we do not need to assume A to be of finite rank.)

Conversely, if «) is the case and if

B1) the A-left-module 1{A X% . .. x AXN), with n =2 A’s, is an (M,)-module,
then all the #-cohomology groups of A are 0.

This paper was first submitted to the Transactions of the American Mathematical
society, received by the Editors of that Journal on December 2, 1953, accepted for publi-
cation in that Journal, and subsequently transfered to the Nagoya Mathematical Journal
by request of the authors, who planned jointly with S. Eilenberg a series of papers on

related subjects to be published in this latter Journal. A revision was made, on April 10,
1954, at the occasion of transfer.
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Thus either the pair «), 8) or the pair a), ;) is necessary and sufficient
for A to have vanishing n-cohomology groups. Needless to say that our theorem
contains [4], Theorem 8 as a very special case.

Now, we call a left-, say, module m of A an (M,)-module when the follow-
ing condition is satisfied: if m is A-isomorphic to a residule-module M /n then
M is a direct sum of n and a second A-submodule m' (necessarily A-isomorphic
with m), M=m'®n. A structural characterization, for an A-left-module n to
be an (M,)-module, is that 1 m should be a direct sum of A-submodules A-iso-
morphic to principal left-ideals of A generated by idempotent elements ([9]).
Hochschild [5], Theorem 1.4 asserts that all the #z-cohomology groups of A
vanish if and only if AXAX ...XA with #nA’s is an (M,)-module when con-
sidered as an A-(double-)module with the left operation of A defined similarly
as above (with » in place of #—1) and with the ordinary right operation of A
(which simply operates, from the right, on the utmost right factor of the
Kronecker product). Let us observe that in 8) or 8:) the number of factors of
the Kronecker product is smaller by 1 than in this statement while the last
factor is an arbitrary left-ideal, in ), or the radical, in 8:). Moreover, we are
dealing with one-sided modules, of A, instead of a two-sided one. We wish to
note also that in case n =2 we are, in ), 81), dealing simply with a left-ideal
or the radical under ordinary left multiplication of A. As for the case n=2,
1(A x!) is the kernel of the (natural) homomorphism A x{—[=AX 4.

Now, the vanishing of the #-cohomology groups of A is expressed either
by class A = n, in the sense of Hochschild [4], or by dimA < n—1, in the
sense of Cartan-Eilenberg [2]. Moreover, that an A-left-module m is an (M)-
module is equivalent to the fact that it is projective, i.e. of (A-left-)dimension
0, in the sense of Cartan-Eilenberg. Moreover, that the A-left-module 1(A
X ... XAxm) with -2 A’s is an (Mp)-module (or projective, or of (A-left)
dimension 0) turns out to be equivalent to that the A-left dimension of m is
not greater than n —2; a proof of this, together with some other results related
to the present paper, will be given in a joint paper by Eilenberg and two of
the present authors in Nagoya Math. Journal. So our result may be expressed
also by saying that dimA = n—1 implies «) dimA/N=0, B) L.dim . £n—2
({ being any left-ideal in A), and is implied by «) and F1) Ldim.N < n-2.

Further, we are informed by Eilenberg that he has an alternative treatment
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of our main theorem within the frame work of the Cartan-Eilenberg [2] theory ;

it will appear in Comment. Math. Helvetici.

§1. Relative cohomology
Let A be an (associative) algebra, over a field 2, and let [ be a left-ideal

of A. Consider an A-double-module m of A satisfying
(1) ml=0.

