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Abstract

In this paper we consider two classes of reflected Ornstein–Uhlenbeck (OU) processes:
the reflected OU process with jumps and the Markov-modulated reflected OU process.
We prove that their stationary distributions exist. Furthermore, for the jump reflected OU
process, the Laplace transform (LT) of the stationary distribution is given. As for the
Markov-modulated reflected OU process, we derive an equation satisfied by the LT of
the stationary distribution.
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1. Introduction

Reflected Ornstein–Uhlenbeck (OU) processes are often used to model some typical state-
dependent queues. They usually serve as suitable approximations for queueing systems with
reneging or for multiserver loss models; cf. [10], [11], and [13]. Explicit properties of the
reflected OU process can be found in Ward and Glynn [12], where the authors studied the
transient structure, the first hitting time, and the stationary distribution. We note that the OU
process with jumps and the Markov-modulated OU process have been applied in modeling
queues and financial problems. For the OU process with jumps, Novikov [7] derived the
Laplace transform (LT) of the first passage time by using the martingale method. Furthermore,
Patie [9] obtained the joint distribution of the first passage time and the primitive stopped at the
first passage time. As for the Markov-modulated OU process, the ergodicity conditions and the
tail estimate of the stationary distribution can be found in [3] and [5] .

Now we give the expression of the reflected OU process mentioned above. A stochastic
process {Xt }t≥0 is called a ‘reflected’ OU process with jumps if

dXt = −λXt dt + dYt + dLt

with X0 = x0 ≥ 0, where {Yt }t≥0 is a spectrally positive Lévy process and {Lt }t≥0 is the
minimal, nondecreasing continuous process which makes Xt ≥ 0 for all t ≥ 0. Here {Lt }t≥0
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increases on only {t : Xt = 0}, so ∫ ∞

0
1{Xt>0} dLt = 0.

The other reflected OU process, denoted by {X̃t }t≥0, is the Markov-modulated reflected OU
process, which evolves like

dX̃t = −(b(Jt )+ λ(Jt )X̃t ) dt + σ(Jt ) dBt + dL̃t ; (X̃0, J0) = (x, i), x ≥ 0, i ∈ E,

where {Jt }t≥0 is a Markov process with finite state space E, and b(·), λ(·), and σ(·) are positive
functions on E. The reflection {L̃t }t≥0 is defined analogously to {Lt }t≥0.

The purpose of this paper is to study the stationary distributions of the reflected OU process
defined above, since they are important performance measures in queueing theory. The remain-
der of the paper is organized as follows. In Section 2 we consider the reflected OU process
with jumps. We prove that the stationary distribution exists uniquely. By taking advantage of
the infinitesimal generator and martingale method, we derive the explicit LT of the stationary
distribution. In particular, if the process degenerates to a reflected OU process without jumps,
our result is consistent with that given in [12]. Section 3 is devoted to the Markov-modulated
reflected OU process. As well as achieving the existence and uniqueness of the stationary
distribution, we derive a differential equation satisfied by the LT of the stationary distribution.
In the special model with λ = σ 2, b = 0, and E = {1, 2}, we obtain an explicit Laplace
expression for the stationary distribution.

2. The reflected OU process with jumps

We begin by introducing some notation. Suppose that {Bt }t≥0 is a standard Brownian motion,
that N(dx, ds) is a Poisson random measure supported on [0,∞)× [0,∞), and that b and σ
are two constants. Define {Yt }t≥0 by

Yt = bt + σBt +
∫ t

0

∫ 1

0
xÑ(dx, ds)+

∫ t

0

∫ ∞

1
xN(dx, ds),

where Ñ(dx, ds) = N(dx, ds) − ν(dx) ds, and ν(dx) denotes the Lévy measure satisfying∫ ∞
0 (x2 ∧ 1)ν(dx) < ∞. Let ψ(·) be the characteristic exponent of {Yt }t≥0. Then we have

ψ(α) = log E exp{−αY1}
= −bα + 1

2
σ 2α2 +

∫ ∞

0
(e−αx − 1 + αx1[0,1](x))ν(dx), α > 0.