We briefly recall the notion of [-relative cohomology groups of A in m as it
was introduced in [12]; our purpose is, and was in [12], to apply it in proving
our structural theorem for algebras with vanishing (ordinary) cohomology
groups, but the notion is perhaps of interest by itself. Let » be a natural
number, and consider the subgroup C7(A, m) of the n-cochain group C"(A, m)
of A in m consisting of all those n-cochains f— called [-relative cochains—
which satisfy the condition: f(x1, %2, ..., x») =0 when x,&€[. We put
Ci(A, m)=m. With the ordinary coboundary operator § we have, as we see

readily,
(2) dCT (A, m) = C{(A, m).
Therefore, on putting
Zi(A, m)=CHA, m)NZ"(A, m),
BY(A, m) =0C7 (A, m),

where Z"(A, m) is the ordinary n-cocycle group, we obtain the group (in fact,

£2-module)

HP(A, m) =Z7(A, m)/Bj(A, m)
which we want to call the [-relative n-cohomology group of A in m; if we
speak simply of a cohomology group, we shall always mean an ordinary, non-

relative (i.e. a O-relative) cohomology group.
We consider C{(A, m) as an A-double-module, defining, for /€ C{(4, m),

(3) X)) (X1, oo vy Zn) =2f (X1, . . ., Xn),

)%, ooy xn) =2f (%1, o v oy X)) —0F (X, X1, - o o, Xn)

(x, %1, . .., x,E A). Then we obtain the following generalization of

Hochschild’s reduction theorem :
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(4) HI(A, m)=H"(A, C{(A, m)),

where the right-hand side is the ordinary 7-cohomology group of A in C7(A, m).

The proof is exactly the same as in the ordinary case.

§2. The modules P*7', Q77"

Let n = 2 and define, after Hochschild, the Kronecker product, over £,
(5) PPl =AxAx...xAXA (with n—1 A’s)
the following left operation of A:
(6) (X XXX o oo X XKoo X Xney)

=XX XXX oo o XXpeg =X XX1X2X oo o XXn-1

+ oo+ (=DM XxX .. X X2 Xnn1).
Let m be an A-left-module. We consider it as an A-double-module with
(7) mA =0.
The (ordinary) (#-1)-cochain group C* (A, m) = C; '(A, m) may be identified
with the 2-module L(P"!, m) of all 2-linear mappings of P*"' into m. The

A-double-module structure of C"'(A4, m), as defined in (3), reads as follows in
L(P" Y, m): for e L(P" ", m), x€ A, uc P**

(8) (x0)(n) =x¢(n),
(0x)(u) = ¢(xn)

(Observe (6) and (7)). The (ordinary) reduction theorem ((4) with [=0, =1
and #n replaced by n—1) gives

(9) H"(A, m)~H'(A, L(P"*", m)).

If here H"(A, m) vanishes, so does H'(A, L(P""!, m)) naturally. This means,
however, that every (A-left-module) extension of the A-left-module m by the
A-left-module P""' splits; the proof is exactly the same as in Hochschild [5],

§1. As m is any A-left-module, this proves

LeEMMA 1. If the (ordinary) n-cohomology groups of A in A-double-modules
annihilated by A on the right all vanish, then the A-left-module P*" ' (as defined
in (5) with (6)) is an (M,)-module; for the notion of an (M,)-module cf. the

introduction.
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Remark 1. In case A possesses a unit element 1, every P (i=1)is an
(M,)-module as an A-left-module under the operation (6). This holds indeed
without any assumption on cohomology groups of A, and follows in fact readily
either from (9) and [4], Theorem 1 combined or from an inductive argument
which makes use of the homomorphisms of P’ similar to those of Q% (see below)
used in our proof of Theorem 4 below (cf. also [11], Lemma 4.1 and [6],
Proposition 2).

Next, let [ be a left-module of A, and put

(10) QI '=Ax...xAX! (with n—2 A’s).

This is a left-module of A under the operation (6), where we let x»-1 now

stand for an element of [.  If in particular [ is a left-ideal of A, as we shall

n-1

assume in the rest of this section, then @7 ° is an A-submodule of the A-left-
module P*! (with the operation (6)).
Further, let

(11) A=A"®I

be a decomposition of A into a direct sum of [ and an £-submodule A°. With
xe A we denote by x° the A’component of x in this decomposition. For

x, y € A, put
(12) xy = (x9)° + A(x, ») (A(x, y) D).
Then we have, for x,y,z € A,

(13) Mxy, 2) = a(x, (92)°) +x4(y, 2),
(14) Mx, 1) =xl (lel).

Now let MM be an A-left-module and m an A-submodule of M. Let
(15) M=M B m

be a direct decomposition of M into m and an 2-submodule M. With » & M,
let 2’ be the M'-component of # with respect to (15). Putting, for x € A,
u eI,

(16) xu= (xu) + p(x, u) (u(x, w) € m),
we have, similarly as above,

(17) w(xy, ) = ulx, yu)') + xu(y, ),
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{18) u(x, m) = xm (m e m).

Now assume that M/m is A-isomorphic to our A-left-module Q7™'. With
g€ Q77’, let ¢* be the element of M' whose class modulo m corresponds to ¢
by the (once fixed) A-isomorphism of M /m and Qf~". For the sake of brevity,
we write u(x, ¢) in the place of u(x, g*).

Making m an A-double-module with

(19) mA =0,

we consider the [-relative (n#+ 1)-cocycle f in m defined by

(20) (%o, %y o ooy Xnea, ¥, 2) = p(Ho, X1X o o . X Xnoa X A(y, 2°)).
Indeed, we have

af(ws X0y X1y « o o5 Xn-2, Y, Z)

=wulxo, X1X oo XXn—z XAy, 2°)) = ulwxo, 1% o . . X xn-2 XAy, 2°))
n-3

+ (=1 pw, %oX . . o XXi%is1X o oo X XnaXA(y, 2°))
i=0

+ (=" (ulw, 20X « o o XZn-s X A Xn-2y, 2°))
—u(w, %oX « o XXn-z X MXn-2, (y2)°)))

= wu(%o, X1X « o« XXn-2 X A, 2°)) = (u(w, xo(x1 X . . . X Xn-2xA(y, 2°)))
+wn(xo, x1X o o o XXno2a X Ay, 2°0)) + (ulw, xlx1x . oo XXn-a X Ay, 2,))
(=1 ulw, xoX . . . X Xn-z X 2n-2A(y, 2°)))

+(=D)"ulw, %X .. . XXnesXxn-24(y, 2°)) =0,
by (17), (6) and (13). Thus
(21) feZ(A, m).

Suppose that there exists & &€ C{(A, m) such that

(22) oh =f,
ie.
{23) w(%o, 21X oo o X Xnea X Ay, 2°)) =0h{x0, %10 . « ., Xn-2, ¥, Z).

Put, in view of (11),

{(24) (%o, X1X XX o o o X Xnag)

- 0
=(=1)" ’h(xo, Xiy o o o xn-1)+,u(xo, X1X o oo XZn-2 X (Xn-1 - Xp-1)).
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Then clearly
(25) I/(xo, XX oo Xxn-.z)(l):,u(xo, XX oo Xx,.-le) (IEI).
Further

wr(Xp, X1 X « . . XXnoy)
= (=" wh(%o, %1, « « -5 Zn-1) +wpXo, X1X « o . X Xney X (Xn-1 — 25-1)),
v(wxo, XX .« . . X Xn-y)
=(=1)"""m(wxo, %1, . .+, Zn-1) + p(wxo, X1X « o o X Xnez X (Xneg — 2%-1))
=(=D)" mwxo, %1, .+« s Xn-1) + p(w, 2o(XX o o . XZnoa X (Xnog — x%-1)))
Fwu(xy, XX oo o XZn—g X (Xn-y1— x0-1)),
v(w, xo(X1X . . . X %n-1))
=(=D""(or(w, %o, X1, + « « ) Xn-1)
—wh(xo, X1, -« o5 Xn-y) + h(wxo, %1, . . ., Xn-1)
F (=1 ulw, o XXX o oo X Xnoz X A Xno2, ¥2-1))

+ 2w, xo(X( X . .. X Xn-g X (Xn-l“xgt—l)),
by (17), (6) and (12), whence
(26) wr(Xo, X1X + o« X Xn1) — v(WXo, X1X . o o X Xn-1)

+o(w, xo(x1X ... XXnoy)) = ( —1)""6h(w, Koy Kiy o o oy Xney)

F+ (=D"u(w, o X 21X o o o XZng X AXn-s, £%-1)) =0,

by (23).
Introduce now an £-module § isomorphic to P*7, and let, for u & P*7!,

#5 be the element of R which corresponds to #. Put
(27) S=R®m

and define, for # € P*!, mem,

(28) (i3 +m) = (x0)5 + 1(x, u) +xm.