Here {Xt }t≥0 is a reflected OU process driven by the Lévy process {Yt }t≥0, that is,

dXt = −λXt dt + dYt + dLt (2.1)

with X0 = x ≥ 0 and λ > 0, where {Lt }t≥0 is the minimal nondecreasing continuous process
which makes Xt ≥ 0 and increases only when Xt is 0.

Theorem 2.1. Assume that σ �= 0,
∫ ∞

1 xν(dx) < ∞, and that E (Y+
1 )

δ < ∞ for some δ ∈
(0, 1). Then {Xt }t≥0 has a unique stationary distribution.
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Proof. In the case ν(0,∞) = 0, {Xt }t≥0 degenerates to a reflected OU process without
jumps. This result has been proved in [12].

In the rest of the proof we assume that ν(0,∞) > 0. We claim that {Xt }t≥0 is regenerative
and the mean regeneration cycle is finite. Without loss of generality, we assume that there
exists a ε > 0 such that ν(ε,∞) > 0. Let T ε0 = inf{t > 0 : Xt > ε | X0 = 0} and
T 0
ε = inf{t : t > 0, Xt+T ε0 = 0 | X0 = 0}. Thus, T ε0 and T 0

ε form a typical regeneration cycle,
which involves a ‘first passage’ from 0 to ε, followed by a ‘first passage’ from the horizon above
ε to 0.

Observe that all the jumps with sizes larger than ε constitute a compound Poisson process.
The first jump of the compound Poisson process is assumed to occur at T1 with size S. Since
S > ε, so T ε0 ≤ T1. In addition, since T1 is exponentially distributed, it follows that E T ε0 < ∞.

In order to prove that E T 0
ε < ∞, we use Theorem 4 of [7], which is established for the jump

OU process without reflection. Note that, starting from T ε0 , {Xt }t≥0 moves freely, like a jump
OU process without reflection, until reaching the zero level, so the theorem is valid in our case.
We present it here, slightly adapted our setting. Define τ 0

x = inf{t ≥ 0 : Xt ≤ 0 | X0 = x}. If
σ �= 0 and E (Y+

1 )
δ < ∞ for some δ ∈ (0, 1), then

E τ 0
x = 1

λ

∫ ∞

0
(1 − e−ux)u−1e−ϕ(u) du < ∞.

This suggests that

E T 0
ε = 1

λ
E

∫ ∞

0
(1 − exp{−uXT ε0 })u−1e−ϕ(u) du.

It is not hard to check that
∫ ∞

1 u−1e−ϕ(u) du < ∞. For our purpose, it suffices to prove that

E
∫ 1

0
(1 − exp{−uXT ε0 })u−1e−ϕ(u) du < ∞.

By the assumption that
∫ ∞

1 xν(dx) < ∞,

E
∫ 1

0
(1 − exp{−uXT ε0 })u−1e−ϕ(u) du ≤ EXT ε0

∫ 1

0
e−ϕ(u) du < ∞.

Based on the above discussion, {Xt }t≥0 is a regenerative process, and the mean length of
a regeneration cycle is equal to E T ε0 + E T 0

ε < ∞. Thus, {Xt }t≥0 has a unique stationary
distribution.

Theorem 2.2. Assume that the stationary distribution of {Xt }t≥0 exists and that g(x) is the
stationary density. Define ĝ(α) := ∫ ∞

0 e−αxg(x) dx, α > 0. Then we have

ĝ(α) =
∫ ∞
α

exp{− ∫ s
α
(ψ(u)/λu) du} ds∫ ∞

0 exp{− ∫ s
0 (ψ(u)/λu) du} ds

.