(26) secures that this makes & an A-left-module. (25) shows that its sub-
module (™)@ m is A-isomorphic to .
Thus we have the first half of the following theorem whose second half

may be seen simply by tracing the above calculation in reverse order.

TureoreM 1. Let M be an A-left-module and m be its A-submodule. Let
[ be a left-ideal of A and assume that M/m is A-isomorphic to the A-left-
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module Q7" (as defined in (10), with (6)). Define & Z7 (A, m) by ((12),
(16) and) (20), where we consider m as an A-double-module by putiing mA = 0.
If, and only if, the class of f in H{™(A, m) is 0, the A-left-module ™ may be
imbedded, as A-left-module, into an A-left-module L such that there is an A-
left-isomorphism of Q/m with P"™" which coincides on M /m with the given iso-
morphism of M/m and Q7 (< P*).

Now, assume that our algebra A is such that its (ordinary) #n-cohomology
groups are all 0. Then its [-relative (n+ 1)-cohomology groups are all 0, by
virtue of the reduction theorem (4). So the condition (f~0 in H{ (A, m))
is always satisfied in this case. We see thus that every extension, of m, by
Q7™ can be imbedded in an extension by P""'. But our same assumption
implies, as we have seen in Lemma 1, that the A-left-module P*™* is an (My)-

=1

module; cf. also Remark there. The splitting of an extension by P entails

naturally the splitting of the imbedded extension by @7 '. Thus we have

THEOREM 2. Suppose that the (ordinary) n-cohomology groups of A all
vanish. Then, with any left-ideal | of A, the A-left-module Q™' (as defined in
(10) with (6)) is an (M,)-module (or what is the same, the unitary A-left-

module 1Q7 " is an (My)-module, provided that A possesses unit element I).

For the last reduction to a unitary module, see e.g. [9], Lemmas 1, 2. We
also remark that for the submodule 1P"*™, or AP™™* generally, of P"™' (whence
for 1Q7™%, or AQ}™") the operation (6) of A coincides with the ordinary oper-

ation which simply operates, from the left, on the utmost left component.

Remark 2. As will be shown by one of us in a paper to appear in Journ.
Polytech. Osaka City Univ., our above argument may best be seen from the

exact sequence
H™(A, m) = H(A, L(P™, m)) 2> H' (A, L@}, m)) -5 HIM(A, m)

for an A-double-module m with mA =0. The mapping ¢ is merely a restric-
tion. The mapping 0 is obtained by extending, first, any cocycle in Z'(A4,
L(Q7™", m)) to a cochain in C'(A, L(P™*, m)) and then taking the coboundary
of the extension. Our argument in the first half of the present section was to
make this last construction explicit (and to interprete it module-theoretically).

We see without much difficulty that our construction cf f in (20) corresponds
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to what we obtain in the alluded construction by taking the extended cochain
so as to vanish on L(AX ...XxAxA"’, m) (where we consider L(P" %, m) as
the direct sum of L(Ax ...xA"% m) and L(Q]™", m)).

§3. Lemmas

Let again A be an algebra over a field L.

LEMMA 2. Suppose that A possesses a unit element. An A-left-module m
is an (Moy)-module if and only if 1m is a direct summand of a free A-left-
module. In case A is of finite rank over the ground field 2, m is an (M,)-
module if and only if 1m is a direct sum of (a finite or infinite number of)
A-submodules A-isomorphic to principal left-ideals of A generated by primitive

idempotent elements.

Proof. A-left-module annihilated by A is an (M,)-module, and the direct
sum of two A-left-module is an (M;)-module if and only if each summand is
an (M,)-module; see [9]. It follows then easily that we have only to consider,
in order to prove our lemma, an A-left-module satisfying 1m=m. Clearly
every such A-left-module m is A-isomorphic to a residue-module of a free A-
left-module, say mo. If m is an (M;)-module, m is a direct summand of m.
On the other hand, a free A-left-module is evidently an (M;)-module. Hence
its direct summand is an (M;)-module.

The second half of the lemma follows immediatly from the first half in
case m is of finite rank over 2. For the case (m : 2) = « we merely refer to
[9], since in our applications of the second half of the lemma, which we shall

make below, m will always be of finite rank over 2.

LemMMA 3. Let A be an extension field of 2 and n be a natural number.
All n-cohomology groups of the algebra A, over A vanish, if and only if all n-

cohomology groups of A vanish.

Proof. The lemma could be derived from Hochschild [5], Theorem 1.4
and the fact that, with an A-module m, the A,-module m, is an (M,)-module
(of A,) if, and only if, the A-left-module m is an (M,)-module (of A); this
last fact follows readily from (the first half of) Lemma 2. But our lemma can
readily be seen directly as follows, as has been communicated by Hochschild.
If m is an A-double-module, the natural mapping of H"(A, m) into H"(A,, m,)
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is evidently an (into-)isomorphism; in fact we have H"(A., m,) = H*(A, m),.
Hence H"(A,, m,) =0 implies H*(A, m) =0. Conversely, let f be an n-cocycle
on A, in an A,-double module M, and suppose that H"(A, M)=0. Let f be
the restriction of ¥ to A. Then f = dg, where g is an (n—1)-cochain for A in
M. Let g, be the natural extension of g to an (s —1)-cochain for A, in M.
Then, clearly, f=0g.. Thus ' H"(A, M) =0 implies H"*(A,, M) =0.

§4. Separability of A/N

So far we did not assume that A is finite over 2 (except in the latter half
of Lemma 2). But we assume now that our algebra A, over 2, is of finite
rank, and possesses a unit element 1. Let N be the radical of A.

Let
(29) 1= é%ex,i

k=1i=1

be a decomposition of 1 into mutually orthogonal idempotent elements in A
such that the left-ideals Ae,: and Ae,; are A-isomorphic (or, equivalently,
the right-ideals e, ;A and e, ;A are A-isomorphic) when, and only when, =4,
Put

€x = €x,1

for the sake of simplicity; for general structural theory of algebras see [7]
e.g.
We first assume that A /N is separable (over 2). By Wedderburn’s theorem,

there exists a (semisimple separable) subalgebra A of A such that
(31) A=A®N;

this is in fact a consequence of the fact the 2-cohomology groups of A/N all
vanish. The idempotent elements e, ; may, and shall be taken from A. Further,

taking [ = N in (10), we consider the A-left-module
(32) Qv l=AxAx...xAXN (with n—2 A’s).

{with the operation of A as defined in (6)). As N is a two-sided ideal, Q3"
may be regarded as an A-right-module with the ordinary operation of A from
the right (which simply operates, from the right, on the last component). In-

deed Q%' becomes then an A-double-module. It is in particular an A-A-
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(double-) module. We assert generally

LEMMA 4. An A-A-module m with mA=m is an (My)-module, as A-A-
module, if and only if it is an (M,)-module as A-left-module.

The proof depends, naturally, on the separability of A and is rather simple.
‘See [81.

Now we consider the case where the irreducible representations of A in
2 are all absolutely irreducible. This is equivalent to that (e.Aec/exNec : 2)
=1 for every «, and further to that the semisimple residue-algebra A/N is a
direct sum of matric algebras (of degrees m.) over 2. Moreover, A/N is cer-
tainly separable and we have (31).