Proof. Let S([0; ∞), R) be the Schwartz space of rapidly decreasing functions. More
precisely, S([0; ∞), R) is a linear space of all f (x) ∈ C∞([0,∞);R) satisfying

sup
x∈[0,∞)

|xn1f (n2)(x)| < ∞ for all n1, n2 ∈ N.
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Applying Itô’s formula (see [1, Theorem 4.4.7, p. 226]) for Lévy-type stochastic integrals, for
any f (x) ∈ S([0,∞), R),

df (Xt ) = [ − λXtf
′(Xt−)+ bf ′(Xt−)+ 1

2σ
2f ′′(Xt−)

]
dt + f ′(Xt−) dLt

+
∫ ∞

0
[f (Xt− + x)− f (Xt−)− xf ′(Xt−) 1[0,1](x)]ν(dx) dt

+
∫ ∞

0
[f (Xt− + x)− f (Xt−)]Ñ(dx, dt)+ σf ′(Xt−) dBt . (2.2)

Owing to the definition of S([0,∞), R), the integrals in (2.2) are well defined. It is easy to see
that {Xt }t≥0 is a Markov process with infinitesimal generator defined by

Af (x) = lim
t→0

Ex f (Xt )− Ex f (X0)

t

= −λxf ′(x)+ bf ′(x)+ 1
2σ

2f ′′(x)+ f ′(0)lx

+
∫ ∞

0
[f (x + y)− f (x)− yf ′(x) 1[0,1](y)]ν(dy),

where lx := limt→0 ExLt/t . To see that lx is well defined for each x, we only need to show that
l0 is well defined, since lx is nonincreasing with respect to x. Note that Lt is the local time of
{Xt }t≥0. By Corollary 6 of [2, p. 112], there is some constant c such that

∫ t
0 1{Xs=0} ds = cLt ,

so l0 is a finite constant. By the martingale representation theorem we obtain

Ex f (Xt )− f (x) =
∫ t

0
Ex(Af )(Xs) ds.

This suggests that if g(x) is the stationary density function then

0 =
∫ ∞

0
g(x)(Ex f (Xt )) dx −

∫ ∞

0
g(x)(f (x)) dx

=
∫ ∞

0
g(x)

[∫ t

0
Ex(Af )(Xs) ds

]
dx

=
∫ t

0

∫ ∞

0
(Af )(x)g(x) dx ds.

So ∫ ∞

0
(Af )(x)g(x) dx = 0 for all f ∈ S([0,∞), R). (2.3)

Specifically, we select f (x) = −e−αx/α. By a straightforward calculation we establish that∫ ∞

0
(Af )(x)g(x) dx

= −λ
∫ ∞

0
xe−αxg(x) dx + b

∫ ∞

0
e−αxg(x) dx − 1

2
σ 2α

∫ ∞

0
e−αxg(x) dx

+
∫ ∞

0
lxg(x) dx − 1

α

∫ ∞

0
e−αxg(x) dx

∫ ∞

0
[e−αy − 1 + αy 1[0,1](y)]ν(dy)

= λĝ′(α)+ ĝ(α)

[
b − 1

2
ασ 2 − 1

α

∫ ∞

0
(e−αy − 1 + αy 1[0,1](y))ν(dy)

]
+ p

= λĝ′(α)− ψ(α)

α
ĝ(α)+ p,
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where p := ∫ ∞
0 lxg(x) dx. Substituting this identity into (2.3) yields

ĝ′(α)− ψ(α)

λα
ĝ(α)+ p

λ
= 0, α ∈ (0,∞). (2.4)

Note that ĝ(0) = 1. The unique solution of (2.4) is given by

ĝ(α) = C(α) exp

{∫ α

0

ψ(s)

λs
ds

}
, (2.5)

where

C(α) := 1 − p

λ

∫ α

0
exp

{
−

∫ s

0

ψ(u)

λu
du

}
ds.

Finally, we end the proof by identifying the constant p. Owing to the fact that ĝ(α) → 0,
exp{∫ α0 (ψ(s)/λs) ds} → ∞ as α → ∞. We deduce thatC(α) → 0 as α → ∞, which implies
that

p

λ

∫ ∞

0
exp

{
−

∫ s

0

ψ(u)

λu
du

}
ds = 1.

Hence, p = λ[∫ ∞
0 exp{− ∫ s

0 (ψ(u)/λu) du} ds]−1
. Returning to (2.5), by substituting the value

of p into C(α) we have

ĝ(α) =
∫ ∞
α

exp{− ∫ s
α
(ψ(u)/λu) du} ds∫ ∞

0 exp{− ∫ s
0 (ψ(u)/λu) du} ds

.

This completes the proof.

Example 2.1. Let Yt = bt + σBt . Then Xt becomes an ordinary reflected OU process driven
only by a Brownian motion:

dXt = (b − λXt) dt + σ dBt + dLt .

According to Theorem 2.2, the Laplace transform of the stationary density is given by

ĝ(α) =
∫ ∞
α

exp{(4b(s − α)− σ 2(s2 − α2))/4λ} ds∫ ∞
0 exp{(4bs − σ 2s2)/4λ} ds

. (2.6)

On the other hand, Ward and Glynn [12] proved that

g(x) =
√

2λ

σ 2

φ(
√
(2λ/σ 2)(x − b/λ)2)

1 −�(−√
2b2/λσ 2)

, (2.7)

where φ and � are the density and distribution functions of N(0, 1) random variables. By
performing LTs of both sides of (2.7), we wish to prove that our result (2.6) agrees with (2.7).
In fact, the LT of exp{−at2}, a > 0, is

1

2

√
π

a
exp

{
α2

4a

}
Erfc

(
α

2
√
a

)
,

where

Erfc(x) = 2√
π

∫ ∞

x

exp{−t2} dt;
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see [8, pp. 43, 418] for the transform and the error integral Erfc(x). Let a1 = λ/σ 2 and
a2 = b/λ. Then

∫ ∞

0
e−αxφ

(√
2λ

σ 2

(
x − b

λ

)2)
dx

= 1√
2π

∫ ∞

0
e−αx exp{−a1(x − a2)

2} dx

= 1√
2π

exp{−a1a
2
2}

∫ ∞

0
exp{−(α − 2a1a2)x} exp{−a1x

2} dx

= 1

2
√

2a1
exp{−a1a

2
2} exp

{
(α − 2a1a2)

2

4a1

}
Erfc

(
(α − 2a1a2)

2
√
a1

)

= 1√
2πa1

exp{−a1a
2
2} exp

{
(α − 2a1a2)

2

4a1

} ∫ ∞

(α−2a1a2)/2
√
a1

exp{−t2} dt

= 1

2a1
√

2π
exp{−a1a

2
2} exp

{
(α − 2a1a2)

2

4a1

} ∫ ∞

α

exp

{
− (t − 2a1a2)

2

4a1

}
dt

= 1

2a1
√

2π
exp{−a1a

2
2}

∫ ∞

α

exp

{
4b(s − α)− σ 2(s2 − α2)

4λ

}
ds.

Let α = 0. The following relation holds:

1

2a1
√

2π
exp{−a1a

2
2}

∫ ∞

0
exp

{
4b(s − α)− σ 2(s2 − α2)

4λ

}
ds

=
∫ ∞

0
φ

(√
2λ

σ 2

(
x − b

λ

)2)
dx

= 1√
2π

∫ ∞

0
exp

{
− (2λ/σ)(x − b/λ)2

2

}
dx

= 1√
2π

σ√
2λ

∫ ∞

−
√

2b2/λσ 2
exp

{
− t

2

2

}
dt

= σ√
2λ

[
1 −�

(
−

√
2b2

λσ 2

)]
.

Hence, by performing LTs of both sides of (2.7) we obtain (2.6).

Example 2.2. Consider a reflected OU process driven by a standard Brownian motion {Bt }t≥0
and a compound Poisson process {Zt }t≥0. Specifically, we take the Lévy measure ν(dx) =
e−rx dx, r > 0. Then

dXt = −Xt dt + dBt + dZt + dLt .