On assuming, with a certain » & 2, that all the n-cohomology groups of A
vanish. we have that the A-left-module @y ' is, by Theorem 1, an (M,)-module,
and hence, by Lemma 4, the A-A-module Q%' is an (M,)-module. The same
is the case with the unitary A-A-module 1Q%™". Then, by virtue of Lemma 2,
applied to the Kronecker product algebra of A and an inverse-isomorphic image
of A, 1Q% ™" is a direct sum of A-A-submodules isomorphic to A-A-modules of
the form Ae,xeyA. Denoting by #,, the number of components isomorphic

to Aecx e, A, we write, symbolically,

(33) 1Q:'v-l‘l’z}‘tx,x(AeK><exZ).

Then we have, for each pair z, v, the e, Ae, — e, 2( = e, Ae,)-isomorphism

(34) . Q% e, =0t (e, Aec X e, Q).
Hence

(35) (e.Qv ey : Q)= DteyCurs
where

(36) Cux = (ey.Aex : «Q)

are the Cartan invariants of A (See [1] or [10] for instance).

On the other hand, we consider @, ' as an A-left-module under the ordi-
nary left-operation. Associating %1 X 22X . .. X%x—; € Q¥ ' with the element
%1 (XX o .. Xxn-1) of AQY *=1QY° with our left-operation (6) (#—1 being

replaced by n—2), we have an A-homomorphic mapping of Q% ', under the
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ordinary left-operation, upon 1Q4* (either under the operation (6) or the ordi-

nary operation; they coincide on 1Q%?). The mapping is also A-right-homo-

morphic, under the ordinary right-operation, and its kernel is exactly 1Q%';

cf. [11], Lemma 4.1, or [6], Proposition 2. It induces thus a homomorphism

from e, AXAX...xAxNe, (SQ%") onto e.Q3%e,. and the kernel is

e, Q% 'e,. Hence we have

(37) (e.@Qi eyt D) =7(A: 2)" (s, —m) — (. Q@ er 1 ),
where

(38) 7.=(e A : Q) =;cuxm;,

(39) sy = (Ae, : 9)=§cnmx;

observe that (Ne, : 2) =s,—m,. Similarly we have

(40) (e. @3 %y : ) =7.(A : D" (s, —m,) — (€.QF ey : 2),

.......................

(e.Q¥ey : Q) =7.s,—m,) — (e, Qyey : 2),
and
(e.Q%e, : 2) = (euNe, : 2) =cyuy — dpn.

Hence

n=3 .
(41) (eu.Q;lI—lev 2= fp(sv - 7nv)( § + (A )+ (- 1)n(cu.v - 611.\«)-

(In case n =2 the vacuous sum on the right-hand side is to mean 0.)

are independent of our cohomology assumption. Combining this (41) with the

relation (35), which we derived from the assumption that the z-cohomology

groups vanish, we have that their right-hand sides are equal. Putting

n-38 .
(42) " = (s, — m»)({EO +(A: Q)"

and observing (38), we thus have

(43) l:‘nc‘uxqu(»m-l-( —1)"6;“—;%”‘”: ( _'1)"6;“-

This means that the matrix (c.. ). has an inverse with integral coefficients,

and we have
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TueorREM 3. Let A be an algebra, of finite rank, over a field 2 possessing
a unit element. Assume that the irreducible representations of A in 2 are all
absolutely irreducible, and that all the n-cohomology groups of A wvanish, for a
certain natural number n. Then the matrix C = (ca) of Cartan invariants of

A, with integral coefficients cc., has a determinant |C|= %1,
Next we prove

LemMma 5.  Let A be an algebra, of finite rank, over a field 2 possessing a
unit element 1. If the semisimple residue-algebra A /N modulo the radical N is
inseparable, over 2, then the determinant of the matrix of the Cartan invariants
of A. is divisible by the characteristic p of 2, where A is the algebraic closure
of Q.