It is easy to see that the Lévy exponent is given by ψ(α) = 1
2α

2 + r/(α + r)− 1. Thanks to
Theorem 2.2, the LT of the stationary density is

ĝ(α) =
∫ ∞

α

exp

{
α2 − s2

4

}
s + r

α + r
ds

/ ∫ ∞

0
exp

{
− s

2

4

}
s + r

r
ds. (2.8)
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Note that∫ ∞

α

exp

{
α2 − s2

4

}
s + r

α + r
ds = 2

∫ ∞

0
exp{−(s2 + αs)}2s + α + r

α + r
ds

= 4

α + r

∫ ∞

0
e−αs exp{−s2}s ds + 2

∫ ∞

0
e−αs exp{−s2} ds.

Performing inverse LTs of both sides of (2.8), we obtain the density function

g(x) =
(

4
∫ x

0
exp{−r(x − y)− y2}y dy + 2 exp{−s2}

)/ ∫ ∞

0
exp

{
− s

2

4

}
s + r

r
ds.

Example 2.2 gives the explicit stationary density for a reflected OU process with Poisson
jumps. Generally speaking, for model (2.1), the explicit expression of g(x) is rather difficult
to obtain. But with the aid of Theorem 2.2, the Laplace transform of g(x) can be rigorously
expressed.

3. The Markov-modulated reflected OU process

In this section we consider the stationary distribution of the Markov-modulated reflected OU
process. Suppose that {J (t)}t≥0 is an irreducible and recurrent continuous-time Markov chain
with finite state space E = {1, 2, . . . , n}. Then {J (t)}t≥0 has a unique stationary probability
distribution, π = (π1, π2, . . . , πn), say. The intensity matrix is denoted by Q = (qij )i,j∈E

.
In this section, {Xt }t≥0 denotes the reflected OU process modulated by {Jt }t≥0. Then the

{Xt }t≥0 are formulated using

dXt = −(b(Jt )+ λ(Jt )Xt ) dt + σ(Jt ) dBt + dLt , (3.1)

where σ(·), λ(·), and b(·) are strictly positive functions on E, and {Lt }t≥0 is the minimal
nondecreasing process that makes Xt ≥ 0 and increases only when Xt is 0. When J (·) = j ,
Xt behaves like a reflected OU process:

dXt = −(bj + λjXt ) dt + σj dBt + dLt .

Assume that X0 = 0 and that {Jt }t≥0 starts from the distribution π . From Itô’s formula and
(3.1), {exp{∫ t0 λ(Js) ds}Xt }t≥0 has the following representation:

exp

{∫ t

0
λ(Js) ds

}
Xt =

∫ t

0
exp

{∫ s

0
λ(Ju) du

}
[−b(Js) ds + σ(Js) dBs]

+
∫ t

0
exp

{∫ s

0
λ(Ju) du

}
dLs.

Let Yt := ∫ t
0 exp{∫ s0 λ(Ju) du}[−b(Js) ds + σ(Js) dBs] and Rt := ∫ t

0 exp{∫ s0 λ(Ju) du} dLs .
Then

Xt = exp

{
−

∫ t

0
λ(Js) ds

}
(Yt + Rt). (3.2)

By (3.2) and the definition of Lt , Rt is a nondecreasing continuous process that makes
Yt + Rt ≥ 0. Moreover, Rt increases only on the set {Yt + Rt = 0}. According to the
solution to the Skorokhod problem (see, e.g. Section 2.2 of [6]), Rt is the reflection of Yt .
Hence, we have the following lemma.
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Lemma 3.1. For the model specified by (3.1), Rt = ∫ t
0 exp{∫ s0 λ(Ju) du} dLs, t ≥ 0, is in fact

the reflection of {Yt }t≥0. That is,

Rt = − inf
0≤s≤t Ys, t ≥ 0.

Hence, Xt can be expressed as

Xt = exp

{
−

∫ t

0
λ(Js) ds

}[
Yt − inf

0≤s≤t Ys
]
, t ≥ 0.

Next we prove that Xt converges in distribution as t → ∞, which further implies that the
stationary distribution of {Xt }t≥0 exists.

Theorem 3.1. Let {J ∗
t }t≥0 be the reversed Markov chain of {Jt }t≥0. The initial distribution

is π . Then in the model specified by (3.1), (Jt , Xt ) converges to(
J ∗

0 ,max
t<∞

{∫ t

0
exp

{
−

∫ s

0
λ(J ∗

u ) du

}
[−b(J ∗

s ) ds + σ(J ∗
s ) dBs]

})
in distribution. Moreover, the limit is finite almost everywhere. So the stationary distribution
exists.

Proof. By Lemma 3.1 we have

XT = exp

{
−

∫ T

0
λ(Jt ) dt

}
(YT + RT )

= exp

{
−

∫ T

0
λ(Jt ) dt

}
max

0≤t≤T {YT − Yt }

= exp

{
−

∫ T

0
λ(Jt ) dt

}
max

0≤t≤T

{∫ T

t

exp

{∫ s

0
λ(Ju) du

}
[−b(Js)ds + σ(Js) dBs]

}

= max
0≤t≤T

{∫ T

t

exp

{
−

∫ T

s

λ(Ju) du

}
[−b(Js) ds + σ(Js) dBs]

}
. (3.3)

Recall that {J ∗
t }t≥0 is the reversed Markov chain of {Jt }t≥0 with initial distribution π . From

(3.3) we have

(JT ,XT )
d=

(
J ∗

0 , max
0≤t≤T

{∫ t

0
exp

{
−

∫ s

0
λ(J ∗

u ) du

}
[−b(J ∗

s ) ds + σ(J ∗
s ) dBs]

})
, (3.4)

where ‘
d=’ denotes equality in distribution. Moreover,

XT
d= max

0≤t≤T

{∫ t

0
exp

{
−

∫ s

0
λ(J ∗

u ) du

}
[−b(J ∗

s ) ds + σ(J ∗
s ) dBs]

}

≤ max
0≤t≤T

{∫ t

0
exp

{
−

∫ s

0
λ(J ∗

u ) du

}
σ(J ∗

s ) dBs

}
d= max

0≤t≤T {B∫ t
0 exp{−2

∫ s
0 λ(J

∗
u ) du}σ 2(J ∗

s ) ds}
≤ max

0≤t≤∞{B∫ t
0 exp{−2

∫ s
0 λ(J

∗
u ) du}σ 2(J ∗

s ) ds}
≤ max

0≤t≤σ̄ 2/2λ
Bt

< ∞, (3.5)
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where σ̄ = maxi∈E{σ(i)} and λ = mini∈E{λ(i)}. By (3.4) and (3.5), Xt converges to the finite
variable

max
t<∞

{∫ t

0
exp

{
−

∫ s

0
λ(J ∗

u ) du

}
[−b(J ∗

s ) ds + σ(J ∗
s ) dBs]

}
in distribution. This completes the proof.

By (J∞, X∞) we denote the limit of (Xt , Jt ) in the distribution sense. Define Gi(x) =
P(X∞ ≤ x, J∞ = i) for x ≥ 0 and i ∈ E. Let gi(x) denote the stationary density at (x, i).
Let ĝi (α) = ∫ ∞

0 e−αxgi(x) dx and ĝ(α) = (ĝ1(α), ĝ2(α), . . . , ĝn(α))
�. Then we have the

following theorem.

Theorem 3.2. Assume that the stationary distribution of (Xt , Jt ) exists. Then ĝ(α) satisfies
the following differential equation:

A(α)ĝ(α)− B(α)ĝ′(α) = αP , (3.6)

where A(α) = Q� + diag(σ 2
i α

2/2 + biα), B(α) = diag(λiα), and P is a constant column
vector that will be given in the proof below.