To prove this lemma, we may, and shall, restrict ourselves to the case
where 2 has no separable (algebraic) proper extension, since any separable
extension of the ground field preserves the inseparability of the residue-algebra
modulo the radical. Thus we assume that the algebraic closure A is purely
inseparable over 2. Then, by a theorem of Noether-Kéthe, every division alge-
bra (of finite rank) over £ is commutative. Thus every e«Aes/e«Ne« (k=1, 2,
..., R) is commutative, and is in fact a purely inseparable (proper or im-
proper) extension of 2. Hence each (e«Aex/e«Nex)s is completely primary and
each e, remains primitive in A,. The composition residue-modules of the left-
module Ajec/Nie. of A, are all isomorphic to A,ec/Me., where M is the radi-
cal of A,, and are (ecAec/e«Nec : 2) in number. Here (e<Aec/ecNec : 2) is a
power of p, say p*. Hence, for each 4, the number c. of composition residue-
modules of A.er= (Ae)), isomorphic to Asec/Me. is equal to p™ times the
number of composition residue-modules of Ae, isomorphic to Aex/Nex. So each
¢, is a multiple of p*. Now, as A/N is assumed to be inseparable, there ex-
ists a suffix « such that e.Ae«/e«Ne. is a (purely inseparable) proper extension
of . Each ¢ with this £ is thus a multiple of »* with a« =1, and the de-
terminant of the matrix (c.)).n is certainly divisible by p, which proves our
lemma.

Combining Theorem 3 and Lemma 5 we obtain the case with unit element
of the following theorem, to which the case without unit element can easily
be reduced by Hochschild [4], Theorem 3.
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THEOREM 4. Let A be an algebra, of finite rank, over a field 2. If the n-
cohomology groups of A all vanish, with a certain natural number n, then the

residue-algebra A |N modulo the radical N is separable.

§5. Sufficiency proof

The sufficiency part of our main theorem was proved already in [8].
However, we repeat its proof briefly, for the sake of completeness. Let A be
an algebra finite over its ground 2. Assume that A/N is separable, where N
is, as before, the radical of A. Then we have (31), where A is a (separable
semisimple) subalgebra of A (isomorphic with A/N). Then we have (cf. a

somewhat similar relation (9) for m with mA =0).

LEMMA 6. Let m be a double-module of A satisfying
(44) mN = 0.

Let L(Q3™', m) be the module of all A-right-homomorphic mappings of Qu ' into
m (where we consider Q%' under the ordinary right operation of A), and con-
stder it as a double-module of A by the operations given in (8) (where we con-

sider QX' under the left operation (6) of A). Then
(45) H* (A, m)~H"(A, L(Qy", m)) (n=2).

We repeat the proof in [8] briefly. We first prove, that if f is an »n-
cochain of A in an arbitrary double-module of A, with # = 1, such that §/(x,,
%2, . . ., %n+1) =0 whenever x,+1 € A, then there exists an #—1 cochain g of
A in the same module such that (f —6g) (%1, %2, . . ., %x) =0 whenever x, € A.
This we may see by a well known argument on considering the right oper-
ation of A on Q™' symmetric to (6), using naturally the separability of A;
cf. for a similar, but a little different, situation Hochschild [5], Lemma 10.1
and, more generally, Rose [13] or Shih [14], pp. 6-7.

Let now # =2 and C"(A, m) be the module of all n-cochains f of A in
m such that f(x;, %3, . .., ¥») =0 when x, € A, and put Z"(A, m) = Z"(A4, m)
N C™ A, m). The above observation shown that H"(A, m) is isomorphic to
Z™(A, m)/(8C™ (A, m) N C™(A, m)). For each f& Z"(A, m) we put

(46) SR (KX oo X Xnoa X)) = (X1, o e vy Xne1, I) (y & N).