Proof. The proof follows by arguments similar to the proof of Theorem 2.2, so we begin
with the infinitesimal generator L of (Xt , Jt ). Select f (x, i) bounded and twice continuously
differentiable in x. By Itô’s formula,

Lf (x, i) = lim
t→0

E(x,i) f (Xt , Jt )− E(x,i) f (X0, J0)

t

= lim
t→0

(E(x,i) f (Xt , Jt )− E(x,i) f (Xt , J0))+ (E(x,i) f (Xt , J0)− E(x,i) f (X0, J0))

t

= lim
t→0

t−1
[
(1 + qii t)E(x,i) f (Xt , i)+

∑
j �=i

qij t E(x,i) f (Xt , j)− E(x,i) f (Xt , i)

− E(x,i)

∫ t

0
(b(Js)+ λ(Js)Xs)f

′(Xs, J0) ds + f ′(0, J0)E(x,i) Lt

+ E(x,i)

∫ t

0
σ(Js)f

′(Xs, J0) dBs + 1

2
E(x,i)

∫ t

0
σ 2(Js)f

′′(Xs, J0) ds

]

=
∑
j∈E

qij f (x, j)− bif
′(x, i)− λixf

′(x, i)+ 1

2
σ 2
i f

′′(x, i)+ f ′(0, i)lix, (3.7)

where lix := limt→0 E(x,i) Lt/t , and f ′(x, i) and f ′′(x, i) are the first- and second-order partial
derivatives at x. The stationary density, gi(x), i = 1, 2, . . . , n, solves the following equation
for all f (x, i) defined above:

n∑
i=1

∫ ∞

0
(Lf )(x, i)gi(x)dx = 0. (3.8)

We set f (x, i) = (e−αx − 1)h(i), where h(i) is a bounded function on E. It follows from (3.7)
and (3.8) that

n∑
i=1

h(i)

∫ ∞

0
Ki(x) dx = 0,
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where

Ki(x) =
n∑
j=1

qji(exp{−αx} − 1)gj (x)+ biαe−αxgi(x)+ λiαxe−αxgi(x)

+ 1
2σ

2
i α

2e−αxgi(x)− αlixgi(x).

Define pi := ∫ ∞
0 lixgi(x) dx. Note that ĝi (0) = πi and

∑n
j=1 qjiπj = 0, i ∈ E. Then the

identity above immediately yields

n∑
i=1

h(i)

[ n∑
i=1

qji ĝj (α)+ biαĝi(α)− λiαĝ
′
i (α)+ 1

2
σ 2
i α

2ĝi (α)− αpi

]
= 0.

Finally, let P := (p1, p2, . . . , pn)
�. Since h(i) is arbitrary, we have

A(α)ĝ(α)− B(α)ĝ′(α) = αP .

Corollary 3.1. Assume that Mk = (m1
k,m

2
k, . . . , m

n
k)

� exists formik = ∫ ∞
0 xkgi(x) dx, i ∈ E

and k ∈ N. Then we have

M0 = (π1, π2, . . . , πn)
�, (3.9)

M1 = [Q� − diag(λi)]−1(P − diag(bi)π
�), (3.10)

and the following recursive relation:

Mn = −n(n− 1)

2
[Q� − diag(nλi)]−1diag(σ 2

i )Mn−2

+ n[Q� − diag(nλi)]−1diag(bi)Mn−1, n ≥ 2. (3.11)

Proof. Equation (3.9) is trivial. To see (3.11), differentiate (3.6) k times, k ≥ 2, to obtain

k∑
l=0

ClkA
(l)(α)ĝ(k−l)(α)−

k∑
l=0

ClkB
(l)(α)ĝ(k−l+1)(α) = 0.

Letting α → 0,

[Q� − C1
ndiag(λi)]ĝ(k)(0)+ C1

ndiag(bi)ĝ
(k−1)(0)+ C2

ndiag(σ 2
i )ĝ

(k−2)(0) = 0.

By the Gershgorin circle theorem (see [4, p. 200]) we can prove the invertibility of Q� −
C1
ndiag(λi). In fact, the Gershgorin circle theorem identifies a region in the complex plane

that contains all the eigenvalues of a complex square matrix. For an n × n matrix A, define
Ri = ∑n

j=1, j �=i |aij |. Then each eigenvalue of A is in at least one of the disks {z : |z− aii | ≤
Ri}, i = 1, 2, . . . , n. In particular, if |aii | > Ri, i = 1, 2, . . . , n, then each eigenvalue is apart
from 0. So the matrix Q� − C1

ndiag(λi) must be invertible, and, therefore,

ĝ(k)(0) = −C2
n[Q� − C1

ndiag(λi)]−1diag(σ 2
i )ĝ

(k−2)(0)

− C1
n[Q� − C1

ndiag(λi)]−1diag(bi)ĝ
(k−1)(0).

This leads to (3.11). By a similar calculation, we can prove (3.10).
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To end this section, we provide an example, in which the explicit expression of ĝ(α) can be
derived. Let

dXt = −λ(Jt )Xt dt + √
λ(Jt ) dBt + dLt ; (X0, J0) = (x, i), x ≥ 0, i ∈ E,

where {Jt }t≥0 is a continuous-time Markov chain with state space E = {1, 2} and intensity
matrix

Q =
(−µ1 µ1
µ2 −µ2

)
.

By Theorem 3.2, ĝ1(α) and ĝ2(α) solve the following equations:(
−µ1 + λ1

2
α2

)
ĝ1(α)+ µ2ĝ2(α)− λ1αĝ

′
1(α) = p1α,

µ1ĝ1(α)+
(

−µ2 + λ2

2
α2

)
ĝ2(α)− λ2αĝ

′
2(α) = p2α.

(3.12)

For convenience, let h(α) := λ1ĝ1(α)+ λ2ĝ2(α) and p := p1 + p2. Then (3.12) implies that

1
2αh(α)− h′(α) = p.

By the initial condition h(0) = (λ1µ2 + λ2µ1)/(µ1 + µ2), h(α) is given by

h(α) = exp

{
1

4
α2

}(
λ1µ2 + λ2µ1

µ1 + µ2
− p

∫ α

0
exp

{
−1

4
s2

}
ds

)
. (3.13)

Note the fact that h(α) → 0 as α → ∞. We deduce from (3.13) that

p = λ1µ2 + λ2µ1

µ1 + µ2

[∫ ∞

0
exp

{
−1

4
s2

}
ds

]−1

=
√

1

π

λ1µ2 + λ2µ1

µ1 + µ2
.

Substituting (3.13) into (3.12), we obtain

ĝ1(α) = α−(µ1/λ1+µ2/λ2) exp

{
1

4
α2

} ∫ α

0
s(µ1/λ1+µ2/λ2) exp

{
−1

4
s2

}[
µ2

λ1λ2s
h(s)− p1

λ1

]
ds

(3.14)
and

ĝ2(α) = α−(µ1/λ1+µ2/λ2) exp

{
1

4
α2

} ∫ α

0
s−(µ1/λ1+µ2/λ2) exp

{
−1

4
s2

}[
µ1

λ1λ2s
h(s)− p2

λ2

]
ds.

(3.15)
It is easy to see that ĝ1(α) → µ2/(µ1 + µ2) and ĝ2(α) → µ1/(µ1 + µ2) as α → 0. Finally,
we are left to find p1 and p2. We note that ĝ1(α), ĝ2(α) → 0 as α → ∞, which suggests that∫ ∞

0
s−(µ1/λ1+µ2/λ2) exp

{
−1

4
s2

}[
µ2

λ1λ2s
h(s)− p1

λ1

]
ds = 0

and ∫ ∞

0
s−(µ1/λ1+µ2/λ2) exp

{
−1

4
s2

}[
µ1

λ1λ2s
h(s)− p2

λ2

]
ds = 0.
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Then a straightforward calculation gives

p1 = µ2

λ2

[∫ ∞

0
s−(µ1/λ1+µ2/λ2) exp

{
−1

4
s2

}
ds

]−1 ∫ ∞

0
s(µ1/λ1+µ2/λ2−1) exp

{
−1

4
s2

}
h(s) ds

and

p2 = µ1

λ1

[∫ ∞

0
s−(µ1/λ1+µ2/λ2) exp

{
−1

4
s2

}
ds

]−1∫ ∞

0
s(µ1/λ1+µ2/λ2−1) exp

{
−1

4
s2

}
h(s) ds.

Thus, together with the values of h(s), p1, and p2, (3.14) and (3.15) jointly give the values of
ĝ1(α) and ĝ2(α).
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