Then we see, by the assumed property of m, that f* & Z'(4, L(QF ™, m)). If
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FE8C™ A, m)NC™A,m) and f=dg" (g = C" (A, m)), then our above con-
sideration, with # replaced by n—1, shows the existence of h & C" %4, m)
such that g/ — o & C" (A, m). Setting 2=g —~oh and g*(x: X . .. X Xn-2Xy)
=g(%1, ..., Xn-2, ¥) (yE N), we have g* e L(Qy ', m). We have further
rt=og*.

Conversely, if Fe ZWA, L(Q% ™', m)), we have F=f* where f is an ele-
ment of C"(A, m), in fact of Z"(A, m), with f (%1, ..., %n-1, ) = F(x1)(x:
X uu'XZn-1Xy) (&€ N). If here F=0G with G & L(Q5 !, m), then f=0dg
where g is an element of C" (4, m) with g(xy, ..., %n-2, ¥) =G(x1X . ..
X xp-2Xy) (y & N). These assure the asserted isomorphism (45).

Now, on the other hand, the right-hand side of (45) is 0, when and only
when every enlargement of the A-A-module m by the A-A-module Q%! splits;
see e.g. [11], Lemma 3.1, and observe that, every enlargement is A-inessential.

Further, if the n-cohomology group of A in every double-module satisfying
(44) vanishes, then the m-cohomology group of A in any double-module van-
ishes; this may easily be seen by considering a normal series of a given
double-module in which every residue-module satisfies (44) and applying a well-
known argument of considering residue-modules. Similarly, if the enlargements
by Q3! of every module satisfying (44) split, so do those of any (A-A-)module.

Combining these facts we see that (under the assumption of the separa-
Dbility of A/N, among others) the n-cohomology groups of A are all 0 if (and
only if) the A-A-module Q%' is an (M.)-module. Here the (M,)-module
property of Q4% ' as A-left-module (under (6)) suffices, as we have seen in
Lemma 6. So we have the latter half of our following main theorem whose
former half has been proved in §§3, 4.

MaIN THEOREM. Let n>2. Let A be an algebra, finite over a field 2,
possessing a unit element 1, and let N be its radical. If all the n-cohomology
groups of A vanish, then

a) A/N is separable, and

B) for every left-ideal | of A the A-left-module 1Q7™" is an (M,)-module,

where Q7" is given in (10) and the left-operation of A on Q7' is that given in
(6).

Conversely, if a) is the case, and if

B1) the A-left-module 1Q%~" is an (M,)-module, then all the n-cohomology
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groups of A vanish.

(The problem of algebras without unit element, whose #n-cohomology groups
all vanish, may easily be reduced to that of algebras with unit element; see
[4], Theorem 3.)

As an immediate consequence of (the first half of) our theorem, we men-
tion the following corollary which generalizes, as well as clarifies the back
ground of, Hochschild [5], Theorem 11.2.

CorOLLARY. Let A be a non-semisimple quasi-Frobenius algebra over a field
R. For every natural number n there exists an A-double module m with H"(A,
m) % 0.

Proof. Suppose, contrary to the assertion, that for some 7z all the =n-
cohomology groups of A are 0; we may assume naturally that #>2. Then
the A-left-module 1Q%" is an (M,)-module. Hence it is an (M)-module; the
definition of (My)-modules is dual to that of (M;)-modules, and quasi-Frobenius
algebras are characterized as algebras (with unit element) whose (Mo)-left-
modules are always (My)-left-modules and conversely ([9]). Consider the
module Q,,’{:" as an A-left-module under the ordinary left-operation of A. It
has our (M.)-module 1Q%™' as an A-submodule. Hence we have Q¥ '=0
@®1Q% ' with an A-submodule Q of Q% '. O is A-isomorphic to Q% '/1Q¥ ",
whence to the module 1Q%™%. On the other hand, as a direct summand in an
(My)-module QX“(:A“’-':‘—z‘Q’), 0 is an (Mp)-module. Thus the A-left-module
1Q%* is an (M,)-module. Repeating this argument »n — 2 times, we see that
the A-left-module N is an (M,)-module, whence an (My)-module, which cer-

tainly could not be the case, unless N were 0.
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